Paracontrolled differential equations

Nicolas Perkowski

CEREMADE, Université Paris Dauphine Fondation Sciences Mathématiques

> 28th January 2014 IPAM

Joint work with Massimiliano Gubinelli and Peter Imkeller

Three motivating SPDEs

• Burgers equation:

$$\mathcal{L}u(t,x) = \partial_x(u(t,x)^2) + \partial_x\xi(t,x)$$

 $u \colon [0, T] \times \mathbb{T} \to \mathbb{R}^n$, $\mathcal{L} = \partial_t - \Delta$ heat operator, ξ space-time white noise;

• solution is (formally) given by the derivative of the KPZ equation: $u = \partial_x h$, where

$$\mathcal{L}h(t,x) = (\partial_x h(t,x))^2 + \xi(t,x);$$

• solution to KPZ (formally) given by Cole-Hopf transform of the stochastic heat equation: $h = -\log w$, where w solves

$$\mathcal{L}w(t,x) = -w(t,x)\xi(t,x).$$

Problem: nonlinearity

Burgers SPDE is ill-posed with classical methods:

$$\mathcal{L}u(t,x) = \partial_x(u(t,x)^2) + \partial_x\xi(t,x)$$

- Expect *u* to have at best the regularity of solution *v* to linear equation $\mathcal{L}v(t,x) = \partial_x \xi(t,x)$;
- thus $u(t, \cdot) \in C^{-1/2-} = B_{\infty,\infty}^{-1/2-}$. Square of a distribution?
- Hairer (2013) uses series expansion and rough path integral to define $(\partial_x h(t,x))^2$ ("= $u(t,x)^{2n}$).
- Rough paths only work in one index dimension. Since x is spatial variable: extension to x ∈ T^d?
- State 2012: no techniques available to *define* solutions on \mathbb{T}^d , let alone show existence and uniqueness.
- Now of course accessible with Hairer's theory of regularity structures.

- Extend rough path approach to allow for multidimensional spatial index variables;
- solve Burgers, KPZ, and heat equation pathwise continuously;
- rigorously prove the formal links between them.

1 Paracontrolled calculus and products of distributions

2 Application: Burgers, KPZ and heat equation

Products of distributions

- Aim: define products of distributions directly, without detour via integrals.
- Many ways of defining integral ∫ f dg: measure theory, Riemann sums, smooth approximation, algebraic arguments, ...
- Most easily adapted for defining product uv of distributions: smooth approximations, $uv = \lim_{n \to \infty} u^n v^n$.
- Convenient approximations given via Littlewood-Paley blocks:
 - ▶ Write *F* for Fourier transform;
 - $u = \mathcal{F}^{-1}(\mathcal{F}u) = \mathcal{F}^{-1}(\sum_{j} \mathbb{1}_{[2^{j}, 2^{j+1})}(|\cdot|)\mathcal{F}u) =: \sum_{j} \Delta_{j} u;$
 - $\Delta_i u$ is projection of u on Fourier modes of order 2^j ;
 - $\Delta_j u$ has Fourier transform of compact support; thus $\Delta_j u \in C^{\infty}$.

Bony's paraproduct

u, v distributions, then formally:

$$uv = \lim_{n \to \infty} \left(\sum_{j \le n} \Delta_j u \right) \left(\sum_{k \le n} \Delta_k v \right) = \sum_{j,k} \Delta_j u \Delta_k v$$

Bony (1981): decompose into components with different behavior.

$$uv = \pi_{<}(u, v) + \pi_{>}(u, v) + \pi_{\circ}(u, v),$$

where

$$\pi_{<}(u,v) = \sum_{j < k-1} \Delta_{j} u \Delta_{k} v, \qquad \pi_{>}(u,v) = \sum_{k < j-1} \Delta_{j} u \Delta_{k} v = \pi_{<}(v,u)$$
$$\pi_{\circ}(u,v) = \sum_{|j-k| \le 1} \Delta_{j} u \Delta_{k} v.$$

Paraproduct II

Theorem (Bony (1981))

Let $\alpha, \beta \in \mathbb{R}$, $u \in C^{\alpha}$, $v \in C^{\beta}$

- $\pi_{<}(u, v)$ always well-defined and in $C^{(\alpha+\beta)\wedge\beta}$;
- $\pi_{>}(u, v)$ always well-defined and in $C^{(\alpha+\beta)\wedge\alpha}$;
- $\pi_{\circ}(u, v)$ only defined if $\alpha + \beta > 0$; then in $C^{\alpha+\beta}$.

Interpretation:

- resonance effect for $\pi_{\circ}(u, v)$;
- π_<(u, v) and π_>(u, v) are frequency modulations of v and u, respectively.

Paraproduct as frequency modulation

Paraproduct and controlled distributions

• Gubinelli (2004): For $\alpha \in (0,1)$, $g \in C^{\alpha}$, f is called controlled by g if

$$f(t)-f(s)=f'(s)(g(t)-g(s))+f^{\sharp}(s,t), \qquad |f^{\sharp}(s,t)|\lesssim |t-s|^{2lpha}.$$

Easy to see: $f - \pi_{<}(f', g) \in C^{2\alpha}$.

• Hairer (2013): For $\gamma > 0$, $f : \mathbb{R}^d \to T$ is called modelled, $f \in \mathcal{D}^{\gamma}$, if

$$|f_x - \Gamma_{x,y}f_y|_{\beta} \lesssim |x - y|^{\gamma - \beta}.$$

Easy to see: If \mathcal{R} denotes reconstruction operator, then $\mathcal{R}f - \pi_{<}(f, \Pi) \in C^{\gamma}$, where

$$\pi_{<}(f,\Pi)(x) = \sum_{j < k-1} \int K_j(x-z) K_k(x-y) \Pi_z f_z(y) \mathrm{d}y \mathrm{d}z$$
$$= \sum_{j < k-1} \int K_{j,x}(z) \Pi_z f_z(K_{k,x}) \mathrm{d}z.$$

Product of paracontrolled distributions

Thus: call $f \in C^{\beta}$ paracontrolled by $g \in C^{\beta}$ if there exists $f' \in C^{\alpha}$ such that $f - \pi_{<}(f', g) \in C^{\alpha+\beta}$.

Lemma (Gubinelli, Imkeller, P. (2012)) If $\alpha + \beta + \gamma > 0$, and $\beta + \gamma < 0$, then

 $\|\pi_{\circ}(\pi_{<}(f,g),h)-f\pi_{\circ}(g,h)\|_{\alpha+\beta+\gamma} \lesssim \|f\|_{\alpha}\|g\|_{\beta}\|h\|_{\gamma}.$

Corollary

If $\alpha + \beta + \gamma > 0$, $h \in C^{\gamma}$, f is paracontrolled by g, and $\pi_{\circ}(g, h) \in C^{\gamma+\beta}$ is given, then fh can be constructed continuously. Moreover, fh is paracontrolled by h.

Paracontrolled calculus and products of distributions

Burgers equation

۲

$$\mathcal{L}u(t,x) = \partial_x u^2(t,x) + \partial_x \xi(t,x), \qquad u(0) = u_0,$$

where $u \colon [0, T] \times \mathbb{T} \to \mathbb{R}$; $\mathcal{L} = \partial_t - \Delta$ heat operator; $\xi(t, x)$
space-time white noise.

• Expect $u \in C([0, T], C^{-1/2-})$, so $u(t)^2$ not defined. But: expand

$$u = X + X^{\mathbf{V}} + 2X^{\mathbf{V}} + u^{\mathbf{Q}}$$

where $\mathcal{L}X = \partial_x \xi$, $\mathcal{L}X^{\mathbf{V}} = \partial_x (XX)$, $\mathcal{L}X^{\mathbf{V}} = \partial_x (X^{\mathbf{V}}X)$, $\mathcal{L}X^{(\tau_1,\tau_2)} = \partial_x (X^{\tau_1}X^{\tau_2})$. (Can take $X^{\tau} = \partial_x Y^{\tau}$, where Y^{τ} are tree data of Hairer's KPZ solution).

• Paracontrolled ansatz for u^Q :

$$u^Q = \pi_<(u', Q) + u^\sharp,$$

where $u' \in C([0, T], C^{1/2-})$, $\mathcal{L}Q = \partial_x X$, and $u^{\sharp} \in C([0, T], C^{1-})$.

Burgers equation and paracontrolled distributions

$$\mathcal{L}u(t,x) = \partial_x u^2(t,x) + \partial_x \xi(t,x), \qquad u(0) = u_0.$$

Paracontrolled ansatz: $u \in \mathcal{P}_{rbe}$ if $u = X + X^{V} + 2X^{V} + u^{Q}$ with

$$u^Q = \pi_{<}(u',Q) + u^{\sharp}.$$

- Only problematic term in u^2 : $u^Q X$;
- paracontrolled structure: Can define u^2 continuously as long as $\pi_o(Q, X) \in C([0, T], C^{0-})$ is given (together with tree data $X, X^{\mathbf{V}}, X^{\mathbf{V}}, X^{\mathbf{V}}, X^{\mathbf{V}})$.

Paracontrolled differential equation

$$\mathcal{L}u(t,x) = \partial_x u^2(t,x) + \partial_x \xi(t,x), \qquad u(0) = u_0.$$

Paracontrolled ansatz: $u \in \mathcal{P}_{rbe}$ if $u = X + X^{V} + 2X^{V} + u^{Q}$ with

$$u^Q = \pi_{<}(u', Q) + u^{\sharp}.$$

Can define u^2 continuously.

• Derive classical PDE for u^{\sharp} :

$$\mathcal{L}u^{\sharp} = \pi_{\circ}(u^{\sharp}, X) + F(u^{Q}, u', X, X^{\mathbf{V}}, X^{\mathbf{V}}, X^{\mathbf{V}}, X^{\mathbf{V}}, Q, \pi_{\circ}(Q, X))$$

for some concrete continuous function F;

- see that we should take $u' = u^Q + 4X^V$ to have sufficiently regular RHS;
- get bound on u^{\sharp} ; feed this back into $u^{Q} = \pi_{<}(u', Q) + u^{\sharp}$ to obtain bound on $u' = u^{Q} + 4X^{\mathsf{V}}$.
- Obtain local existence and uniqueness of paracontrolled solutions. Solution depends pathwise continuously on extended data (u₀, ξ, X, X^V, X^V, X^V, X^V, π_o(Q, X)).

KPZ equation

• KPZ equation:

$$\mathcal{L}h(t,x) = (\partial_x h(t,x))^2 + \xi(t,x), \qquad h(0) = h_0.$$

Expect $h(t) \in C^{1/2-}$, so $\partial_x h(t) \in C^{-1/2-}$ and $(\partial_x h(t))^2$ not defined.

But: expand

$$u = Y + Y^{\mathbf{V}} + 2Y^{\mathbf{V}} + h^{P},$$

where $\mathcal{L}Y = \xi$, $\mathcal{L}Y^{\mathbf{V}} = \partial_x Y \partial_x Y$, ... In general: $\partial_x Y^{\tau} = X^{\tau}$.

• Make paracontrolled ansatz for h^P :

$$h^{\mathsf{P}} = \pi_{<}(h', \mathsf{P}) + h^{\sharp}$$

with $h' \in C([0, T], C^{1/2-})$, $h^{\sharp} \in C([0, T], C^{2-})$, $\mathcal{L}P = X$. Write $h \in \mathcal{P}_{kpz}$.

• Can define $(\partial_x h(t))^2$ for $h \in \mathcal{P}_{kpz}$ and obtain local existence and uniqueness of solutions.

KPZ and Burgers equation $h \in \mathcal{P}_{kpz}$ if

$$h = Y + Y^{\mathbf{V}} + 2Y^{\mathbf{V}} + h^{P}, \qquad h^{P} = \pi_{<}(h', P) + h^{\sharp}.$$

 $u \in \mathcal{P}_{rbe}$ if

$$u = X + X^{\mathbf{V}} + 2X^{\mathbf{V}} + u^{Q}, \qquad u^{Q} = \pi_{<}(u', Q) + u^{\sharp}.$$

- If $h \in \mathcal{P}_{kpz}$, then $\partial_x h \in \mathcal{P}_{rbe}$.
- If h solves KPZ equation, then u = ∂_xh solves Burgers equation with initial condition u(0) = ∂_xh₀.
- If $u \in \mathcal{P}_{rbe}$, then any solution h of $\mathcal{L}h = u^2 + \xi$ is in \mathcal{P}_{kpz} .
- If u solves Burgers equation with initial condition $u(0) = \partial_x h_0$, and h solves $\mathcal{L}h = u^2 + \xi$ with initial condition $h(0) = h_0$, then h solves KPZ equation.

KPZ and heat equation

Heat equation:

$$\mathcal{L}w(t,x) = -w(t,x)\xi(t,x), \qquad w(0) = w_0.$$

Paracontrolled ansatz: $w \in \mathcal{P}_{\mathrm{rhe}}$ if

$$w = e^{-Y - Y^{\mathsf{V}} - 2Y^{\mathsf{V}}} w^{\mathsf{P}}, \qquad w^{\mathsf{P}} = \pi_{<}(w', \mathsf{P}) + w^{\sharp}$$

(comes from Cole-Hopf transform).

• Slightly cheat to make sense of product $w\xi$ for $w \in \mathcal{P}_{\text{rhe}}$:

$$w\xi = -\mathcal{L}w + e^{-Y - Y^{\mathsf{V}} - 2Y^{\mathsf{V}}} \left[\mathcal{L}w^{\mathsf{P}} - \mathcal{L}(Y^{\mathsf{V}} + Y^{\mathsf{V}})w^{\mathsf{P}} + (\partial_{x}(Y + Y^{\mathsf{V}} + 2Y^{\mathsf{V}}))^{2} \right]$$
$$- 2e^{-Y - Y^{\mathsf{V}} - 2Y^{\mathsf{V}}} \partial_{x}(Y + Y^{\mathsf{V}} + 2Y^{\mathsf{V}}) \partial_{x}w^{\mathsf{P}};$$

(agrees with pointwise product $w\xi$ in the smooth case, continuous in the extended data).

- Obtain global existence and uniqueness of solutions.
- One-to-one correspondence between \mathcal{P}_{kpz} and strictly positive elements of \mathcal{P}_{rhe} .
- Any solution of KPZ gives solution of heat equation. Any strictly positive solution of heat equation gives solution of KPZ equation.

Conclusion

- Products of distributions in general not defined;
- Itô/Stratonovich/rough path integral: work well for functions of a one-dimensional index.
- Paracontrolled distributions: work for general index sets. Pathwise theory. Allow us to solve Burgers, KPZ, and stochastic heat equation.

Crucial ingredients for paracontrolled distributions:

- identification of different components ("paraproduct");
- existence of π_o(f,g) for reference distributions f,g; π_o(f,g) must be constructed using probabilistic arguments.

Thank You