OUTLINE OF THE TALK

- 1. Multifractal Measures (Pictures)
- 2. A tour of the Universe (Pictures)
- 3. The Search for Filaments (Pictures)
- 4. The Gaussian Free Field (Pictures)
- 5. Lensing and Quasiconformal Mappings (Pictures)
- 6. Introduction to SLE and Random "Traces"
- 7. A Construction of Random Homeomorphisms (S¹)
- 8. Exponentiating the Gaussian Free Field
- 9. Ito Calculus for #8 and L² Estimates
- 10.Degenerate QC Mappings and Random Lehto Th.
- 11. Sobolev spaces and Uniqueness of Homeos
- 12. Construction of Random Jordan Curves

THE OBJECTS IN #7 AND 12 ARE "THE SAME"!

References to Related work:

- 1. O. Schramm and S. Sheffield have another approach using The Gaussian Free Field. They obtain SLE traces, but NOT Loops.
- 2. Barral, Mandelbrot et al have a very useful set of papers on mutifractal measures. In particular they have useful methods to show when the measures are (a.s.) 0.
 - 3. Malliavin et al have defined "Brownian Motion on the Space Diff(S1)" It is a very different process, but philosophically similar. That process also has long time existence, unlike ours.
 - 4. S. Sheffield has a beautiful introduction to analysis and the GFF. (On the web)

Tom Theuns/Max-Planck-Institute for Astrophysics, Germany

Strong Gravitational Lensing

DO ALIENS LIKE QUASICIRCLES?

http://images.google.com/imgres?imgurl=http://www.lucypringle.co.uk/photos/1997/uk1997cm2.jpg&imgrefurl=http://www.lucypringle.co.uk/photos/1997/uk1997cm.html&h=399&w=620&sz=68&tbnid=CLmpnJy26mMJ:&tbnh=86&tbnw=134&hl=en&start=11&prev=/images%3Fq%3Dfractal%2Bc

Gaussian Free Field GFF

Gaussian Hilbert Space

72 = Hilbert Space

Efn 3 = 6.10. basis

Zan(w) fn

Cs.i.d. M(o,1) or N(o,2)

Basé Changé: {gn} = o.n. basis

"Nothing Changes

Gaussian Free Field on a Surface M (Essentially same for Manifold)

Let M be a smooth, compact surface having (positive) Laplace-Beltrami operator

 $\Delta \geq 0$

By the SPECTRAL THEOREM there is an o.n. basis for L^2 Consisting of eigenfunctions ϕ_k satisfying

$$\triangle \phi_k = \lambda_k \phi_k$$

Let H be the HILBERT space with inner product

$$\langle F, G \rangle_{H} = \iint \nabla(F) \circ \nabla(G)$$

An o.n. basis for the Hilbert Space H is $\{\ (\lambda_k)^{-1/2}\ \phi_k\}$.

Example: The Torus An o.n. basis is given by

$$\{(2\pi)^{-1}(m^2+n^2)^{-1/2} \exp(i2\pi mx+i2\pi ny) \}$$

Gaussian Hilbert Space $\leftrightarrow \sum a_k F_k$,

Where $\{F_k\}$ is an o.n. basis for H and the a_k are i.i.d. N(0,1). These Sums (a.s.) ARE NOT FUNCTIONS. (They are Distributions that "just miss" being functions.) THEY PUT EQUAL ENERGY AT EVERY SCALE. (As in the very early universe!)

GAUSSIAN FREE FIELD in BRAIN IMAGING

GFF (D)

The standard of the s

T: $GFF(D) \rightarrow Harm. GFF(D)$ These are functions

R.O.C. = 1 (a.s.)

If we take REAL FCNS, take trace on S¹,

get GFF(s¹) (some Norm)

Conformal Invariance
for GFF(s¹)

GFF(S')

$$\sum_{n=2}^{\infty} a_n(w) \frac{\cos(n\theta)}{n!s} \left(+ \sin s \right)$$

$$= \left(\frac{3}{2}\right)^{2} \sum_{n=1}^{\infty} a_{n}(w) \cos(ne) \quad (+\sin s)$$

Brownian Motion

(Actually Brownian Bridge)

 $B.M. = \Lambda_{1/2} = \epsilon$

G.F.F = Dues NOT Converge,
but is almost a function

Rendom, Bloch B.V.'s

hen

$$\sum_{n=0}^{\infty} (a_n(x)) \cos(n\theta) + \frac{1}{n^{1/2}}$$

$$+ \tilde{a}(t) \frac{\sin(n\theta)}{n^{1/2}} - \frac{\tilde{a}}{3n}$$

$$\alpha_n, \tilde{\alpha}_n$$
 i.i.d. $N(0, \pm)$ \pm^{j}

we [0,1] a Wiener Space of &

$$\varphi'(e) = c_w \exp \{ \sum_{w, \pm} \}$$

$$\xi \varphi' de = 2\pi$$

Theorem (to be written at IPAM!) $0 \le t < 2$

- 1. $\varphi(\theta) = c_{\omega} \exp \left\{ \sum_{\omega, t} (\theta) \right\}$ is (a.s.) a homeo of s.
- 2. This class of homeos is conformally invariant under $T:D \to D$ Möbius, and is measure preserving.

 (Wigner measure on $\Omega = [0,1] \ni \omega$)
- 3. P is (a.s.) a welding map
 for a Hölder domain. (Lehto)
- 4. The welding curve is
 (a.s.) unique. (J., Smirnov Thm.)

CONTECTURE:

This gives us

SLE(X) OSX<4

"Everything" degenerates
at £ = 2 (and K = 4).

But it probably still makes

sense.

MBA's

$$w \rightarrow \exp\{B_{\omega}(x) - \frac{2}{3}\}$$

Take Average = E
$$E(f_{\omega}) = \int_{0}^{1} f_{\omega} d\omega$$

$$w. Space$$

Feynman - Kac Formula:

$$E(\exp\{B_{\omega}(x) - \frac{1}{2}\}) = 1$$

$$\Gamma(\alpha | x)$$

$$\Rightarrow E(\exp\{\alpha_{n}(\omega, t)\cos(\frac{t}{2})\} = 1$$

$$\cos^2 + \sin^2 = 1$$

$$\Rightarrow \quad (Formally)$$

$$E\left(\exp\left\{\sum_{\omega,\varphi}\right\}\right)=1$$

$$\Rightarrow E\left(\int_{0}^{2\pi} \left\{\sum_{w, \neq}^{2\pi} \left(w\right)\right\} dw\right) = 3\pi$$

Careful L² analysis:

(non-degenerate)

Welding Maps

F:D -> 2

F: 0, -> 2

J. Curve

P=(F*)6F

Pisa WELDING MAP

Every P gives a P,

BUT NOT EVERY P

IS WELDING.

How to Weld

extension to UHP DE = m d De Beltrami Data 多二寸(影·········) TRY TO SOLVE df = mdf 9/060/ (REGONLHP) Can Replace 21HP by D

Quasiconformal Mappings

F is a Homeomorphism of The Complex Plane

BELTRAMI DATA:

$$\mathbb{E}\mathbb{Q} # 1$$
 $\partial \mathbb{F}(\mathbb{Z}) = \mu(\mathbb{Z}) \partial \mathbb{F}(\mathbb{Z})$

Where $\partial = \frac{1}{2} (\partial_x + i \partial_y)$ (Annihilates holomorphic functions)

$$\partial = \frac{1}{2} (\partial_x - i \partial_y)$$
 (H'(z) for H holomorphic)

Conditions on $\mu(z)$:

F diffeo
$$\rightarrow |\mu(z)| < 1$$
 ($\mu(z) = 0$ iff F = (az +b)/(cz + d)

THERE IS A CONVERSE!

MEASURABLE RIEMANN MAPPING THEOREM:

- 1. If $\|\mu(z)\|_{\infty} < 1$ and is measurable, then there exists a homeo F such that EQ #1 holds a.e.
- 2. F fixes $0, 1, \infty$ implies F is unique.

We will need a stronger theorem later. (LEHTO)

LEHTO'S Thm (Brutel Form) $\Psi(z,r) = \left(\int_{0}^{2\pi} \frac{1}{1 - |\mu(z+re^{i\theta})|} \frac{d\theta}{2\pi} \right)^{\frac{1}{2\pi}}$ $\frac{1}{1 + (z,r)} \frac{dr}{dr} = +\infty$

an ion has a homeo solution F.

We must evaluate Y(eig,r)

Use Large Devications "Mostly 4 ≥ € > 6

SOBOLEV SPACES AND UNIQUENESS

Def. A closed set $K \subseteq \mathbb{R}^d$ is said to be removable for a Sobolev space S if $f \in S(\mathbb{R}^d \setminus K)$, and f globally continuous $\Rightarrow f = \text{restriction to } \mathbb{R}^d \setminus K \text{ of } F \in S(\mathbb{R}^d)$. (f extends to the "same" Sobolev Space.)

There is now a theory (almost best possible in any dimension) about such problems due to J and J + S. Smirnov. In particular one obtains the following special case:

Theorem (J, Smirnov) If $D \subseteq \mathbb{R}^2$ is a Hölder domain, then its boundary is removable for the Sobolev space

W 1,2 (One Derivative in L2)

Corollary: The Jordan Curves constructed via the GFF Are unique up to Möbius transformations.

Comment: The particular case listed above as the theorem has proved to be very useful for conformal dynamics.