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The model: deterministic part

η ∈ Ω = RZ → volume configuration

Base dynamics: system of ODE’s

d
dt η

0
t (x) = η0

t (x + 1)− η0
t (x − 1)

f : Ω→ R local, d
dt f (η0

t ) = Af (η0
t ), where

Af (η) =
∑
x∈Z

(
η(x+1)− η(x−1)

)∂f (η)

∂η(x)
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The model: stochastic part

Stochastic evolution: stirring process → whiteboard!

For f : Ω→ R local,

Sf (η) =
∑
x∈Z
∇x ,x+1f (η).

L = S + A, generator of a Markov process {ηt ; t ≥ 0}
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The model: stationary properties

Gaussian invariant measures:

µρ,β(dη) =
∏
x∈Z

√
β

2π
e−

β
2

(η(x)−ρ)2
dη(x)

Two (formally) conserved quantities:∑
x∈Z

η(x) −→ the volume

∑
x∈Z

η(x)2 −→ the energy
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Energy correlations

Take η0 ∼ µβ,ρ for some β > 0, ρ ∈ R and WLG we take
ρ = 0.

Energy correlation function:

St(x) = Eµβ,0
[(
ηt(x)2 − 1

β

)(
η0(0)2 − 1

β

)]
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Energy correlations

Theorem

For any regular functions f , g : R→ R,

lim
n→∞

1
n

∑
x∈Z

f
( x
n

)
g
( y
n

)
Stn3/2(x−y) =

∫∫
f (x)g(y)Pt(x−y)dxdy ,

where {Pt(x); x ∈ R, t ≥ 0} is the fundamental solution of the
fractional heat equation

∂tu =
{
−
(
−∆

)3/4
+∇

(
−∆

)1/4}
u.
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Energy correlations

1 : 2 : 3 KPZ-like space-time scale

Linear evolution −→ Gaussian fluctuations of various
observables of the energy (current, occupation variables,
etc...)

The fractional exponent 3/4 is universal; skewness is not

Result is robust with respect to modifications of the model
(no stochastic integrability required)

Aims to a complete description of the FPU-β universality
class
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Ideas of proof

The quadratic volume field:

Qt(x , y) = Eµβ,0
[
ηt(x)ηt(y)

(
η0(0)2 − 1

β

)]
for x 6= y ∈ Z.

Right space-time scale for Q is not super-diffusive
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The quadratic filedd

Hyperbolic scaling: Qtn( xn ,
y
n ) −→ solution of a linear

transport equation

Characteristic velocity v = (2, 2)

Along characteristics, diffusive scaling:

Qtn2

( x
n−2nt, yn−2nt

)
−→ solution of a heat equation
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An extension problem

Take g solution of the Laplace problem{
∂2
yg + ∂xg = 0, x ∈ R, y ≥ 0
∂yg(x , 0) = f ′(x), x ∈ R.

Theorem (Extension problem)

∂xg(x , 0) =
{
−(−∆)3/4−∇(−∆)1/4

}
f (x)
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Fractional integration by parts

Microscopic formulation:

d

dt

∑
x∈Z

Stn3/2(x)f
(
x
n

)
=
√
n
∑
x∈Z

Qtn3/2(x , x + 1)f ′
(
x
n

)
plus error terms

RHS computed using the extension problem

Boundary effects (akin to renormalization):

RHS −→
∑
x∈Z

Stn3/2(x)∂xg
(
x
n , 0
)
.
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The test function

Define
hn(x , y) = g

( x+y
2n ,

x−y
2
√
n

)
Then

d

dt

∑
x ,y

Qtn3/2(x , y)hn(x , y) =
√
n
∑
x∈Z

Qtn3/2(x , x + 1)f ′
(
x
n

)
+
∑
x

Stn3/2(x)Lf
(
x
n

)
plus lower order terms
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