Uniqueness and non-uniqueness for stochastic heat equations with Hölder continuous coefficients

Leonid Mytnik

Rough Paths: Theory and Applications January 27 - 31, 2014, IPAM

January 28, 2014

伺下 イヨト イヨト

Stoshastic heat equation

$$\frac{\partial}{\partial t}X(t,x) = \frac{1}{2}\Delta X(t,x) + \sigma(X(t,x))\dot{W}(x,t),$$

$$X(t,x) = \int p_t(x-y)X(0,y)dy$$

+ $\int_0^t \int p_{t-s}(x-y)\sigma(X(s,y)) W(dy,ds).$

where \dot{W} is the Gaussian noise

$$E\left[\dot{W}(x,t)\dot{W}(y,s)
ight]=\delta(t-s)k(x-y).$$

Main interest in the case of \dot{W} "white" noise in time and space in d = 1:

$$k(z)=\delta(z).$$

同下 イヨト イヨト

Uniqueness

We deal with the equation

$$\frac{\partial}{\partial t}X(t,x) = \frac{1}{2}\Delta X(t,x) + \sigma(X(t,x))\dot{W}(x,t).$$

▶ Pathwise uniqueness (PU):

$$X^1, X^2$$
 — two solutions, $X^1(0, \cdot) = X^2(0, \cdot)$
 $\implies X^1(t, \cdot) = X^2(t, \cdot), \forall t > 0.$

▶ Uniqueness in law (weak):

$$X^1, X^2$$
 — two solutions (even on different spaces),
 $X^1(0, \cdot) = X^2(0, \cdot) \Longrightarrow \{X^1(t, \cdot)\}_{t \ge 0} \stackrel{law}{=} \{X^2(t, \cdot)\}_{t \ge 0}.$

Э

Uniqueness Non-uniqueness

Uniqueness

$$\frac{\partial}{\partial t}X(t,x) = \frac{1}{2}\Delta X(t,x) + \sigma(X(t,x))\dot{W}(x,t).$$

If \dot{W} is a space-time white noise, then function-valued solution exists if d = 1. Uniqueness? σ — Lipschitz \Longrightarrow PU follows easily.

 σ - non-Lipschitz ?

回 と くほ と くほ とう

Super-Brownian motion

Branching Brownian motions in \mathbb{R}^d . X^n : $\sim n$ particles in \mathbb{R}^d at time 0. $\frac{1}{n}, \frac{2}{n}, \dots$ times of death or split, $p_0 = p_2 = \frac{1}{2}$ — probabilities of death or split. Critical branching: mean number of offspring = 1. New particles move as independent Brownian motions.

$$X_t^n(A) = rac{\# ext{ particles in } A ext{ at time } t}{n}, \ A \subset \mathbf{R}^d.$$
 $X_t^n \Rightarrow X,$

X is a super-Brownian motion — measure-valued process.

伺下 イヨト イヨト

Uniqueness Non-uniqueness

Properties of SBM

• Singular measure if d > 1.

・ロト ・回ト ・ヨト ・ヨト

Properties of SBM

- Singular measure if d > 1.
- ► Existence of density only in d = 1: X_t(dx) = X_t(x)dx

Properties of SBM

- Singular measure if d > 1.
- ► Existence of density only in d = 1: X_t(dx) = X_t(x)dx
- ▶ d = 1. X_t(x) is jointly continuous in (t, x). N. Konno, T. Shiga(88); M. Reimers (89):

$$\frac{\partial X}{\partial t} = \frac{1}{2}\Delta X + \sqrt{X}\dot{W}.$$

 \dot{W} — Gaussian space-time white noise.

- 本部 ト イヨ ト - - ヨ

Uniqueness Non-uniqueness

Uniqueness for SBM

$$\frac{\partial X}{\partial t} = \frac{1}{2}\Delta X + \sqrt{X}\dot{W}.$$

Weak uniqueness holds (by duality method)

Pathwise uniqueness (PU)? \sqrt{X} — non-Lipschitz. Is there a chance to get PU?

(《圖》 《문》 《문》 - 문

Pathwise uniqueness for SDEs

 $dX_t = \sigma(X_t) dB_t$

 B_t is a one-dimensional Brownian motion.

Theorem (Yamada, Watanabe (71))

If σ is Hölder continuous with exponent 1/2, then PU holds.

Remark

There are counter examples for σ which is Hölder continuous with exponent less than 1/2.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Uniqueness Non-uniqueness

Proof of Yamada-Watanabe Theorem

Define (in a special way) function $\phi_n \in C_c^{\infty}(R)$ s.t.

$$\begin{array}{rcl} \phi_n(x) & \to & |x|, \ \phi_n'' \to \delta_0 \,, \ \text{as } n \to \infty. \end{array}$$
Define $\tilde{X} = X^1 - X^2.$ Then $\tilde{X}_0 = 0$ and
 $d\tilde{X}_t = (\sigma(X_t^1) - \sigma(X_t^1)) dB_t.$

Ito's formula:

$$\phi_n(\tilde{X}_t) = \int_0^t \phi'_n(\tilde{X}_s)(\sigma(X_s^1) - \sigma(X_s^2)) dB_s$$

+ $\frac{1}{2} \int_0^t \phi''_n(\tilde{X}_s)(\sigma(X_s^1) - \sigma(X_s^2))^2 ds$

By the choice of ϕ_n and Hölder assumptions on σ one can show

$$E\left[\phi_n(\tilde{X}_t)\right] \leq cE\left[\int_0^t \phi_n''(\tilde{X}_s)|\tilde{X}_s|\,ds\right]$$

$$\to 0, \text{ as } n \to \infty, \text{ as } n \to \infty, \text{ be the set of a set of$$

Leonid Mytnik

Uniqueness and non-uniqueness for stochastic heat equations v

Uniqueness Non-uniqueness

Back to SPDEs

SPDE for super-Brownian motion density in d = 1

$$rac{\partial}{\partial t}X(t,x) = rac{1}{2}\Delta X(t,x) + \sqrt{X(t,x)}\dot{W}(x,t).$$

 \dot{W} — space-time white noise. Numerous attempts to prove **PU** failed. **PU** question is still open.

General stochastic heat equation

Let $\sigma(x)$ be Hölder continuous with exponent γ . Our main interest: conditions on γ such that **PU** holds for

$$\frac{\partial X}{\partial t} = \frac{1}{2}\Delta X + \sigma(X)\dot{W},$$

where \dot{W} is space-time white noise.

Main result

Theorem 1 (Perkins, M., 09)

Let $\sigma(x)$ be Hölder continuous with exponent γ . For any $\gamma > 3/4$, **PU** holds for

$$\frac{\partial X}{\partial t} = \frac{1}{2}\Delta X + \sigma(X)\dot{W},$$

where W is space-time white noise.

・ 同 ト ・ ヨ ト ・ ヨ ト

SPDE driven by colored noise

We start with the equations that are close to the above. Take less singular (spatially) noise. Consider the problem of **PU** for

$$\frac{\partial X}{\partial t} = \frac{1}{2}\Delta X + \sigma(X)\dot{W},$$

where the noise \dot{W} is "white" in time and "colored" in space:

$$E\left[\dot{W}(x,t)\dot{W}(y,s)\right] = \delta(t-s)k(x-y).$$

Assumptions

(H(α)) $k(z) \leq |z|^{-\alpha}$, $0 \leq \alpha < d$. (H(γ)) $\sigma(x)$ is Hölder cont. with exponent γ .

Existence of function-valued solution:

 $0 \le \alpha < 2 \land d$, Peszat-Zabczyk(00), Dalang(99) (for Lipschitz case. Similar for non-Lipschitz).

Uniqueness for SPDE driven by colored noise

Theorem 2 (Sturm, Perkins, M., 05)

PU holds if

$$\gamma > \frac{1}{2} + \frac{\alpha}{2}.$$

Remark For d = 1, $\alpha = 1$ (white noise case) we have

 $\gamma > 1 \dots$

向下 イヨト イヨト

Proof of Theorem 2

$$\begin{aligned} \frac{\partial X}{\partial t} &= \frac{1}{2}\Delta X + \sigma(X)\dot{W}, \\ X^1, X^2 &- \text{two solutions, } \tilde{X} = X^1 - X^2. \\ \frac{\partial \tilde{X}_t(x)}{\partial t} &= \frac{1}{2}\Delta \tilde{X}_t(x) + (\sigma(X_t^1(x)) - \sigma(X_t^2(x)))\dot{W}(t, x). \end{aligned}$$

Choose the functions ϕ_n, f^n :

$$\phi_n(x) \quad o \quad |x|, \quad ext{as } n \to \infty, \ f_x^n \quad o \quad \delta_x, \quad ext{as } n \to \infty.$$

$$E\left[\phi_n(\tilde{X}_t(f_x^n))\right] = \dots$$

$$\downarrow \qquad \downarrow \quad (\text{wish})$$

$$E\left[|\tilde{X}_t(x)|\right] = 0.$$

Leonid Mytnik

Uniqueness and non-uniqueness for stochastic heat equations v

One needs

$$I^{n}(t,x) = E\left[\frac{1}{2}\int_{0}^{t}\int_{R^{2d}}\phi_{x}''(|\tilde{X}_{s}(f_{x}^{n})|)|\tilde{X}_{s}(z)|^{\gamma}|\tilde{X}_{s}(y)|^{\gamma} \times f_{x}^{n}(z)f_{x}^{n}(y)k(z-y)dz\,dy\,ds\right]$$

$$\rightarrow 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

One needs

$$I^{n}(t,x) = E\left[\frac{1}{2}\int_{0}^{t}\int_{R^{2d}}\phi_{n}^{\prime\prime}(|\tilde{X}_{s}(f_{x}^{n})|)|\tilde{X}_{s}(z)|^{\gamma}|\tilde{X}_{s}(y)|^{\gamma} \times f_{x}^{n}(z)f_{x}^{n}(y)k(z-y)dz\,dy\,ds\right]$$

$$\rightarrow 0.$$

Crucial: Hölder exponent of $\tilde{X}_{s}(x)$ in x. Suppose $\tilde{X}_{s}(\cdot)$ is ξ -Hölder continuous. Then we can show PU if

$$\gamma > \frac{1}{2} + \frac{\alpha}{2\xi},$$

One needs

$$I^{n}(t,x) = E\left[\frac{1}{2}\int_{0}^{t}\int_{R^{2d}}\phi_{n}^{\prime\prime}(|\tilde{X}_{s}(f_{x}^{n})|)|\tilde{X}_{s}(z)|^{\gamma}|\tilde{X}_{s}(y)|^{\gamma} \times f_{x}^{n}(z)f_{x}^{n}(y)k(z-y)dz\,dy\,ds\right]$$

$$\rightarrow 0.$$

Crucial: Hölder exponent of $\tilde{X}_s(x)$ in x. Suppose $\tilde{X}_s(\cdot)$ is ξ -Hölder continuous. Then we can show PU if

$$\gamma > \frac{1}{2} + \frac{\alpha}{2\xi},$$

Remark

If $\alpha = 0$ we get YW bound $\gamma > 1/2$. $\frac{\alpha}{2\xi}$ — "price" for spatial singularity of the noise.

・ 同 ト ・ ヨ ト ・ ヨ ト

We got condition for PU:

$$\gamma > \frac{1}{2} + \frac{\alpha}{2\xi}.$$

Proposition (Sanz-Solé, Sarrà) For any $\xi < 1 - \frac{\alpha}{2}$, $\tilde{X}_s(\cdot)$ is Hölder continuous with exponent ξ . By Theorem of Sanz-Solé, Sarrà we get

$$\gamma > \frac{1}{2} + \frac{\alpha}{2(1-\alpha/2)},$$

Bad: $\alpha = 2/3 \implies \gamma > 1.$

・吊り ・ヨト ・ヨト ・ヨ

Proposition (Sturm, Perkins, M.)

At the points x where $\tilde{X}_s(x) = 0$, $\tilde{X}_s(\cdot)$ is ξ -Hölder continuous

$$\forall \xi < \frac{1-\alpha/2}{1-\gamma} \wedge 1.$$

Corollary (Sturm, Perkins, M.) Let $\gamma > \frac{1}{2} + \frac{\alpha}{2}$. At the points x where $\tilde{X}_s(x) = 0$, $\tilde{X}_s(\cdot)$ is ξ -Hölder continuous

$$\forall \xi < 1.$$

Remark Mueller-Tribe have the result similar to the above regularity result.

- 本部 ト イヨ ト - - ヨ

By condition on PU
$$(\gamma > rac{1}{2} + rac{lpha}{2\xi})$$
 we get $\gamma > rac{1}{2} + rac{lpha}{2}.$

and this finishes the proof of Theorem 2.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○

Optimality of the bound

$$\gamma > rac{1}{2} + rac{lpha}{2}$$
 ?

Note: d = 1, $\alpha = 1$ (white noise case) gives

 $\gamma > 1 \dots$

Theorem 1

If one replaces the condition

$$\forall \xi < \frac{1-\alpha/2}{1-\gamma} \wedge 1$$

by

$$\forall \xi < \frac{1-\alpha/2}{1-\gamma}.$$

(allowing ξ to be > 1) then by general condition on **PU**: $\gamma > \frac{1}{2} + \frac{\alpha}{2\xi}$, one gets the following condition on **PU**:

$$\gamma > \frac{1}{2} + \frac{\alpha}{4}$$

That is for $\alpha = 1$ (white noise case in d = 1) we get

$$\gamma > 3/4$$

— Theorem 1!!

(本部) (本語) (本語) (語)

Remark

T. Rippl and A. Sturm (2013) improved the condition on **PU** (from MPS06) for the colored noise case:

$$\gamma > \frac{1}{2} + \frac{\alpha}{4}.$$

・回 ・ ・ ヨ ・ ・ ヨ ・

Regularity at zero points

Consider

$$\frac{\partial X}{\partial t} = \frac{1}{2} \Delta X + |X|^{\gamma} \dot{W},$$

with \dot{W} — white noise. Take $x_0 : X_t(x_0) = 0$. Regularity at x_0 ? (Similar to behavior of the difference of two solutions \tilde{X} we considered).

$$I_t(x) \equiv \int_0^t \int_R p_{t-s}(x-y) |X_s(y)|^{\gamma} W(ds, dy).$$

Regularity If X is $C^{p/2,p}$ at (t, x_0) , then $I(\cdot)$ is $C^{p'/2,p'}$ at (t, x_0) : with

$$p' = p\gamma + 1/2$$

▲ □ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q (>)

Regularity at zero points

Consider

$$\frac{\partial X}{\partial t} = \frac{1}{2} \Delta X + |X|^{\gamma} \dot{W},$$

with \dot{W} — white noise. Take $x_0 : X_t(x_0) = 0$. Regularity at x_0 ? (Similar to behavior of the difference of two solutions \tilde{X} we considered).

$$I_t(x)\equiv\int_0^t\int_Rp_{t-s}(x-y)|X_s(y)|^{\gamma}W(ds,dy).$$

Regularity If X is $C^{p/2,p}$ at (t, x_0) , then $I_{\cdot}(\cdot)$ is $C^{p'/2,p'}$ at (t, x_0) : with

$$p' = p\gamma + 1/2$$

and $X_t(\cdot)$ is $C^{p'/2,p'}$ at (t, x_0) . Iterate... $X_t(\cdot)$ is $C^{\xi/2,\xi}$ at (t, x_0) with $\xi = \frac{1}{2(1-\gamma)}$.

Adding Drift

$$\frac{\partial X}{\partial t} = \frac{1}{2}\Delta X + b(X) + \sigma(X)\dot{W},$$

where \dot{W} is space-time white noise. For $\sigma(\cdot) > \epsilon > 0$, Lip; *b* — bounded measurable, **PU** + \exists of strong solutions studied by Gyongy, Pardoux, Bally, and others...

If σ Hölder continuous with exponent $\gamma>$ 3/4, b — Lipschitz, ${\bf PU}$ proved by Perkins, M.

Non-Lipschitz b?

(本語) (本語) (本語) (語)

Adding Drift

$$\frac{\partial X}{\partial t} = \frac{1}{2}\Delta X + b(X) + \sigma(X)\dot{W},$$

where \dot{W} is space-time white noise. For $\sigma(\cdot) > \epsilon > 0$, Lip; b — bounded measurable, $\mathbf{PU} + \exists$ of strong solutions studied by Gyongy, Pardoux, Bally, and others...

If σ Hölder continuous with exponent $\gamma>3/4,~b$ — Lipschitz, ${\rm PU}$ proved by Perkins, M.

Non-Lipschitz b?

Theorem (Neuman, M., 14)

Let σ be Hölder continuous with exponent $\gamma > 3/4$, $\sigma(\cdot) \ge \epsilon > 0$. Let b be bounded continuous. Then **PU** holds

Non-uniqueness

Is 3/4 sharp?

Counter example: for $\gamma < 3/4$ try to construct non-triviual solution to

$$\begin{cases} \frac{\partial}{\partial t}X(t,x) &= \frac{1}{2}\Delta X(t,x) + |X(t,x)|^{\gamma} \dot{W}(x,t), \\ X(0,\cdot) &= 0. \end{cases}$$
(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Non-uniqueness

► Is 3/4 sharp?

Counter example: for $\gamma < 3/4$ try to construct non-triviual solution to

$$\begin{cases} \frac{\partial}{\partial t}X(t,x) &= \frac{1}{2}\Delta X(t,x) + |X(t,x)|^{\gamma} \dot{W}(x,t), \\ X(0,\cdot) &= 0. \end{cases}$$
(1)

 Theorem 3 (Burdzy, Mueller, Perkins(2010); M., Mueller, Perkins(2012))

If $0 < \gamma < 3/4$ there is solution X(t,x) to (1) such that with positive probability, X(t,x) is not identically zero.

Conclusion: Both uniqueness in law and pathwise uniqueness fail for (1).

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

Non-uniqueness

Proofs

Construct non-triviual solution to

$$\begin{cases} \frac{\partial}{\partial t}X(t,x) = \frac{1}{2}\Delta X(t,x) + |X(t,x)|^{\gamma} \dot{W}(x,t), \\ X(0,\cdot) = 0. \end{cases}$$
(1)

Hard killing model (X^1, X^2) :

$$\begin{cases} \frac{\partial}{\partial t} X^{i}(t,x) &= \frac{1}{2} \Delta X^{i}(t,x) + X^{i}(t,x)^{\gamma} \dot{W}^{i}(x,t) \\ &- \frac{\partial A}{\partial t} + \frac{\partial I^{i}}{\partial t}, \quad i = 1, 2, \\ X^{i} \geq 0, \quad X^{1} X^{2} = 0. \end{cases}$$

 $I^{i}(dt, dx)$ is immigration of mass, A is the killing term, W^{1}, W^{2} are independent. If $I^{1} = I^{2}$, then $X \equiv X^{1} - X^{2}$ solves (1). Aim: cosntruct non-trivial (X^1, X^2) . Approximation:

$$\begin{cases} \frac{\partial}{\partial t} X^{i,\varepsilon}(t,x) &= \frac{1}{2} \Delta X^{i,\varepsilon}(t,x) + X^{i,\varepsilon}(t,x)^{\gamma} \dot{W}^{i}(x,t) \\ &- \frac{\partial A^{\varepsilon}}{\partial t} + \frac{\partial I^{i,\varepsilon}}{\partial t}, \quad i = 1, 2, \end{cases} \\ X^{i,\varepsilon} \geq 0, \ X^{1,\varepsilon} X^{2,\varepsilon} = 0. \end{cases}$$

We construct $I^{1,\varepsilon} \neq I^{2,\varepsilon}$ in a special way, such that

$$I^{i,\varepsilon} \Rightarrow I, \ i = 1, 2, \ \mathrm{as} \ \varepsilon \downarrow 0.$$

Hence

$$\begin{array}{rcl} X^{\varepsilon} & = & X^{1,\varepsilon} - X^{2,\varepsilon} \\ & \Rightarrow & X, \ \, \mathrm{as} \ \varepsilon \downarrow 0. \end{array}$$

where X solves (1). One can show (the most difficult part!) that X is non-trivial for $\gamma < 3/4$.

Uniqueness Non-uniqueness

Aim: cosntruct non-trivial (X^1, X^2) . Approximation: Let $\eta^{1,\varepsilon}, \eta^{2,\varepsilon}$ be independent Poisson random measures on $R_+ \times [-1, 1]$ with intensity $\varepsilon^{-1} dt dx$.

$$I^{i,\varepsilon}(t,A) \equiv \varepsilon \eta^{i,\varepsilon}([0,t] \times A), \ \ i=1,2.$$

 $(X^{1,\varepsilon},X^{2,\varepsilon})$ is the corresponding hard killing process.

Clearly as $\varepsilon \downarrow 0$,

$$I^{i,\varepsilon} \Rightarrow dt dx 1 (x \in [-1,1]), i = 1,2.$$

Hence

$$\begin{array}{rcl} X^{\varepsilon} & = & X^{1,\varepsilon} - X^{2,\varepsilon} \\ & \Rightarrow & X, \ \, \mathrm{as} \ \varepsilon \downarrow 0. \end{array}$$

where X solves (1). We would like to show that X is non-trivial for $\gamma < 3/4$.

Representation

$$X_t^{i,arepsilon} = \sum_{k:t_k \leq t} X_t^{i,arepsilon,k}$$

where $X_t^{i,\varepsilon,k}$ is the "cluster" starting at the atom $\varepsilon \delta_{x_k,t_k}$ of the immigration measure $I^{i,\varepsilon}$.

Consider $X^{1,\varepsilon}$. In the absence of the killing (A = 0),

 $\underset{\varepsilon}{\inf} P(\exists \text{ a cluster starting at some} \\ t_k \leq 1/2 \text{ and surviving until } t = 1) > 0.$

Let $Y^{1,\varepsilon}$ be one of such clusters. Shift time and space so that it starts at $\delta_{0,0}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

It could be checked that for small t the total mass of the surviving cluster evolves as

$$\left\langle Y_{1}^{1,\varepsilon},1\right\rangle \sim t^{rac{1}{4(1-\gamma)}+rac{1}{2}}\gg t^{3/2}, \ \ {
m for} \ \gamma < 3/4.$$

Most of the mass of $\{Y^{1,\varepsilon}_s, s \leq t\}$ is inside the parabola

$$B_t = \{(s,x) : |x| \le \sqrt{s}, s \le t\}$$

How $Y^{1,\varepsilon}$ could be killed by $X^{2,\varepsilon}$ before (small) time *t* with probability 1?

- By clusters of $X^{2,\varepsilon}$ born before time 0 at [-t, 0] for t small.
- By clusters of $X^{2,\varepsilon}$ born after time 0 inside B_t .

• Killing by clusters of $X^{2,\varepsilon}$ born at [-t, 0] for t small.

For t small, to touch (0,0) any cluster of $X^{2,\varepsilon}$ born at [-t,0] should be born inside

$$ilde{B}_t = \{(s,x): |x| \leq \sqrt{|s|}, s \geq -t\}$$

One can show that by "branching processes" argument that to survive t units of time the immigration of mass to $X^{2,\varepsilon}$ inside \tilde{B}_t should be at least of order $t^{\frac{1}{4(1-\gamma)}+\frac{1}{2}}$. However the immigration is just of order

$$t^{3/2} \ll t^{\frac{1}{4(1-\gamma)}+\frac{1}{2}}, \ \gamma < 3/4,$$

and hence the mass of $X^{2,\varepsilon}$ that was born inside \tilde{B}_t dies out by time 0.

• Killing by clusters of $X^{2,\varepsilon}$ born after time 0 inside B_t .

The immigration of mass in $X^{2,\varepsilon}$ inside B_t is of order $t^{3/2}$. The mass of $Y^{1,\varepsilon}$ at time t is of order

$$t^{rac{1}{4(1-\gamma)}+rac{1}{2}} \gg t^{3/2}$$

and hence $Y^{1,\varepsilon}$ "wins" the competition.

Open Problems

Uniqueness/Non-uniqueness of non-negative solutions to

$$\begin{cases} \frac{\partial}{\partial t}X(t,x) &= \frac{1}{2}\Delta X(t,x) + \psi + X(t,x)^{\gamma}\dot{W}(x,t), \\ X(0,\cdot) &\geq 0. \end{cases}$$

Known:

- 1. $\gamma < 1/2$. Non-uniqueness in presence of immigration $\psi \ge 0$: Burdzy, Mueller, Perkins(2010).
- 2. $\gamma = 1/2$. Non-uniqueness in presence of immigration $\psi \ge 0$: Yu-Ting Chen (2013).

Open: (a)
$$\gamma \in (1/2, 3/4)$$
?
(b) The case of "no immigration": $\psi = 0$?

(4月) (1日) (日) 日

Open Problems

Uniqueness/Non-uniqueness of non-negative solutions to

$$\begin{cases} \frac{\partial}{\partial t}X(t,x) &= \frac{1}{2}\Delta X(t,x) + \psi + X(t,x)^{\gamma}\dot{W}(x,t), \\ X(0,\cdot) &\geq 0. \end{cases}$$

Known:

- 1. $\gamma < 1/2$. Non-uniqueness in presence of immigration $\psi \ge 0$: Burdzy, Mueller, Perkins(2010).
- 2. $\gamma = 1/2$. Non-uniqueness in presence of immigration $\psi \ge 0$: Yu-Ting Chen (2013).

Open: (a)
$$\gamma \in (1/2, 3/4)$$
?
(b) The case of "no immigration": $\psi = 0$?

SPDEs driven by Levy noise.

イロト イポト イラト イラト 一日

Uniqueness Non-uniqueness

Thank You

Leonid Mytnik Uniqueness and non-uniqueness for stochastic heat equations v

æ