The KPZ line ensemble: a marriage of integrability and probability

Ivan Corwin Clay Mathematics Institute, Columbia University, MIT

Joint work with Alan Hammond [arXiv:1312.2600 math.PR]

▲日▼▲□▼▲□▼▲□▼ □ ののの

Introduction to the KPZ equation

The Kardar-Parisi-Zhang (KPZ) stochastic PDE is

$$\partial_t \mathcal{H}(t,x) = rac{1}{2} \partial_x^2 \mathcal{H}(t,x) + rac{1}{2} \left(\partial_x \mathcal{H}(t,x)
ight)^2 + \dot{\mathcal{W}} \, ,$$

where $\dot{\mathcal{W}}$ is space-time Gaussian white noise.

The equation models a large class of 1D interfaces which

- grow randomly
- in a direction perpendicular to the local slope
- and are subject to restoring forces such as surface tension.

The assertion of universality is demonstrated by extensive **numerics**, some **experimental evidence**, and a limited but growing body of **proofs**.

Experimental and numerical evidence for KPZ

(a) $8.0 \sec$ 500μ 500μ $18.0 \sec$ $28.0 \sec$ $28.0 \sec$

FIG. 1: (Color online) Growing DSM2 cluster. (a) Images. Indicated below is the dapaed time after the emission of laser pulses. (b) Snapshots of the interfaces taken every 5 is in the range $28 \le t \le 27$ s. The gray dashed circle shows the mean radius of all the droplets at t = 27 s. The coordinate x at this time is defined along this circle.

Three eras of KPZ via integrability

- Physics predictions (1986 1999): scaling exponents of 1/3 and 2/3 via non-rigorous analysis and numerics;
- **Rigorous zero temperature (1999 2009)**: certain totally asymmetric models such as TASEP, LPP and PNG via the RSK correspondence and determinantal point processes;
- **Rigorous positive temperature (2009 present)**: ASEP, *q*-TASEP and KPZ via geometric lifting of RSK, Bethe ansatz and Macdonald processes. None of these processes are determinantal.

The solution of the KPZ equation

Define the Hopf-Cole solution of the KPZ equation as

$$\mathcal{H}(t,x) := \log \mathcal{Z}(t,x),$$

where $\mathcal{Z}(t, x)$ is the well-posed solution of the stochastic heat equation (SHE) with multiplicative white-noise

$$\partial_t \mathcal{Z}(t,x) = \frac{1}{2} \partial_x^2 \mathcal{Z}(t,x) + \dot{\mathcal{W}}(t,x) \mathcal{Z}(t,x).$$

This is the physically relevant notion of solution to KPZ.

Narrow wedge initial data is given by $\mathcal{Z}(0, x) = \delta_{x=0}$. We write $\mathcal{Z}^{nw}(t, x)$ and $\mathcal{H}^{nw}(t, x)$ for the corresponding solutions.

Generally, \mathcal{H}_0 initial data for KPZ means $\mathcal{Z}(0, x) = e^{\mathcal{H}_0(x)}$.

The era of positive temperature: one-point information

Theorem (Balázs, Quastel and Seppäläinen 2011)

When $\mathcal{H}(0,x)$ is a two-sided Brownian motion, there exist $c_1, c_2 \in (0,\infty)$ for which

$$c_1 t^{1/3} \leq \sqrt{\mathrm{Var}\mathcal{H}(t,x)} \leq c_2 t^{1/3} \;\; orall x \in \mathbb{R}$$
 and $t \geq 1$.

The scaled narrow wedge KPZ equation solution $\mathfrak{h}^t(x)$ is defined by

$$\mathcal{H}^{\mathrm{nw}}(t,x) = -\frac{t}{24} + t^{1/3}\mathfrak{h}^t(t^{-2/3}x).$$

Theorem (Amir, C. and Quastel 2011)

The random variable $\mathfrak{h}^t(0)$ converges in law as $t \to \infty$.

Results with Alan Hammond: spatial regularity

Exploiting a new **line ensemble** structure which I will soon briefly describe, Alan Hammond and I have obtained new information about the solution of the KPZ equation.

Other recent advances in exact solvability of KPZ have concerned one-point distributions. The key contribution of our work is **spatial regularity** which is available even after the coordinate change to the (1/3, 2/3)-fluctuation scale.

Application 1: Uniformly Brownian spatial sample paths

Theorem

For each C > 0, the process $\mathfrak{h}^t : [-C, C] \to \mathbb{R}$ is absolutely continuous with respect to Brownian bridge, uniformly in $t \ge 1$.

Note that this inference is made in the (1/3, 2/3) fluctuation scale.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Application 2: Universal 1/3 fluctuation exponent

Consider the solution $\mathcal{H}^{(t)}$ of the KPZ equation for some general initial data: $\mathcal{H}^{(t)}(0, x) = \mathcal{H}_0^{(t)}(x)$.

By linearity of the stochastic heat equation, we have that

$$\mathcal{H}^{(t)}(t,0) \stackrel{(d)}{=} \log \int_{-\infty}^{\infty} e^{\mathcal{H}^{\mathrm{nw}}(t,x) + \mathcal{H}_{0}^{(t)}(x)} \,\mathrm{d}x \,.$$

Setting $h_0^{(t)}(x) = t^{-1/3} \mathcal{H}_0^{(t)}(t^{2/3}x)$, we find that

$$\mathcal{H}^{(t)}(t,0) \stackrel{(d)}{=} -\frac{t}{24} + \frac{2}{3} \log t + \log \int_{-\infty}^{\infty} e^{t^{1/3} \left(\mathfrak{h}^{t}(x) + h_{0}^{(t)}(x) \right)} \, \mathrm{d}x \, .$$

Application 2: Universal 1/3 fluctuation exponent

The KPZ one-point distribution lives on scale $t^{1/3}$, under very weak hypotheses on the initial data.

Theorem

If the scaled initial data $h_0^{(t)}$

- grows subparabolically
- and is bounded above and below near zero,

then, for all $\epsilon > 0$, there exists $C_1 > 0$ such that, for all $t \ge 1$,

$$\mathbb{P}\Big(-C_1t^{1/3} \leq \mathcal{H}^{(t)}(t,0) + rac{t}{24} \leq C_1t^{1/3}\Big) > 1-\epsilon\,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = シクタル

Application 2: Universal 1/3 fluctuation exponent

The same one-point distribution does not concentrate on a scale smaller than $t^{1/3}$.

Theorem

Suppose that the scaled initial data $h_0^{(t)}$ satisfies the same hypotheses.

For all $\epsilon > 0$, there exists $C_2 > 0$ such that, for all $\eta > 0$, $t \ge 1$ and $x \in \mathbb{R}$,

$$\mathbb{P}\left(\frac{\mathcal{H}^{(t)}(t,0)+t/24}{t^{1/3}} \in (x,x+\eta)\right) \leq C_2 \eta + \epsilon \,.$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

KPZ line ensemble: the structure underlying the results

We construct and analyze a family of \mathbb{N} -indexed ensembles of curves called KPZ_t line ensembles. The lowest indexed curve is distributed as the time t narrow wedge KPZ solution. The ensemble enjoys a Gibbsian resampling property. These ensembles display uniform regularity under (1/3, 2/3) scaling as $t \to \infty$.

Existence of such ensembles is not obvious. Certain algebraic structure enjoyed by a prelimiting regularization of the KPZ equation is recast as a line ensemble with a resampling property. The algebraic structure does not clearly survive the limit, but we show that the line ensemble and its resampling property does.

The curve \mathcal{L}_k around [a, b] and the two adjacently indexed curves.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Remove the curve \mathcal{L}_k on [a, b].

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

The \mathbf{H}_{∞} -Brownian Gibbs property

What is the conditional law of \mathcal{L}_k on [a, b] after the removal?

It is Brownian bridge conditioned to avoid the neighboring curves.

It is Brownian bridge conditioned to avoid the neighboring curves.

・ロト ・ 一下・ ・ ヨト ・ 日 ・

It is Brownian bridge conditioned to avoid the neighboring curves.

・ロト ・ 一下・ ・ ヨト ・ 日 ・

The **H**-Brownian Gibbs property

The general definition of the **H**-Brownian Gibbs property involves a continuous function $\mathbf{H} : \mathbb{R} \to [0, \infty)$.

We will focus on:

 $\mathbf{H}_t(x) = e^{t^{1/3}x}$, with $t \in (0,\infty)$, and $\mathbf{H}_{\infty}(x) = +\infty \mathbf{1}_{x \ge 0}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

The H-Brownian Gibbs property

Definition

The line ensemble $\{\mathcal{L}_i : i \in \mathbb{N}\}$ has the **H**-Brownian Gibbs property if: for any $k \in \mathbb{N}$ and $a, b \in \mathbb{R}$, a < b, the conditional distribution of \mathcal{L}_k on [a, b] given all other information has Radon-Nikodym derivative with respect to Brownian bridge $B : [a, b] \to \mathbb{R}$, $B(a) = \mathcal{L}_k(a)$, $B(b) = \mathcal{L}_k(b)$, given by

$$Z^{-1}\exp\left\{-\int_{a}^{b}\left(\mathsf{H}\big(\mathcal{L}_{k+1}(s)-B(s)\big)+\mathsf{H}\big(B(s)-\mathcal{L}_{k-1}(s)\big)\right)\mathrm{d}s\right\},\,$$

where $Z \in (0, \infty)$ is a normalization.

The main theorem: KPZ_t line ensemble

Recall that $\mathbf{H}_t(x) = e^{t^{1/3}x}$.

Theorem

There exists an \mathbb{N} -indexed line ensemble $\mathcal{H}^t = \{\mathcal{H}^t_n : n \in \mathbb{N}\}$ enjoying the \mathbf{H}_1 -Brownian Gibbs property whose lowest indexed curve $\mathcal{H}^t_1 : \mathbb{R} \to \mathbb{R}$ has the law of the KPZ solution $\mathcal{H}^{nw}(t, \cdot)$.

The scaled line ensemble $\{\mathfrak{h}_n^t : n \in \mathbb{N}\}$, defined by

$$\mathcal{H}_n^t(x) = -\frac{t}{24} + t^{1/3}\mathfrak{h}_n^t(t^{-2/3}x),$$

has the \mathbf{H}_t -Brownian Gibbs property.

Moreover, the curves \mathfrak{h}_1^t (the scaled time t KPZ solutions) enjoys uniform comparison to Brownian bridge as $t \ge 1$ varies.

The KPZ_t line ensemble and its scaled version

The continuum directed random polymer

To see where the KPZ_t line ensemble comes from, we first observe a connection between KPZ and path integrals (directed polymers).

We may represent the narrow wedge $\mathcal{Z}(0,x) = \delta_{x=0}$ SHE solution

$$\partial_t \mathcal{Z}(t,x) = \frac{1}{2} \partial_x^2 \mathcal{Z}(t,x) + \dot{\mathcal{W}}(t,x) \mathcal{Z}(t,x).$$

via Feynman-Kac as a polymer partition function:

$$\mathcal{Z}^{\mathrm{nw}}(t,x) = \mathbb{E}\left[\delta_{B(t)=x} : \exp:\left\{\int_{0}^{t} \dot{\mathcal{W}}(s,B(s)) \,\mathrm{d}s\right\}
ight].$$

The expectation is over Brownian motions $B : [0, t] \rightarrow \mathbb{R}$ with B(0) = 0.

For $N \in \mathbb{N}$ and s > 0, let $D_1^N(s)$ denote the set of non-decreasing surjective functions $\phi : [0, s] \to \mathbb{N} \cap [0, N]$.

For $\phi \in D_1^N(s)$, write $0 \le s_1 < \ldots < s_{N-1} \le s$, for ϕ 's jump times.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへ⊙

Take N independent Brownian motions $B_i : [0, s] \to \mathbb{R}, 1 \le i \le N$. For $\phi \in D_1^N(s)$, define its weight $E(\phi)$ to be $\int_0^s dB_{\phi(r)}(r)$, or $(B_1(s_1) - B_1(0)) + (B_2(s_2) - B_2(s_1)) + \cdots + (B_N(s) - B_N(s_{N-1}))$.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Set
$$M_1^N(s) = \max_{\phi \in D_1^N(s)} E(\phi)$$
.

Now let $1 \le k \le N$. Write $D_k^N(s)$ for the set of (ϕ_1, \ldots, ϕ_k) , where

• $\phi_j : [0, s] \to \mathbb{N} \cap [j, N - k + j]$ is a non-decreasing surjection;

• the paths ϕ_i are disjoint.

Setting
$$M_1^N(s) + \ldots + M_k^N(s) = \max_{(\phi_1,\ldots,\phi_k)\in D_k^N(s)} \sum_{i=1}^k E(\phi_i),$$

we write $M^N(s) = (M_1^N(s), \ldots, M_N^N(s)).$

Theorem (Baryshnikov (and Kuperberg) 2001)

The process M^N is Dyson's Brownian motion: it is the diffusion on $\mathcal{W} = \{x \in \mathbb{R}^N : x_1 > \ldots > x_N\}$ with generator

$$\frac{1}{2}h^{-1}\Delta h$$
,

where $h(x) = \prod_{1 \le i < j \le N} (x_i - x_j)$ is the Vandermonde determinant, and Δ is the Dirichlet Laplacian on W.

The process M^N is equivalent to N Brownian motions on \mathbb{R} started at 0 and conditioned on permanent non-intersection. In other words, it has the \mathbf{H}_{∞} -Brownian Gibbs property.

Brownian LPP and the Airy line ensemble

As *N* and *s* tend to infinity together, the top edge of the Dyson Brownian motion (centered by the limit shape) has a limit when scaled vertically by $N^{1/3}$ and horizontally by $N^{2/3}$. This is the Airy line ensemble, which inherits the \mathbf{H}_{∞} -Brownian Gibbs property.

Recall Brownian last passage percolation,

and the maximization formula

$$M_1^N(s) + \ldots + M_k^N(s) = \max_{(\phi_1, \ldots, \phi_k) \in D_k^N(s)} \sum_{i=1}^k E(\phi_i).$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

The O'Connell-Yor polymer line ensemble

Consider now a positive temperature analog: for $\beta = 1$ and $s \ge 0$,

$$Z_k^N(s) = \int_{D_k^N(s)} e^{\beta \sum_{i=1}^k E(\phi_i)} \mathrm{d}\phi_1 \cdots \mathrm{d}\phi_k \,.$$

Define $\{X_k^N(s)\}_{k=1}^N$ by $X_1^N(s) + \cdots + X_k^N(s) = \log Z_k^N(s)$.

The O'Connell-Yor polymer line ensemble

The process
$$X^N = (X_1^N, \cdots, X_N^N)$$
 is a diffusion:

Theorem (O'Connell 2012)

The process X^N has generator $\frac{1}{2}\psi_0^{-1}\mathfrak{Q}\psi_0$, where ψ_0 is the class-one \mathfrak{gl}_N -Whittaker function, and where

$$\mathfrak{Q} = \Delta - 2\sum_{i=1}^{N-1} e^{x_{i+1}-x_i}$$

is the quantum Toda lattice Hamiltonian.

Corollary (Standard theory)

The process X^N has the H₁-Brownian Gibbs property.

Overview and conjecture

Brownian last passage percolation ensemble

Airy line ensemble

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @