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Stoshastic heat equation

0

) .
5 X(£.:%) = SAX(8,x) + o(X(t.x)W(x, 1),

X(t,x) = /pt<x—y>><(o,y)dy

/ [ preelx = y)o(X(s.5)) Wiy )

where W is the Gaussian noise
E [v‘v(x, HW(y, s)} = 5(t — s)k(x — y).

Main interest in the case of W “white” noise in time and space in
d=1:
k(z) =94(z).
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Uniqueness

We deal with the equation

9 1 i
5 X(t:x) = SAX(t,x) + o(X(t,x))W(x, 1),

» Pathwise uniqueness (PU):
X1, X? — two solutions, X*(0,-) = X?(0,-)
= X(t,-) = X?(t,-),Vt > 0.

» Uniqueness in law (weak):
X1, X? — two solutions (even on different spaces),

X10,-) = X2(0,) = {X}(t,-)}ez0 = {X(t,-)}ez0-
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Uniqueness

1 .

QX(t,x) = 2AX(t, x) + o(X(t,x))W(x,t).

ot
If W is a space-time white noise, then function-valued solution
exists if d = 1.
Uniqueness?
o — Lipschitz = PU follows easily.
o - non-Lipschitz ?
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Super-Brownian motion

Branching Brownian motions in RY.
X

~ n particles in RY at time 0.

12 . .

—,—,... — times of death or split,
n'n

1
po=p2 = 5 probabilities of death or split.

Critical branching: mean number of offspring = 1.
New particles move as independent Brownian motions.
# particles in A at time t

X"(A) = . , ACRY.

X" = X,

X is a super-Brownian motion — measure-valued process.
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Properties of SBM

» Singular measure if d > 1.
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Properties of SBM

» Singular measure if d > 1.

» Existence of density only in d = 1:
Xe(dx) = Xi(x)dx
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Properties of SBM

» Singular measure if d > 1.

» Existence of density only in d = 1:
Xe(dx) = Xi(x)dx

» d =1. X;(x) is jointly continuous in (t,x). N. Konno,
T. Shiga(88); M. Reimers (89):

oxX 1

= ZAX + VXW.
ot 2 +VX

W — Gaussian space-time white noise.
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Uniqueness for SBM

oX

1 .
—Lax o vxw.
gt~ 2on T

Weak uniqueness holds (by duality method)
Pathwise uniqueness (PU)?

VX — non-Lipschitz.
Is there a chance to get PU?
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Pathwise uniqueness for SDEs

dXt = U(Xt)dBt

B; is a one-dimensional Brownian motion.

Theorem ( Yamada, Watanabe (71))
If o is Holder continuous with exponent 1/2, then PU holds.

Remark

There are counter examples for o which is Holder continuous with
exponent less than 1/2.
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Proof of Yamada-Watanabe Theorem

Define (in a special way) function ¢, € C°(R) s.t.
dn(x) — |x|, &) — o, asn— .
Define X = X! — X2 Then Xo =0 and
dX. = (o(X})—o(X}))dB:.

Ito’s formula:

o) = [ t¢;(>”<s)(o<x§)—a(x3>)ds
/ 61(%:) (0(X2) — o(X2))2 ds

By the choice of ¢, and Holder assumptions on o one can show

E[¢,,(Xt < cEU¢(X \X\ds]

— 0, as n— oo.
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Back to SPDEs

» SPDE for super-Brownian motion density in d =1

0 1 -
aX(t,x) = 5AX(t7x) + V/X(t, x)W(x, t).
W — space-time white noise.

Numerous attempts to prove PU failed.

PU question is still open.

» General stochastic heat equation
Let o(x) be Holder continuous with exponent 7.
Our main interest: conditions on - such that PU holds for
ox 1 -

where W is space-time white noise.
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Main result

Theorem 1 (Perkins, M., 09)
Let o(x) be Hélder continuous with exponent ~y.
For any v > 3/4, PU holds for

ox 1 -

where W is space-time white noise.
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Uniqueness

SPDE driven by colored noise

We start with the equations that are close to the above.
Take less singular (spatially) noise.
Consider the problem of PU for

X 1 :
= ZAX + o(X)W

where the noise W is “white” in time and “colored” in space:
E [v‘v(x, W(y,s)| = a(t — s)k(x — y).
Assumptions

(H(a)) k(z) <|z|™*, 0< a < d.
(H(7)) o(x) is Holder cont. with exponent ~.

Existence of function-valued solution:
0 < a < 2Ad, Peszat-Zabczyk(00), Dalang(99) (for Lipschitz
case. Similar for non-Lipschitz).
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Uniqueness

Uniqueness for SPDE driven by colored noise

Theorem 2 (Sturm, Perkins, M., 05)

PU holds if

Remark
For d =1, a =1 (white noise case) we have

vy>1...
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Uniqueness

Proof of Theorem 2

oX 1 -
55 = §AX +o(X)W,
Xl,X2 — two solutions, X = X! - X2
X 1. :
W)= AR + (006 00) — (X2 () Wik ).

Choose the functions ¢,, f":
on(x) — |x|, asn— oo,
f — dx, asn— oo.

' L (wish)
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One needs

P = €[5 [ [ AOREDE@IRL
x £(2)£(v)k(z — y)dz dy ds]
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One needs

P = €[5 [ [ AOREDE@IRL
x £(2)£(v)k(z — y)dz dy ds]

Crucial: Hélder exponent of Xs(x) in x.
Suppose Xs(+) is £&-Holder continuous. Then we can show PU if

>1+oz
Y TS
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One needs

P = €[5 [ [ AOREDE@IRL
x £(2)£(v)k(z — y)dz dy ds]

Crucial: Hélder exponent of Xs(x) in x.
Suppose Xs(+) is £&-Holder continuous. Then we can show PU if

>1+oz
Y TS

Remark
If « =0 we get YW bound v > 1/2. % — "price” for spatial
singularity of the noise.
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We got condition for PU:

- 1 n o}
T e
Proposition (Sanz-Solé, Sarra)
Forany £ <1—3, Xs(+) is Holder continuous with exponent €.

By Theorem of Sanz-Solé, Sarra we get

i, o
T2 T 21— aj2)

Bad: « =2/3—= ~ > 1.
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Proposition (Sturm, Perkins, M.)
At the points x where Xs(x) = 0, Xs(-) is £-Hélder continuous

1—a/2
ve< 122 g
1—v

Corollary (Sturm, Perkins, M.)
Let v > 3 + %. At the points x where Xs(x) = 0, Xs(-) is &-Holder

continuous
VE < 1.

Remark Mueller-Tribe have the result similar to the above
regularity result.
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By condition on PU (v > % + 2%) we get

Ll
Ty

and this finishes the proof of Theorem 2.
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Optimality of the bound

>1+g?
Ty

Note: d =1, a = 1 (white noise case) gives

v>1...
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Uniqueness

Theorem 1

If one replaces the condition

1—a/2
ve < 122 4
1—vy
by
1—a/2
1—v

(allowing £ to be > 1)
then by general condition on PU: ~ > % + ;‘—E
one gets the following condition on PU:

>l+a
Y 5T

That is for « = 1 (white noise case in d = 1) we get

v >3/4

— Theorem 1!!
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Remark
T. Rippl and A. Sturm (2013) improved the condition on PU
(from MPS06) for the colored noise case:

>1+oz
Ty
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Uniqueness

Regularity at zero points

Consider
oxX 1

o CAX + X|W

with W — white noise. Take xo : X;(xo) = 0. Regularity at x?
(Similar to behavior of the difference of two solutions X we considered).
t
k0 = [ [ peslx = X)) Wik, ).
0

Regularity If X is CP/2P at (t,xg), then [(-) is CP'/2P" at (t,xo):
with
p'=py+1/2
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Uniqueness

Regularity at zero points

Consider

X 1 :
= CAX + | XPW

with W — white noise. Take xo : X;(xo) = 0. Regularity at x?
(Similar to behavior of the difference of two solutions X we considered).

K= [ t [ e = X)W, ).

Regularity If X is CP/2P at (t,xg), then [(-) is CP'/2P" at (t,xo):
with

p'=py+1/2
and X;(-) is CP'/2P" at (t,xp).

Iterate. .. X,(-) is C/2¢ at (t,x0) with € = 7oy
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Uniqueness

Adding Drift

ox 1 -

— = -AX+b(X X)W

o = 30X+ b(X) + (X)W,

where W is space-time white noise.

For o(-) > ¢ > 0, Lip; b — bounded measurable, PU + 3 of
strong solutions studied by Gyongy,Pardoux, Bally, and others. ..

If o Holder continuous with exponent v > 3/4, b — Lipschitz, PU
proved by Perkins, M.

Non-Lipschitz b?
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Uniqueness

Adding Drift

ox 1 -

where W is space-time white noise.
For o(-) > ¢ > 0, Lip; b — bounded measurable, PU + 3 of
strong solutions studied by Gyongy,Pardoux, Bally, and others. ..

If o Holder continuous with exponent v > 3/4, b — Lipschitz, PU
proved by Perkins, M.

Non-Lipschitz b?

Theorem (Neuman, M., 14)

Let o be Hélder continuous with exponent v > 3/4, o(-) > € > 0.
Let b be bounded continuous. Then PU holds.
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Non-uniqueness

Non-uniqueness

> Is 3/4 sharp?

Counter example: for v < 3/4 try to construct non-triviual
solution to

{th(t,x) = LAX(£,x) + [X (£, x) [ W(x, 1), O
X(0,) = 0.
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Non-uniqueness

Non-uniqueness

> Is 3/4 sharp?

Counter example: for v < 3/4 try to construct non-triviual
solution to

{th(t,x) = LAX(£,x) + [X (£, x) [ W(x, 1), O
X(0,) = 0.

» Theorem 3 (Burdzy, Mueller, Perkins(2010); M., Mueller,
Perkins(2012))

If0 < v < 3/4 there is solution X(t,x) to (1) such that with
positive probability, X(t,x) is not identically zero.

Conclusion: Both uniqueness in law and pathwise uniqueness
fail for (1).
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Non-uniqueness

Non-uniqueness

Proofs
Construct non-triviual solution to

{aatX(t,x) = LAX(t,x) + | X(t, )" W(x, t), (1)
X(0,) = 0.

Hard killing model (X1, X?) :

%X"(t,x) = %A;(i(t,;)—i—X"(t,x)”YV-V"(x,t)
A ' o
] _W_‘_E’ I—1,2,
X'>0, X1X?=0o.

I'(dt, dx) is immigration of mass,

A is the killing term,

W1, W2 are independent.

If I* = /2, then X = X! — X? solves (1).
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Non-uniqueness

Aim: cosntruct non-trivial (X1, X?).
Approximation:

IXE(t,x) = JAXME(t, )—I—X’a(t x)TWi(x, t)
—GE o, =12

Xi,s > 0, Xl,sx2,s = 0.

We construct /1€ # 12 in a special way, such that

1" =1, i=1,2, ase | 0.
Hence
Xt = X1,€ _X2,s
= X, ase 0.

where X solves (1).
One can show (the most difficult part!) that X is non-trivial for
v < 3/4.
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Non-uniqueness

Aim: cosntruct non-trivial (X1, X?).
Approximation: Let n1 1< be independent Poisson random
measures on Ry x [—1,1] with intensity e~ 1dt dx.

I'5(t, A) = en™([0, t] x A), i=1,2.
(X1£, X2) is the corresponding hard killing process.

Clearly as ¢ | 0,

I = dtdx1(x € [-1,1]), i=1,2.
Hence
X = Xl,a _ X2,€
= X, ase 0.

where X solves (1).
We would like to show that X is non-trivial for
v < 3/4.
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Non-uniqueness

Representation
ie 2 : iek
Xt - Xt
kit <t

where X is the "cluster” starting at the atom €dx,.t, of the
immigration measure /€.

Consider X1, In the absence of the killing (A = 0),

inf P(3 a cluster starting at some
3

tx < 1/2 and surviving until t = 1) > 0.

Let Y€ be one of such clusters. Shift time and space so that it
starts at dg,0.

Leonid Mytnik Uniqueness and non-uniqueness for stochastic heat equations



Non-uniqueness

It could be checked that for small t the total mass of the surviving
cluster evolves as

1 1
<Y11’€, 1> ~ it s t3/2 for v < 3/4.

Most of the mass of {Ysl’a,s < t} is inside the parabola
B: = {(s,x): |x| <+/s,s < t}

How Y1 could be killed by X2 before (small) time t with
probability 17
» By clusters of X%¢ born before time 0 at [—t,0] for t small.

» By clusters of X% born after time 0 inside B;.
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Non-uniqueness

» Killing by clusters of X%¢ born at [—t, 0] for t small.

For t small, to touch (0, 0) any cluster of X% born at [—t, 0]
should be born inside

B = {(s.%) : Ix| < V/lsl,s > —t}

One can show that by "branching processes’ argument that
to survive t units of time the immigration of mass to X%
inside Bt should be at least of order t41-" 1 ) +2

However the immigration is just of order
141
32 <t T2 4 < 3/4,

and hence the mass of X2 that was born inside Bt dies out
by time 0.
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Non-uniqueness

» Killing by clusters of X%¢ born after time 0 inside B;.

The immigration of mass in X< inside B; is of order t3/2.
The mass of Y1 at time t is of order

Dt s 132

and hence Y€ "wins” the competition.
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Non-uniqueness

Open Problems

» Uniqueness/Non-uniqueness of non-negative solutions to

{th(t,x) = %AX(t,x)—l—’t/}—i—X(t,x)ﬂ/V(x,t),
X(0,) > 0.

Known:

1. v < 1/2. Non-uniqueness in presence of immigration ¢ > 0 :
Burdzy, Mueller, Perkins(2010).

2. v =1/2. Non-uniqueness in presence of immigration ¢ > 0:
Yu-Ting Chen (2013).

Open: (a) v € (1/2,3/4)7
(b) The case of "no immigration”: ¢ = 07
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Non-uniqueness

Open Problems

» Uniqueness/Non-uniqueness of non-negative solutions to

IX(t,x) = IAX(t,x) + ¢+ X(t,x)TW(x, t),
X(0,:) > 0.
Known:

1. v < 1/2. Non-uniqueness in presence of immigration ¢ > 0 :
Burdzy, Mueller, Perkins(2010).

2. v =1/2. Non-uniqueness in presence of immigration ¢ > 0:
Yu-Ting Chen (2013).

Open: (a) v € (1/2,3/4)7
(b) The case of "no immigration”: ¢ = 07

» SPDEs driven by Levy noise.
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Non-uniqueness

Thank You

uniqueness for stochastic heat equati
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