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Three motivating SPDEs

Burgers equation:

Lu(t, x) = ∂x(u(t, x)2) + ∂xξ(t, x)

u : [0,T ]× T→ Rn, L = ∂t −∆ heat operator, ξ space-time white
noise;

solution is (formally) given by the derivative of the KPZ equation:
u = ∂xh, where

Lh(t, x) = (∂xh(t, x))2 + ξ(t, x);

solution to KPZ (formally) given by Cole-Hopf transform of the
stochastic heat equation: h = − logw , where w solves

Lw(t, x) = −w(t, x)ξ(t, x).
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Problem: nonlinearity

Burgers SPDE is ill-posed with classical methods:

Lu(t, x) = ∂x(u(t, x)2) + ∂xξ(t, x)

Expect u to have at best the regularity of solution v to linear
equation Lv(t, x) = ∂xξ(t, x);

thus u(t, ·) ∈ C−1/2− = B
−1/2−
∞,∞ . Square of a distribution?

Hairer (2013) uses series expansion and rough path integral to define
(∂xh(t, x))2 (“= u(t, x)2”).

Rough paths only work in one index dimension. Since x is spatial
variable: extension to x ∈ Td?

State 2012: no techniques available to define solutions on Td , let
alone show existence and uniqueness.

Now of course accessible with Hairer’s theory of regularity structures.
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Aims

Extend rough path approach to allow for multidimensional spatial
index variables;

solve Burgers, KPZ, and heat equation pathwise continuously;

rigorously prove the formal links between them.
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1 Paracontrolled calculus and products of distributions

2 Application: Burgers, KPZ and heat equation
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Products of distributions

Aim: define products of distributions directly, without detour via
integrals.

Many ways of defining integral
∫
f dg : measure theory, Riemann

sums, smooth approximation, algebraic arguments, . . .

Most easily adapted for defining product uv of distributions: smooth
approximations, uv = limn→∞ unvn.

Convenient approximations given via Littlewood-Paley blocks:
I Write F for Fourier transform;
I u = F−1(Fu) = F−1(

∑
j 1[2j ,2j+1)(| · |)Fu) =:

∑
j ∆ju;

I ∆ju is projection of u on Fourier modes of order 2j ;
I ∆ju has Fourier transform of compact support; thus ∆ju ∈ C∞.
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Bony’s paraproduct

u, v distributions, then formally:

uv = lim
n→∞

(∑
j≤n

∆ju
)(∑

k≤n
∆kv

)
=
∑
j ,k

∆ju∆kv

Bony (1981): decompose into components with different behavior.

uv = π<(u, v) + π>(u, v) + π◦(u, v),

where

π<(u, v) =
∑

j<k−1

∆ju∆kv , π>(u, v) =
∑

k<j−1

∆ju∆kv = π<(v , u)

π◦(u, v) =
∑
|j−k|≤1

∆ju∆kv .
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Paraproduct II

Theorem (Bony (1981))

Let α, β ∈ R, u ∈ Cα, v ∈ Cβ

π<(u, v) always well-defined and in C (α+β)∧β;

π>(u, v) always well-defined and in C (α+β)∧α;

π◦(u, v) only defined if α + β > 0; then in Cα+β.

Interpretation:

resonance effect for π◦(u, v);

π<(u, v) and π>(u, v) are frequency modulations of v and u,
respectively.
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Paraproduct as frequency modulation
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Paraproduct and controlled distributions

Gubinelli (2004): For α ∈ (0, 1), g ∈ Cα, f is called controlled by g if

f (t)− f (s) = f ′(s)(g(t)− g(s)) + f ](s, t), |f ](s, t)| . |t − s|2α.

Easy to see: f − π<(f ′, g) ∈ C 2α.

Hairer (2013): For γ > 0, f : Rd → T is called modelled, f ∈ Dγ , if

|fx − Γx ,y fy |β . |x − y |γ−β.

Easy to see: If R denotes reconstruction operator, then
Rf − π<(f ,Π) ∈ Cγ , where

π<(f ,Π)(x) =
∑

j<k−1

∫
Kj(x − z)Kk(x − y)Πz fz(y)dydz

=
∑

j<k−1

∫
Kj ,x(z)Πz fz(Kk,x)dz .
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Product of paracontrolled distributions

Thus: call f ∈ Cβ paracontrolled by g ∈ Cβ if there exists f ′ ∈ Cα such
that f − π<(f ′, g) ∈ Cα+β.

Lemma (Gubinelli, Imkeller, P. (2012))

If α + β + γ > 0, and β + γ < 0, then

‖π◦(π<(f , g), h)− f π◦(g , h)‖α+β+γ . ‖f ‖α‖g‖β‖h‖γ .

Corollary

If α+ β + γ > 0, h ∈ Cγ , f is paracontrolled by g , and π◦(g , h) ∈ Cγ+β is
given, then fh can be constructed continuously. Moreover, fh is
paracontrolled by h.
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1 Paracontrolled calculus and products of distributions

2 Application: Burgers, KPZ and heat equation
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Burgers equation

Lu(t, x) = ∂xu
2(t, x) + ∂xξ(t, x), u(0) = u0,

where u : [0,T ]× T→ R; L = ∂t −∆ heat operator; ξ(t, x)
space-time white noise.

Expect u ∈ C ([0,T ],C−1/2−), so u(t)2 not defined. But: expand

u = X + X + 2X + uQ

where LX = ∂xξ, LX = ∂x(XX ), LX = ∂x(X X ),
LX (τ1,τ2) = ∂x(X τ1X τ2). (Can take X τ = ∂xY

τ , where Y τ are tree
data of Hairer’s KPZ solution).

Paracontrolled ansatz for uQ :

uQ = π<(u′,Q) + u],

where u′ ∈ C ([0,T ],C 1/2−), LQ = ∂xX , and u] ∈ C ([0,T ],C 1−).
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Burgers equation and paracontrolled distributions

Lu(t, x) = ∂xu
2(t, x) + ∂xξ(t, x), u(0) = u0.

Paracontrolled ansatz: u ∈ Prbe if u = X + X + 2X + uQ with

uQ = π<(u′,Q) + u].

Only problematic term in u2: uQX ;

paracontrolled structure: Can define u2 continuously as long as
π◦(Q,X ) ∈ C ([0,T ],C 0−) is given (together with tree data

X ,X ,X ,X ,X ).
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Paracontrolled differential equation

Lu(t, x) = ∂xu
2(t, x) + ∂xξ(t, x), u(0) = u0.

Paracontrolled ansatz: u ∈ Prbe if u = X + X + 2X + uQ with

uQ = π<(u′,Q) + u].

Can define u2 continuously.

Derive classical PDE for u]:

Lu] = π◦(u
],X ) + F (uQ , u′,X ,X ,X ,X ,X ,Q, π◦(Q,X ))

for some concrete continuous function F ;
see that we should take u′ = uQ + 4X to have sufficiently regular
RHS;
get bound on u]; feed this back into uQ = π<(u′,Q) + u] to obtain

bound on u′ = uQ + 4X .
Obtain local existence and uniqueness of paracontrolled solutions.
Solution depends pathwise continuously on extended data

(u0, ξ,X ,X ,X ,X ,X , π◦(Q,X )).
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KPZ equation

KPZ equation:

Lh(t, x) = (∂xh(t, x))2 + ξ(t, x), h(0) = h0.

Expect h(t) ∈ C 1/2−, so ∂xh(t) ∈ C−1/2− and (∂xh(t))2 not defined.

But: expand

u = Y + Y + 2Y + hP ,

where LY = ξ, LY = ∂xY ∂xY , . . . In general: ∂xY
τ = X τ .

Make paracontrolled ansatz for hP :

hP = π<(h′,P) + h]

with h′ ∈ C ([0,T ],C 1/2−), h] ∈ C ([0,T ],C 2−), LP = X . Write
h ∈ Pkpz.
Can define (∂xh(t))2 for h ∈ Pkpz and obtain local existence and
uniqueness of solutions.
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KPZ and Burgers equation

h ∈ Pkpz if

h = Y + Y + 2Y + hP , hP = π<(h′,P) + h].

u ∈ Prbe if

u = X + X + 2X + uQ , uQ = π<(u′,Q) + u].

If h ∈ Pkpz, then ∂xh ∈ Prbe.
If h solves KPZ equation, then u = ∂xh solves Burgers equation with
initial condition u(0) = ∂xh0.

If u ∈ Prbe, then any solution h of Lh = u2 + ξ is in Pkpz.
If u solves Burgers equation with initial condition u(0) = ∂xh0, and h
solves Lh = u2 + ξ with initial condition h(0) = h0, then h solves
KPZ equation.
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KPZ and heat equation
Heat equation:

Lw(t, x) = −w(t, x)ξ(t, x), w(0) = w0.

Paracontrolled ansatz: w ∈ Prhe if

w = e−Y−Y −2Y wP , wP = π<(w ′,P) + w ]

(comes from Cole-Hopf transform).
Slightly cheat to make sense of product wξ for w ∈ Prhe:

wξ = −Lw + e−Y−Y −2Y
[
LwP − L(Y + Y )wP + (∂x(Y + Y + 2Y ))2

]
− 2e−Y−Y −2Y ∂x(Y + Y + 2Y )∂xw

P ;

(agrees with pointwise product wξ in the smooth case, continuous in
the extended data).
Obtain global existence and uniqueness of solutions.
One-to-one correspondence between Pkpz and strictly positive
elements of Prhe.
Any solution of KPZ gives solution of heat equation. Any strictly
positive solution of heat equation gives solution of KPZ equation.
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Conclusion

Products of distributions in general not defined;

Itô/Stratonovich/rough path integral: work well for functions of a
one-dimensional index.

Paracontrolled distributions: work for general index sets. Pathwise
theory. Allow us to solve Burgers, KPZ, and stochastic heat equation.

Crucial ingredients for paracontrolled distributions:

identification of different components (“paraproduct”);

existence of π◦(f , g) for reference distributions f , g ; π◦(f , g) must be
constructed using probabilistic arguments.
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Thank You
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