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The generalized KPZ-equation...

...is the following generic equation in (t , x) ∈ R+ × R

∂tu = ∆u + f (u) (∂xu)2 + k(u) ∂xu + h(u) + g(u) ξ.

This reduces to KPZ if f ≡ g ≡ 1 and k ≡ h ≡ 0. One of the
aims would be to justify rigorously the Cole-Hopf transform of the
KPZ equation.

Moreover, we would like to have a class of processes containing
the solution of the stochastic heat equation and invariant under
composition with C∞(R)-functions (Ito formula).

The lack of regularity in space for u means that ∂xu is expected
to be a distribution and therefore a notion of product of random
distributions is needed.

The recent theory of Martin Hairer on Regularity Structures
(RST) gives a general framework to solve these problems.
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Trees

In [Hairer 13], Martin solves the KPZ equation using a
regularization of the noise

∂thε = ∂2
x hε + (∂xhε)2 − Cε + ξε

and an expansion

hε =
∑
τ∈T

Y τ
ε + uε, T = {•, , , , , , , , }

where Yε = G ∗ ξε, for all τ = [τ1, τ2] with τ1, τ2 ∈ T ,

Y τ
ε = G ∗ (∂xY τ1

ε ∂xY τ2
ε )− Cτ

ε ,

and G is the heat kernel. Notice that the expansion of hε has
constant coefficients and uε is a remainder.
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Local expansions

For the generalized KPZ equations, one expects to use similar
expansions, but with non-constant coefficients.

Perhaps the main idea of RST is to write Taylor expansions in
space of the solution in terms of an enlarged family of (random)
monomials.

The inspiration comes from RPT, in particular in the setting
developed by Massimiliano Gubinelli of controlled paths.

RST has an important algebraic-combinatorial component.
Every equation has an associated family of trees that must be
computed.
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Trees

Monomials are indexed by finite trees built in this way
I a tree can be 1, X , Ξ

I a tree can be a root to which we attach other trees (their
product)

I a tree can become a new tree by formal integration with
respect to a kernel depending on a integer parameter k ≥ 0
(convolution with the heat kernel differentiated k times)

Examples: I(Ξ), X nΞIk (Ξ), I((I1(Ξ))2)

To a tree τ we associate a real number |τ | called its
homogeneity: |Ξ| = α, |X | = 1, |1| = 0

|τ1 · · · τn| = |τ1|+ · · · |τn|, |Ik (τ)| = |τ |+ 2− k .

Homogeneity is related to (but different from) a notion of
regularity. X k has homogeneity k .
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The Πx operators

We fix a realization of the noise ξ. Each tree τ codes a (possibly
random) monomial in the variable y centered at x with the
following rules:

ΠxX (y) = (y − x), Πx Ξ(y) = ξ(y),

Πx (τ1 · · · τn)(y) =
n∏

i=1

Πxτi(y),

ΠxIk (τ)(y) = (G(k) ∗ Πxτ)(y)−
|Ik (τ)|∑

i=0

(y − x)i ci(Ik (τ))

with the correct choice of (cj)j such that for all τ

|Πxτ(y)| ≤ |y − x ||τ |
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Examples

If ξ(t , x) is white noise in R+ × R, then |Ξ| = −3/2− δ, with
δ > 0 small and fixed. Then

ΠxI(Ξ)(y) =(G ∗ ξ)(y)− (G ∗ ξ)(x)

=

∫
[0,t]×R

(Gt−s(y − z)−Gt−s(x − z)) ξ(ds,dz)

=I(ξ)(y)− I(ξ)(x).

The homogeneity is |I(Ξ)| = 1/2− δ.

Notation in this talk:
I I(Ξ) denotes the abstract tree
I I(ξ) denotes the function G ∗ ξ (terrible abuse...)
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Examples

For τ = I(ΞI(Ξ))

Πxτ(y) =I(ξ(Iξ))(x)− I(ξ(Iξ))(y)

=

∫
[0,t]×R

(Gt−s(y − z)−Gt−s(x − z)) ξ(ds,dz)·

·
∫
[0,s]×R

Gs−r (z − w) ξ(dr ,dw)

and the homogeneity is 1− δ.

For τ = I(ΞI(ΞI(Ξ))), setting h(x) := I(ξI(ξI(ξ)))(x),

Πxτ(y) = h(y)− h(x)− ∂xh(x) (y − x)

and the homogeneity is 3/2− δ.
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Examples

However one can also encounter more complex monomials. For
instance for τ := I(XΞ)

ΠxI(XΞ)(y) =

=

∫
[0,t]×R

(Gt−s(y − z)−Gt−s(x − z)− ∂xGt−s(x − z) (y − x))·

· (z − x) ξ(ds,dz)

= I((X − x)ξ)(y)− I((X − x)ξ)(x)− (y − x)I1((X − x)ξ)(x)

and the homogeneity is 3/2− δ.
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Examples

For τ = I(ΞI(ΞI(Ξ))) the homogeneity is 3/2− δ and

ΠxI(ΞI(ΞI(Ξ)))(y)

= I(ξI(ξI(ξ)))(y)− I(ξI(ξI(ξ)))(x)

+ (y − x)(I1(ξ)(x)(I(ξI(ξ))(x)− I(ξ)(x)2))

+ (y − x)(I1(ξI(ξ))(x)I(ξ)(x)− I1(ξI(ξI(ξ)))(x))

− I(ξ)(x)I(ξI(ξ))(y) + I(ξ)(x)2I(ξ)(y)

− I(ξI(ξ))(x)I(ξ)(y)− I(ξ)(x)3 + 2I(ξ)(x)I(ξI(ξ))(x)
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The Γ operators

The theory also needs a rule to transform a monomial centered
at x into a polynomial centered at z, following the classical
example:

(y − x)k = (y − z + z − x)k =
k∑

i=0

(
k
i

)
(z − x)i(y − z)k−i

which becomes in the abstract setting

ΓzxX k = (X + z − x)k =
k∑

i=0

(
k
i

)
(z − x)iX k−i

and clearly satisfies the compatibility condition

ΠzΓzx = Πx
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The Γ operators

In general we have the recursive definition

ΓxyX = X + (x − y), Γxy Ξ = Ξ, Γxy
∏

i

τi =
∏

i

Γxyτi

ΓxyIk (τ) = Ik (Γxyτ)−
∑

j<|τ |+2−k

(ΠxIk+j(Γxyτ))(y)
(X + x − y)j

j!

On can check again the compatibility condition

ΠzΓzx = Πx
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Examples

For instance

ΓxzI(Ξ) = I(Ξ) + (G ∗ ξ)(x)− (G ∗ ξ)(z)

and indeed setting h := (G ∗ ξ)

Πx ΓxzI(Ξ)(y) =h(y)− h(x) + h(x)− h(z) = h(y)− h(z)

=ΠzI(Ξ)(y).

Another example:

ΓxzI(ΞI(Ξ)) =(−I(ξ)(x)I(ξ)(z) + I(ξI(ξ))(x) + I(ξ)(z)2

− I(ξI(ξ))(z))

+ (I(ξ)(x)− I(ξ)(z)) I(Ξ)

+ I(ΞI(Ξ))
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Examples

And another:

ΓxzI(XΞ) =(−zI(ξ)(x) + I(ξX )(x) + (xz − z2)I1(ξ)(z)+

zI(ξ)(z) + (−x + z)I1(ξX )(z)− I(ξX )(z))

+ (x − z)I(Ξ)

+ (−xI1(ξ)(x) + I1(ξX )(x) + zI1(ξ)(z)− I1(ξX )(z))X
+ I(XΞ)
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Examples

And another:

ΓxzI(ΞI(ΞI(Ξ))) = I(ΞI(ΞI(Ξ))) + I(ξ)(x)I(ξ)(y)2

− I(ξ)(x)I(ξI(ξ))(y)− I(ξI(ξ))(x)I(ξ)(y) + I(ξI(ξI(ξ)))(x)

+ (y − x)(I1(ξ)(y)I(ξ)(y)2 − I1(ξ)(y)I(ξI(ξ))(y)− I1(ξI(ξ))(y)I(ξ)(y)

+ I1(ξI(ξI(ξ)))(y))− I(ξ)(y)3 + 2I(ξ)(y)I(ξI(ξ))(y)− I(ξI(ξI(ξ)))(y))

+ I(Ξ)(−I(ξ)(x)I(ξ)(y) + I(ξI(ξ))(x) + I(ξ)(y)2 − I(ξI(ξ))(y))

+ I(ΞI(Ξ))(I(ξ)(x)− I(ξ)(y))

+ X (I1(ξ)(x)I(ξ)(x)2 − I1(ξ)(x)I(ξI(ξ))(x)− I1(ξI(ξ))(x)I(ξ)(x)

+ I1(ξI(ξI(ξ)))(x)− I1(ξ)(y)I(ξ)(y)2 + I1(ξ)(y)I(ξI(ξ))(y)

+ I1(ξI(ξ))(y)I(ξ)(y)− I1(ξI(ξI(ξ)))(y))
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Functional norm

We call T the space of finite linear combinations of trees from
our class, and we consider a norm on functions f : R+ × R 7→ T :
for γ > 0 we say that f ∈ Dγ if f takes values in the linear span
of the trees with homogeneity < γ and for all β < γ

‖f (x)− Γxy f (y)‖β ≤ Cf‖x − y‖γ−β

This innocent-looking condition can be in practice very
complicated to check, because of the presence of the Γ
operators. It is a notion of Hölder regularity in this setting of
random monomials.

If f takes values in sums of X k , then the definition is equivalent
to the classical Cγ-regularity (for γ /∈ N). The coefficient
multiplying X k is then the k -th derivative of f .
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Dγ-spaces

It turns out that this definition is

CRUCIAL !!!!
because the two main technical results of Martin’s paper, the
reconstruction theorem and the multi-level Schauder estimates,
work on this function space.

In particular, it is in this space that the solution of the SPDE lives
and the equation is solved (locally in time) by a fixed point.

One can reinterpret the theory of controlled rough paths in this
setting (reminder: the remainder!).
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Polynomials

What are the functions that belong to Dγ for all γ ≥ γ0? This
means

f (x)− Γxy f (y) ≡ 0.

x 7→ x + X , x → Ξ, x → f1(x)f2(x)

x 7→ I(ξX )(x) + xI(Ξ) + I1(ξ(X − x))(x)X + I(ΞX )

x 7→ I(ξI(ξ))(x) + I(ξ)(x)I(Ξ) + I(ΞI(Ξ))

x 7→ I(ξI(ξI(ξ)))(x) + I(ξI(ξ))(x)I(Ξ) + I(ξ)(x)I(ΞI(Ξ))

+ (I1(ξ)(x)I(ξ)(x)2 − I1(ξ)(x)I(ξI(ξ))(x)− I1(ξI(ξ))(x)I(Ξ)(x)

+ I1(ξI(ξI(ξ)))(x))X + I(ΞI(ΞI(Ξ)))

There is an integration operator Kγ : Dγ 7→ Dγ+2.
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The coefficients of the solution of generalized KPZ

∂tu = ∆u + f (u) (∂xu)2 + g(u) ξ.

At order γ = 1/2

u(x) + g(u(x))I(Ξ)
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The coefficients of the solution of generalized KPZ

At order γ = 1

u(x) + g(u(x))I(Ξ) + g1g(u(x))I(ΞI(Ξ)) + g2f (u(x))I((I1(Ξ))2)

+ (u1(x)− g(u)I1(ξ)(x) + g1(u)I1(ξ)(x)I(ξ)(x)

− g1g(u)I1(ξI(ξ))(x)− g2f (u)I1((I1(ξ))2)(x))X
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The coefficients of the solution of generalized KPZ

At order γ = 3/2

u(x) + g(u(x))I(Ξ) + g1g(u(x))I(ΞI(Ξ)) + g2f (u(x))I((I1(Ξ))2)

+ (u1(x)− g(u)I1(ξ)(x) + g1(u)I1(ξ)(x)I(ξ)(x)

− g1g(u)I1(ξI(ξ))(x)− g2f (u)I1((I1(ξ))2)(x))X

+ 1/2g2g(u(x))2I(Ξ(I(Ξ))2) + g2
1g(u(x))I(ΞI(ΞI(Ξ)))

+ g1g2f (u(x))I(ΞI((I1(Ξ))2)) + 2g3f1(u(x))I((I1(Ξ))2I(Ξ))

+ 2g1g2f (u(x))I(I1(Ξ)I1(ΞI(Ξ))) + 2g3f (u(x))2I(I1(Ξ)I1((I1(Ξ))2))

+ (u1g1(u(x))− g1g(u)I1(Ξ)(x) + g2
1g(u)I1(ξ)I(ξ)(x)

− g2
1g(u)I1(ξI(ξ))(x)− g1g2f (u)I1((I1(ξ))2)(x))I(ΞX )

+ (−2g2f (u)I2(ξ)(x) + 2u1gf (u(x)) + 2g1g2f (u)I2(ξ)(x)I(ξ)(x)

− 2g1g2f (u)I2(ξI(ξ))(x)− 2g3f (u)2I2((I1(ξ))2)(x))I(I1(Ξ))
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Products of distributions and renormalization

An important message is that these monomials contain all
relevant non-trivial products. For instance, in order to define
(∂xu)2, one writes a Taylor expansion of ∂xu and then squares it,
thus obtaining another Taylor expansion of the same type,
containing distributional derivatives of the monomials.

In this way, only the products of a finite number of monomials
must be controlled. One of the main results of the theory is that
this seemingly formal procedure can be made coherent and
rigorous!

Lorenzo Zambotti (Univ. Paris 6) January 2014, UCLA



Renormalization

However some of the above monomials are ill-defined, in the
sense that the stochastic integrals have infinite Lp norm for any
p.

It turns out that they can be renormalized by hand, since they are
explicit functions of ξ: one regularizes the noise replacing ξ by ξε
and subtracts some diverging quantity (like the constant Cε seen
in the Ito formula above) in order to produce a well-defined limit.

In the KPZ equation the number of additional random monomials
is 5, and a previous paper by Hairer [2013] treats them one by
one. In the generalized KPZ equation there are 43 additional
monomials, including the 5 ones of KPZ, some simple and some
complicated. A renormalization by hand becomes virtually
impossible, a more general and efficient procedure is needed...
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The tree of generalized KPZ
Ξ + ΞI(Ξ) + (I1(Ξ))2 + Ξ(I(Ξ))2 + ΞI(ΞI(Ξ)) + ΞI((I1(Ξ))2)

+ (I1(Ξ))2I(Ξ) + I1(Ξ)I1(ΞI(Ξ)) + I1(Ξ)I1((I1(Ξ))2) + ΞX

+ I1(Ξ) + Ξ(I(Ξ))3 + ΞI(Ξ)I(ΞI(Ξ)) + ΞI(Ξ)I((I1(Ξ))2)

+ ΞI(Ξ(I(Ξ))2) + ΞI(ΞI(ΞI(Ξ))) + ΞI(ΞI((I1(Ξ))2))

+ ΞI((I1(Ξ))2I(Ξ)) + ΞI(I1(Ξ)I1(ΞI(Ξ))) + ΞI(I1(Ξ)I1((I1(Ξ))2))

+ (I1(Ξ))2(I(Ξ))2 + (I1(Ξ))2I(ΞI(Ξ)) + (I1(Ξ))2I((I1(Ξ))2)

+ I1(Ξ)I1(ΞI(Ξ))I(Ξ) + I1(Ξ)I1((I1(Ξ))2)I(Ξ) + I1(Ξ)I1(Ξ(I(Ξ))2)

+ I1(Ξ)I1(ΞI(ΞI(Ξ))) + I1(Ξ)I1(ΞI((I1(Ξ))2))

+ I1(Ξ)I1((I1(Ξ))2I(Ξ)) + I1(Ξ)I1(I1(Ξ)I1(ΞI(Ξ)))

+ I1(Ξ)I1(I1(Ξ)I1((I1(Ξ))2)) + I1(ΞI(Ξ))I1((I1(Ξ))2)

+ (I1(ΞI(Ξ)))2 + (I1((I1(Ξ))2))2 + ΞI(Ξ)X + ΞI(ΞX )

+ ΞI(I1(Ξ)) + (I1(Ξ))2X + I1(Ξ)I(Ξ) + I1(Ξ)I1(ΞX )

+ I1(Ξ)I1(I1(Ξ)) + I1(ΞI(Ξ)) + I1((I1(Ξ))2)
Lorenzo Zambotti (Univ. Paris 6) January 2014, UCLA



The stochastic heat equation

∂tu = ∆u + uξ

u(x) + u(x)I(Ξ) + u(x)I(ΞI(Ξ))

+ X (u1(x)− u(x)(I1(Ξ)(x) + I1(Ξ)(x)I(Ξ)(x)− I1(ΞI(Ξ))(x)))

+ u(x)I(ΞI(ΞI(Ξ))) + (u1(x)− u(x)I1(Ξ)(x) + u(x)I1(Ξ)(x)I(Ξ)(x)

− u(x)I1(ΞI(Ξ))(x))I(ΞX ) + u(x)I(ΞI(ΞI(ΞI(Ξ))))

+ (u1(x)− u(x)I1(Ξ)(x) + u(x)I1(Ξ)(x)I(Ξ)(x)

− u(x)I1(ΞI(Ξ))(x))I(ΞI(ΞX ))

+ 1/2c(x)X 2

Lorenzo Zambotti (Univ. Paris 6) January 2014, UCLA



The stochastic heat equation

c = u2 + x2I2(Ξ)I1(Ξ)(u1 − uI1(Ξ)) + xu1I2(Ξ)

+ x2uI2(Ξ)I1(Ξ)2I(Ξ)− x2uI2(Ξ)I1(Ξ)I1(ΞI(Ξ))− xu1I2(Ξ)I(Ξ)

− xu1I2(Ξ)I1(ΞX ) + xu1I2(ΞI(Ξ))− xu1I1(Ξ)I2(ΞX )− xuI2(Ξ)I1(Ξ)

+ xuI2(Ξ)I1(Ξ)I(Ξ) + xuI2(Ξ)I1(Ξ)I1(ΞX )− xuI2(Ξ)I1(ΞI(Ξ))

− xuI2(ΞI(Ξ))I1(Ξ) + xuI1(Ξ)2I2(ΞX )− u1I2(ΞX )− uI2(Ξ)

− xuI2(Ξ)I1(Ξ)I(Ξ)(I(Ξ) + I1(ΞX )) + xuI2(Ξ)(I1(Ξ)I(ΞI(Ξ))

+ I1(ΞI(Ξ))I(Ξ)) + xuI2(Ξ)(I1(ΞI(Ξ))I1(ΞX )− I1(ΞI(ΞI(Ξ))))

+ xuI2(ΞI(Ξ))(I1(Ξ)I(Ξ)− I1(ΞI(Ξ)))

− xuI1(Ξ)I2(ΞX )(I1(Ξ)I(Ξ)− I1(ΞI(Ξ))) + u1I2(Ξ)I(ΞX )

+ u1I2(ΞX )I1(ΞX )− u1I2(ΞI(ΞX )) + uI2(Ξ)I(Ξ)

− uI2(ΞI(Ξ)) + uI1(Ξ)I2(ΞX )− uI2(Ξ)I1(Ξ)I(ΞX )− uI2(Ξ)I(Ξ)2

+ uI2(Ξ)I(ΞI(Ξ)) + uI2(ΞI(Ξ))I(Ξ)− uI2(Ξ)I1(Ξ)I(ΞX )

Lorenzo Zambotti (Univ. Paris 6) January 2014, UCLA



The stochastic heat equation

− uI2(Ξ)I(Ξ)2 + uI2(Ξ)I(ΞI(Ξ)) + uI2(ΞI(Ξ))I(Ξ)

− uI2(ΞI(ΞI(Ξ)))− uI1(Ξ)I2(ΞX )I(Ξ)− uI1(Ξ)I2(ΞX )I1(ΞX )

+ uI1(Ξ)I2(ΞI(ΞX )) + u(I2(ΞX )I1(ΞI(Ξ)) + I2(Ξ)I1(Ξ)I(Ξ)I(ΞX ))

− uI2(Ξ)I1(ΞI(Ξ))I(ΞX ) + uI2(Ξ)I(Ξ)3 − uI2(Ξ)I(Ξ)I(ΞI(Ξ))

+ uI2(Ξ)I(ΞI(ΞI(Ξ)))− uI2(ΞI(Ξ))I(Ξ)2 + uI2(ΞI(Ξ))I(ΞI(Ξ))

+ uI2(ΞI(ΞI(Ξ)))I(Ξ) + uI1(Ξ)I2(ΞX )I(Ξ)2

+ uI1(Ξ)I2(ΞX )I(Ξ)I1(ΞX )− uI1(Ξ)I2(ΞX )I(ΞI(Ξ))

− uI1(Ξ)I2(ΞI(ΞX ))I(Ξ)− uI2(ΞX )I1(ΞI(Ξ))I(Ξ)

− uI2(ΞX )I1(ΞI(Ξ))I1(ΞX ) + uI2(ΞX )I1(ΞI(ΞI(Ξ)))

− uI2(ΞI(ΞI(ΞI(Ξ)))) + uI1(ΞI(Ξ))I2(ΞI(ΞX ))

Lorenzo Zambotti (Univ. Paris 6) January 2014, UCLA


