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Introduction 0

Very roughly, the question we want to address in this talk can be
formulated as follows.

Take a dynamical system (an ODE) whose large time behavior depends
dramatically upon the initial condition, e.g. because of some conserved
quantities.

Could it be that when adding a very small noise (together with some small
damping term, so that the perturbed system is ergodic), the system forgets
its initial condition, and becomes ergodic, in such a way that this remains
true in the small noise limit (i.e. those invariant measures would converge
to a uniquely selected invariant measure of the dynamical system).
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Introduction 1

Our work is motivated by the following open problem. Consider a 2D
Navier–Stokes equation with additive white noise on the torus T2 of
the form

u̇ − ε∆u + (u · ∇)u +∇p =
√
εẆ , div(u) = 0,

where W is an L2(T2)–valued BM such that ∀ε > 0, the above has a
unique invariant measure µε (see Hairer, Mattingly (06)). Kuksin
(06) shows that {µε, ε > 0} is tight, and that any limit of a
converging subsequence is an invariant measure of the Euler equation.
But does the whole sequence converge, and if yes, towards which
particular invariant measure of the Euler equation ?
We do not claim to solve this difficult problem. Rather, we consider a
much simpler problem, namely a 3D SDE with damping of the order
of ε and additive white noise multiplied by

√
ε. Our very simple toy

problem has however in common with the true problem the property
that the limiting deterministic undamped ODE possesses conserved
quantities and infinitely many invariant measures.
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Introduction 2

Consider the following 3D ordinary differential equation:

Ẋt = YtZt

Ẏt = XtZt

Żt = −2XtYt ,

This equation has two conserved quantities : 2X 2
t +Z 2

t and 2Y 2
t +Z 2

t .

We consider, for ε > 0, the following damped/noisy version of the
above ODE

Ẋ ε
t = Y ε

t Z
ε
t − εX ε

t + σ1
√
εḂt

Ẏ ε
t = X ε

t Z
ε
t − εY ε

t + σ2
√
εĊt

Ż εt = −2X ε
t Y

ε
t − εZ εt .
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Ergodicity for each ε > 0

The respective scalings of the damping factor and of the noise are
chosen in such a way that

sup
0<ε≤1

sup
t≥0

E
[
‖(X ε

t ,Y
ε
t ,Z

ε
t )‖2

]
<∞.

Provided both σ1 > 0 and σ2 > 0, which we assume from now on,
then the solution of the 3D SDE has a unique invariant measure µε
for each ε > 0.

Our aim is to study the limit of µε, as ε→ 0.
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Large time behavior of the solution of the ODE

The existence of the two conserved quantities implies that all of the
orbits of the ODE are bounded and most are closed orbits,
topologically equivalent to a circle. All orbits live on the surface of a
sphere whose radius is dictated by the values of the conserved
quantities (X 2

t + Y 2
t + Z 2

t is also a conserved quantity).

To any initial point (X0,Y0,Z0) on one of the closed orbits, we can
associate a measure defined by the following limit

lim
t→∞

1

t

∫ t

0
δ(Xs ,Ys ,Zs)ds .

Any such defined measure is an invariant measure for the ODE.
Hence we see that the ODE has infinitely many invariant measures.

Our result is that under the above conditions, there exists a unique
invariant probability measure µ of the ODE, such that µε ⇒ µ as
ε→ 0.

Etienne Pardoux (Aix–Marseille Univ.) IPAM, Rough Paths Conf. 6 / 18



Large time behavior of the solution of the ODE

The existence of the two conserved quantities implies that all of the
orbits of the ODE are bounded and most are closed orbits,
topologically equivalent to a circle. All orbits live on the surface of a
sphere whose radius is dictated by the values of the conserved
quantities (X 2

t + Y 2
t + Z 2

t is also a conserved quantity).

To any initial point (X0,Y0,Z0) on one of the closed orbits, we can
associate a measure defined by the following limit

lim
t→∞

1

t

∫ t

0
δ(Xs ,Ys ,Zs)ds .

Any such defined measure is an invariant measure for the ODE.
Hence we see that the ODE has infinitely many invariant measures.

Our result is that under the above conditions, there exists a unique
invariant probability measure µ of the ODE, such that µε ⇒ µ as
ε→ 0.

Etienne Pardoux (Aix–Marseille Univ.) IPAM, Rough Paths Conf. 6 / 18



Large time behavior of the solution of the ODE

The existence of the two conserved quantities implies that all of the
orbits of the ODE are bounded and most are closed orbits,
topologically equivalent to a circle. All orbits live on the surface of a
sphere whose radius is dictated by the values of the conserved
quantities (X 2

t + Y 2
t + Z 2

t is also a conserved quantity).

To any initial point (X0,Y0,Z0) on one of the closed orbits, we can
associate a measure defined by the following limit

lim
t→∞

1

t

∫ t

0
δ(Xs ,Ys ,Zs)ds .

Any such defined measure is an invariant measure for the ODE.
Hence we see that the ODE has infinitely many invariant measures.

Our result is that under the above conditions, there exists a unique
invariant probability measure µ of the ODE, such that µε ⇒ µ as
ε→ 0.

Etienne Pardoux (Aix–Marseille Univ.) IPAM, Rough Paths Conf. 6 / 18



Large time behavior of the solution of the ODE

The existence of the two conserved quantities implies that all of the
orbits of the ODE are bounded and most are closed orbits,
topologically equivalent to a circle. All orbits live on the surface of a
sphere whose radius is dictated by the values of the conserved
quantities (X 2

t + Y 2
t + Z 2

t is also a conserved quantity).

To any initial point (X0,Y0,Z0) on one of the closed orbits, we can
associate a measure defined by the following limit

lim
t→∞

1

t

∫ t

0
δ(Xs ,Ys ,Zs)ds .

Any such defined measure is an invariant measure for the ODE.
Hence we see that the ODE has infinitely many invariant measures.

Our result is that under the above conditions, there exists a unique
invariant probability measure µ of the ODE, such that µε ⇒ µ as
ε→ 0.

Etienne Pardoux (Aix–Marseille Univ.) IPAM, Rough Paths Conf. 6 / 18



Convergence on [0,T ]

We first note that as ε→ 0, the process (X ε
t ,Y

ε
t ,Z

ε
t ) converges to

the solution of the ODE on any finite time interval.

A simple calculation yields

E
(
‖(X ε

t ,Y
ε
t ,Z

ε
t )‖2

)
= e−2εt‖(X0,Y0,Z0)‖2 + ‖σ‖2

(
1− e−2εt

)
/2.

We note that as ε→ 0, for any t > 0 fixed,

E
(
‖(X ε

t ,Y
ε
t ,Z

ε
t )‖2

)
→ ‖(X0,Y0,Z0)‖2,

which is consistent with the convergence towards the solution of the
ODE, and the conservation of the norm along solutions of the ODE.

However
E
(
‖(X ε

t/ε,Y
ε
t/ε,Z

ε
t/ε)‖

2
)

has a completely different behavior as ε→ 0.
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A different time scale

This suggests to consider the “asymptotically constant quantities” in
the time scale t/ε.

We define

Uε
t = 2(X ε

t/ε)
2 + (Z εt/ε)

2, V ε
t = 2(Y ε

t/ε)
2 + (Z εt/ε)

2.

We have

dUε
t = 2[σ21 − Uε

t ]dt + 4σ1X
ε
t/εdBt ,

dV ε
t = 2[σ22 − V ε

t ]dt + 4σ2Y
ε
t/εdCt .

An important step of our work consists in showing that the limit
(Ut ,Vt) as ε→ 0 of (Uε

t ,V
ε
t ) satisfies the following SDE.
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The (U ,V ) equation

(∗)


dUt = 2[σ21 − Ut ]dt + σ1

√
8
(
Ut − Γ(Ut ,Vt)

)
dBt ,

dVt = 2[σ22 − Vt ]dt + σ2

√
8
(
Vt − Γ(Ut ,Vt)

)
dCt .

with

Γ(u, v) = lim
t→∞

1

t

∫ t

0
Z 2
s ds,

where (Xt ,Yt ,Zt) follows the ODE, starting from any point
(x , y , z) ∈ R3 such that (2x2 + z2, 2y2 + z2) = (u, v).

Etienne Pardoux (Aix–Marseille Univ.) IPAM, Rough Paths Conf. 9 / 18



The (U ,V ) equation

(∗)


dUt = 2[σ21 − Ut ]dt + σ1

√
8
(
Ut − Γ(Ut ,Vt)

)
dBt ,

dVt = 2[σ22 − Vt ]dt + σ2

√
8
(
Vt − Γ(Ut ,Vt)

)
dCt .

with

Γ(u, v) = lim
t→∞

1

t

∫ t

0
Z 2
s ds,

where (Xt ,Yt ,Zt) follows the ODE, starting from any point
(x , y , z) ∈ R3 such that (2x2 + z2, 2y2 + z2) = (u, v).

Etienne Pardoux (Aix–Marseille Univ.) IPAM, Rough Paths Conf. 9 / 18



More explicitly

Γ(u, v) = u ∧ v Λ
(u ∧ v

u ∨ v

)
,

where Λ(r) is a continuous and strictly increasing function on [0, 1]
with Λ(0) = 1

2 and Λ(1) = 1. Furthermore as ε→ 0+,

Λ(ε) =
1

2
+

1

16
ε+

1

32
ε2 + o(ε2)

Λ(1− ε) = 1− 2

| ln(ε)|
+ o
( 1

| ln(ε)|

)
In addition, on any closed interval in [0, 1), Λ is uniformly Lipschitz.

Etienne Pardoux (Aix–Marseille Univ.) IPAM, Rough Paths Conf. 10 / 18



More explicitly

Γ(u, v) = u ∧ v Λ
(u ∧ v

u ∨ v

)
,

where Λ(r) is a continuous and strictly increasing function on [0, 1]
with Λ(0) = 1

2 and Λ(1) = 1. Furthermore as ε→ 0+,

Λ(ε) =
1

2
+

1

16
ε+

1

32
ε2 + o(ε2)

Λ(1− ε) = 1− 2

| ln(ε)|
+ o
( 1

| ln(ε)|

)
In addition, on any closed interval in [0, 1), Λ is uniformly Lipschitz.

Etienne Pardoux (Aix–Marseille Univ.) IPAM, Rough Paths Conf. 10 / 18



We first show that any solution of equation (∗) which starts from
(U0,V0) satisfying U0 > 0 and V0 > 0 lives in (0,∞)× (0,∞) for all
times.

For that sake, we show that (Ut ,Vt) cannot hit a point of the form
(u, 0) nor (0, v) with u, v > 0, and also that σ−21 Ut + σ−22 Vt cannot
hit 0.

Each of those three facts follow from

Lemma

Let {Xt , t ≥ 0} and {Yt , t ≥ 0} be continuous R+–valued Ft–adapted
processes which satisfy 0 ≤ Yt ≤ Xt for all t ≥ 0, with Y0 > 0,

dXt = (a− bXt)dt +
√

cYtdWt ,

X0 = x ,

where b, c , x > 0 and W is a standard BM. If a ≥ c/2, then a.s. Xt > 0
for all t ≥ 0.
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One difficulty is that the (U,V ) SDE does not have a unique weak
solution.

However we have

Theorem

If (U,V ) = limn(Uεn ,V εn) for some subsequence εn → 0, then∫ t

0
1{Us=Vs}ds = 0 for all t > 0 almost surely .

Idea of proof : we show that if Jt := Ut − Vt , ϕδ such that
ϕδ(0) = ϕ′δ(0) = 0, ϕ′′δ (x) = ψδ(x) = − log(|x |)1[−δ,δ](x),

E
∫ t

0
[σ21(Us − Γ(Us ,Vs)) + σ22(Vs − Γ(Us ,Vs))]ψδ(Js)ds

≤ E
(
ϕδ(Jt)− ϕ0(J0)− 2

∫ t

0
(σ21 − σ22 − Js)ϕ′δ(Js)ds

)
.
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Because Λ(1− ε) = 1− 2
| log(ε)| + ◦

(
1

| log(ε)|

)
, one can show that to

any c > 0, we can associate δ > 0 and a > 0 such that whenever
u, v ≥ c > 0, and −δ ≤ k = u − v ≤ δ,

4
[
σ21(u − Γ(u, v)) + σ22(v − Γ(u, v))

]
log

(
1

|k|

)
≥ a > 0.

Consequently, letting δ → 0 we deduce that
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1Us≥c1Vs≥c1{0}(Us − Vs)ds = 0.
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Idea of the proof of the Theorem

Let for u, v > 0,

F (u, v) =

{
1− Λ

(
u∧v
u∨v
)
, if u∧v

u∨v ≥
1
2 ,

1− Λ
(
1
2

)
, if u∧v

u∨v <
1
2 .

We define the time change

At =

∫ t

0
F (Us ,Vs)ds, ηt = inf{s > 0, As > t},

Ht = Uηt , and Kt = Vηt .

With G (h, k) = F−1(h, k)[1− Λ(h ∧ k/h ∨ k)], σ̃i = 2
√

2σi ,

dHt = 2
σ21 − Ht

F (Ht ,Kt)
dt + σ̃1

√
Ht − Ht ∧ Kt

F (Ht ,Kt)
+ (Ht ∧ Kt)G (Ht ,Kt) dBt ,

dKt = 2
σ22 − Kt

F (Ht ,Kt)
dt + σ̃2

√
Kt − Ht ∧ Kt

F (Ht ,Kt)
+ (Ht ∧ Kt)G (Ht ,Kt) dCt .
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The diffusion coefficient of the (H,K ) equation is elliptic in
(0,∞)× (0,∞). The drift is unbounded, but using the methodology
in Portenko ’90, we deduce uniqueness of the weak solution of the
(H,K ) equation.

Remark 1 The process (U,V ), like its time change (H,K ), does
cross the diagonal in both directions, although the diffusion vanishes
there, and the drift either is parallel to the diagonal, or else pushes
either to {u > v} or to {u < v}.
Remark 2 In the case σ1 = σ2, there is another solution which stays
on the diagonal for ever, once it hits it. In fact even in the case
σ1 6= σ2, it seems that one can extend some arguments for
one–dimensional SDEs to our case, and prove that there exist
solutions which spend non–zero time on the diagonal, and live, after
having hit the diagonal, either above or below it.

Invariant Probability Measure It is not hard to show that the
process (U,V ), characterized as the unique solution of (∗) which
spends zero time on the diagonal has a unique invariant probability
measure λ(du, dv) = ρ(u, v)dudv , and ρ(u, v) > 0 for u, v > 0.
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The invariant measures of the ODE

To each (x , y , z) ∈ R3\{0}, we attach
(u, v) = (2x2 + z2, 2y2 + z2) ∈ (0,+∞)2.

To each (u, v) ∈ (0,+∞)2, at least if u 6= v , one can associate two
orbits of the ODE starting from (x , y , z), which, in addition to (u, v)
depend only upon the sign of

σ(x , y , z) = sign(1{|x |≥|y |}x + 1{|x |<|y |}y).

We denote by O(u, v ,+1) and O(u, v ,−1) those two orbits, and by
ν(u,v ,+1)(dx , dy , dz) (resp. ν(u,v ,−1)(dx , dy , dz)) the probability
measure which is the mean over (x , y , z) ∈ O(u, v ,+1) (resp. over
(x , y , z) ∈ O(u, v ,−1)) of the Dirac masses at (x , y , z). In case
u = v , those measures degenerate to two–point measures.
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The limit of µε as ε→ 0

Define the probability measure µ on R3 by

µ(dx , dy , dz)

=
1

2

∫
R2

λ(du, dv)
[
ν(u,v ,+1)(dx , dy , dz) + ν(u,v ,−1)(dx , dy , dz)

]
.

Our main result is

Theorem

As ε→ 0,
µε ⇒ µ.
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