Invariant Measures for Stochastic Conservation Laws

Arnaud Debussche
École Normale Supérieure de Rennes

Collaboration with Julien Vovelle (Lyon 1).

IPAM, UCLA, January 2014
We study the first-order scalar conservation law with stochastic forcing

\[du + \text{div}(A(u))dt = \Phi(u)dW(t), \quad t \in (0, T). \]

We consider a periodic space variable \(x: x \in \mathbb{T}^N \).

The flux function \(A \in C^2(\mathbb{R}; \mathbb{R}^N) \), \(A \) and its derivatives have at most polynomial growth.

The noise is constructed thanks to a cylindrical Wiener process:

\[W = \sum_{k \geq 1} \beta_k e_k \]

- \(\beta_k \) are independent brownian processes
- \((e_k)_{k \geq 1} \) is a complete orthonormal system in a Hilbert space \(L^2(\mathbb{T}^N) \).
- \(\Phi(u) \in \mathcal{L}(L^2(\mathbb{T}^N)), \Phi(u)dW = \sum_{k \in \mathbb{N}} \Phi(u)e_k d\beta_k. \)
Pioneering works:

- E, Khanin, Mazel & Sinai have studied the stochastic Burgers equation with additive noise: \(A(u) = u^2, \Phi(u)e_k = \phi_k, \quad d = 1 \).
Pioneering works:

- E. Khanin, Mazel & Sinai have studied the stochastic Burgers equation with additive noise: $A(u) = u^2$, $\Phi(u)e_k = \phi_k$, $d = 1$.

 They use a Lax-Oleinik formula to construct solutions and show that there exists a unique invariant measure:

 $$u(t, x) = \frac{\partial}{\partial x} \inf_{\xi(t)=x} \left\{ A_{0,t}(\xi) + \int_0^{\xi(0)} u_0(x) \, dx \right\}$$

 with

 $$A_{0,t}(\xi) = \frac{1}{2} \int_0^t \dot{\xi}(s)^2 \, ds + \sum_k \int_0^t \phi_k(\xi(s)) \, d\beta_k(s)$$

 A minimizer ξ satisfies:

 $$\dot{\xi}(s) = v(s), \quad dv(s) = \phi_k(\xi(s)) \, d\beta_k(s).$$

 and $u(t, x) = \dot{\xi}(t)$.
Pioneering works:

▶ E, Khanin, Mazel & Sinai have studied the stochastic Burgers equation. They use a Lax-Oleinik formula to construct solutions and show that there exists a unique invariant measure.

▶ Generalization by Iturriaga and Khanin.

▶ The ideas have been used by Dirr and Souganidis for general Hamilton-Jacobi equations under some assumptions on the Hamiltonian.
Pioneering works:

- E, Khanin, Mazel & Sinai have studied the stochastic Burgers equation. They use a Lax-Oleinik formula to construct solutions and show that there exists a unique invariant measure.
- Generalization by Iturriaga and Khanin.
- The ideas have been used by Dirr and Souganidis for general Hamilton-Jacobi equations under some assumptions on the Hamiltonian. The essential ingredients are:
 1. The deterministic equation has an attractor which reduces to a single trajectory.
 2. When the noise is small, the stochastic solution is close to the deterministic one, uniformly with respect to the initial data.
 3. The noise is small on long time intervals with positive probability.
 4. With an additive noise, the distance between two solutions cannot increase.
More recently:

- Saussereau and Stoica have generalized E, Khanin, Mazel & Sinai’s ideas to the case of a fractional noise.
More recently:

- Saussereau and Stoica have generalized E, Khanin, Mazel & Sinai’s ideas to the case of a fractional noise.
- Bakhtin, Cator and Khanin have considered the Burgers equation on the real line with Poisson noise.
More recently:

- Saussereau and Stoica have generalized E, Khanin, Mazel & Sinai’s ideas to the case of a fractional noise.
- Bakhtin, Cator and Khanin have considered the Burgers equation on the real line with Poisson noise.
- Boritchev has obtained very fine estimates on the moments of solutions of the viscous Burgers equation in terms of the viscosity.
Kinetic formulation

In this work we use the kinetic formulation introduced by Lions, Perthame & Tadmor to prove existence and uniqueness of entropy solutions in any space dimension.
Kinetic formulation

In this work we use the kinetic formulation introduced by Lions, Perthame & Tadmor to prove existence and uniqueness of entropy solutions in any space dimension.

→ introduce a new variable ξ and consider the equation satisfied by

$$ f(t, x, \xi) = 1_{u(t, x) > \xi} $$
Kinetic formulation

In this work we use the kinetic formulation introduced by Lions, Perthame & Tadmor to prove existence and uniqueness of entropy solutions in any space dimension.

→ introduce a new variable ξ and consider the equation satisfied by

$$ f(t, x, \xi) = 1_{u(t, x) > \xi} $$

Let $\varphi \in C_\infty(\mathbb{R})$ with compact support and set

$$ \theta(\xi) = \int_{-\infty}^{\xi} \varphi(\zeta) d\zeta $$

we have

$$ (1_{u > \xi}, \varphi) = \int_{\mathbb{R}} 1_{u > \xi} \varphi'(\xi) d\xi = \int_{-\infty}^{u} \theta'(\xi) d\xi = \theta(u) $$

$$ (\delta_{u=\xi}, \theta) = \theta(u) $$
By Itô Formula, we deduce

$$d(\mathbf{1}_{u>\xi}, \varphi) = d\theta(u)$$

$$= \theta'(u)(-a(u) \cdot \nabla u dt + \Phi(u)dW) + \frac{1}{2}\theta''(u)G^2(u)dt$$
By Itô Formula, we deduce

\[d(1_{u > \xi}, \varphi) = d\theta(u) \]

\[= \theta'(u)(-a(u) \cdot \nabla u dt + \Phi(u)dW) + \frac{1}{2}\theta''(u)G^2(u)dt \]

\[\Rightarrow \theta'(u)a(u) \cdot \nabla u = \text{div} \left(\int_{-\infty}^{u} a(\xi)\theta'(\xi)d\xi \right) = \text{div}_x(a1_{u > \xi}, \varphi) \]

\[= (a \cdot \nabla_x 1_{u > \xi}, \varphi) \]
By Itô Formula, we deduce

\[d(\mathbf{1}_{u > \xi}, \varphi) = d\theta(u) \]

\[= \theta'(u)(-a(u) \cdot \nabla u dt + \Phi(u)dW) + \frac{1}{2}\theta''(u)\mathbf{G}^2(u)dt \]

- \[\theta'(u)a(u) \cdot \nabla u = \text{div} \left(\int_{-\infty}^{u} a(\xi)\theta'(\xi)d\xi \right) = \text{div}_x(a\mathbf{1}_{u > \xi}, \varphi) \]
 \[= (a \cdot \nabla_x \mathbf{1}_{u > \xi}, \varphi) \]

- \[\theta''(u)\mathbf{G}^2(u) = (\mathbf{G}^2(\xi)\delta_{u=\xi}, \varphi'(\xi)) = -\left(\partial_\xi(\mathbf{G}^2(\xi)\delta_{u=\xi}), \varphi(\xi) \right) \]
By Itô Formula, we deduce

\[d(\mathbf{1}_{u > \xi}, \varphi) = d\theta(u) \]

\[= \theta'(u)(-a(u) \cdot \nabla u dt + \Phi(u) dW) + \frac{1}{2} \theta''(u) G^2(u) dt \]

- \(\theta'(u)a(u) \cdot \nabla u = \text{div} \left(\int_{-\infty}^{u} a(\xi) \theta'(\xi) d\xi \right) = \text{div}_x(a\mathbf{1}_{u > \xi}, \varphi) \]
 \[= (a \cdot \nabla_x \mathbf{1}_{u > \xi}, \varphi) \]

- \(\theta''(u)G^2(u) = (G^2(\xi)\delta_{u=\xi}, \varphi'(\xi)) = -(\partial_{\xi}(G^2(\xi)\delta_{u=\xi}), \varphi(\xi)) \)

- \(\theta'(u)\Phi(u) dW = (\delta_{u=\xi} \Phi(\xi) dW, \varphi(\xi)) \)
By Itô Formula, we deduce

\[d(1_{u > \xi}, \varphi) = d\theta(u) \]

\[= \theta'(u)(-a(u) \cdot \nabla u dt + \Phi(u)dW) + \frac{1}{2}\theta''(u)G^2(u)dt \]

- \(\theta'(u)a(u) \cdot \nabla u = \text{div} \left(\int_{-\infty}^{u} a(\xi)\theta'(\xi) d\xi \right) = \text{div}_x (a1_{u > \xi}, \varphi) = (a \cdot \nabla_x 1_{u > \xi}, \varphi) \)

- \(\theta''(u)G^2(u) = (G^2(\xi)\delta_{u=\xi}, \varphi'(\xi)) = -(\partial_\xi (G^2(\xi)\delta_{u=\xi}), \varphi(\xi)) \)

- \(\theta'(u)\Phi(u)dW = (\delta_{u=\xi} \Phi(\xi)dW, \varphi(\xi)) \)

\[d(1_{u > \xi}, \varphi) = -(a \cdot \nabla 1_{u > \xi}, \varphi) dt - \frac{1}{2}(\partial_\xi (G^2\delta_{u=\xi}), \varphi)dt + (\delta_{u=\xi} \Phi dW, \varphi) \]
By Itô Formula, we deduce

\[d(\mathbf{1}_{u>\xi}, \varphi) = d\theta(u) \]

\[= \theta'(u)(-a(u) \cdot \nabla u dt + \Phi(u)dW) + \frac{1}{2}\theta''(u)\mathbf{G}^2(u)dt \]

- \(\theta'(u)a(u) \cdot \nabla u = \text{div} \left(\int_{-\infty}^{u} a(\xi)\theta'(\xi)d\xi \right) = \text{div}_x(a\mathbf{1}_{u>\xi}, \varphi) \]
 \[= (a \cdot \nabla_x \mathbf{1}_{u>\xi}, \varphi) \]

- \(\theta''(u)\mathbf{G}^2(u) = (\mathbf{G}^2(\xi)\delta_{u=\xi}, \varphi'(\xi)) = -(\partial_\xi(\mathbf{G}^2(\xi)\delta_{u=\xi}), \varphi(\xi)) \)

- \(\theta'(u)\Phi(u)dW = (\delta_{u=\xi}\Phi(\xi)dW, \varphi(\xi)) \)

\[d(\mathbf{1}_{u>\xi}, \varphi) = -(a \cdot \nabla \mathbf{1}_{u>\xi}, \varphi)dt - \frac{1}{2}(\partial_\xi(\mathbf{G}^2\delta_{u=\xi}), \varphi)dt + (\delta_{u=\xi}\Phi dW, \varphi) \]

We obtain the kinetic formulation:

\[d\mathbf{1}_{u>\xi} + a(\xi) \cdot \nabla \mathbf{1}_{u>\xi} dt = \delta_{u=\xi}\Phi(\xi)dW - \partial_\xi(\frac{1}{2}\mathbf{G}^2(\xi)\delta_{u=\xi})dt. \]
The kinetic formulation:
\[d\mathbf{1}_{u>\xi} + a(\xi) \cdot \nabla \mathbf{1}_{u>\xi} dt = \delta_{u=\xi} \Phi(\xi) dW - \partial_\xi \left(\frac{1}{2} G^2(\xi) \delta_{u=\xi} \right) dt. \]
This computation is not rigorous and in fact wrong since \(u \) is not smooth enough.
The kinetic formulation:
\[d1_{u>\xi} + a(\xi) \cdot \nabla 1_{u>\xi} dt = \delta_{u=\xi} \Phi(\xi) dW - \partial_\xi \left(\frac{1}{2} G^2(\xi) \delta_{u=\xi} \right) dt. \]
This computation is not rigorous and in fact wrong since \(u \) is not smooth enough.
An additional measure accounting for the shocks of \(u \) has to be added. We say that \(u \) is a kinetic solution if \(f(x, \xi, t) = 1_{u(x,t)>\xi} \) satisfies:
\[
df + a(\xi) \cdot \nabla f dt = \delta_{u=\xi} \Phi(\xi) dW - \partial_\xi \left(\frac{1}{2} G^2(\xi) \delta_{u=\xi} \right) dt + \partial_\xi m dt
\]
where \(m \) is a non negative finite random measure on \(\mathbb{T}^N \times [0, T] \times \mathbb{R} \) satisfying convenient decay properties for large \(\xi \).
The kinetic formulation:
\[d \mathbf{1}_{u > \xi} + a(\xi) \cdot \nabla \mathbf{1}_{u > \xi} dt = \delta_{u=\xi} \Phi(\xi) dW - \partial_\xi \left(\frac{1}{2} G^2(\xi) \delta_{u=\xi} \right) dt. \]

This computation is not rigorous and in fact wrong since \(u \) is not smooth enough.

An additional measure accounting for the shocks of \(u \) has to be added. We say that \(u \) is a kinetic solution if \(f(x, \xi, t) = \mathbf{1}_{u(x,t) > \xi} \) satisfies:

\[df + a(\xi) \cdot \nabla f dt = \delta_{u=\xi} \Phi(\xi) dW - \partial_\xi \left(\frac{1}{2} G^2(\xi) \delta_{u=\xi} \right) dt \]

\[+ \partial_\xi m dt \]

where \(m \) is a non-negative finite random measure on \(\mathbb{T}^N \times [0, T] \times \mathbb{R} \) satisfying convenient decay properties for large \(\xi \).

Given a kinetic solution, we recover \(u \) by:

\[u(x, t) = \int_{\mathbb{R}} \mathbf{1}_{u(x,t) > \xi} - \mathbf{1}_{0 > \xi} d\xi. \]
The viscous approximation:
\[
\begin{cases}
 du^n + \text{div}(A(u^n)) dt - \eta \Delta u^n dt &= \Phi(u^n) dW(t), \quad t > 0, \ x \in \mathbb{T}^N, \\
 u^n(x, 0) &= u_0(x), \quad x \in \mathbb{T}^N.
\end{cases}
\]
The viscous approximation:
\[
\begin{aligned}
&\{\quad du^n + \text{div}(A(u^n))dt - \eta \Delta u^n dt = \Phi(u^n)dW(t), \quad t > 0, x \in \mathbb{T}^N, \\
&\quad u^n(x, 0) = u_0(x), \quad x \in \mathbb{T}^N. \\
\end{aligned}
\]

By Itô Formula, we have, for \(\theta(\xi) = \int_{-\infty}^{\xi} \varphi(\zeta) d\zeta \),

\[
d(\mathbf{1}_{u^n > \xi}, \varphi) = d \int_{\mathbb{R}} \mathbf{1}_{u^n > \xi} \theta'(\xi) d\xi = d\theta(u^n)
\]

\[
= \theta'(u^n)(-a(u^n) \cdot \nabla u^n dt + \eta \Delta u^n dt + \Phi(u^n)dW) + \frac{1}{2} \theta''(u^n)G^2 dt.
\]
The viscous approximation:
\[
\begin{align*}
\{ & \quad du^n + \text{div}(A(u^n))dt - \eta \Delta u^n dt = \Phi(u^n)dW(t), \quad t > 0, x \in \mathbb{T}^N, \\
& \quad u^n(x, 0) = u_0(x), \quad x \in \mathbb{T}^N.
\end{align*}
\]
By Itô Formula, we have, for \(\theta(\xi) = \int_{-\infty}^{\xi} \varphi(\zeta)d\zeta \),
\[
d(\mathbf{1}_{u^n > \xi}, \varphi) = d \int_{\mathbb{R}} \mathbf{1}_{u^n > \xi} \theta'(\xi)d\xi = d\theta(u^n)
\]
\[
= \theta'(u^n)(-a(u^n) \cdot \nabla u^n dt + \eta \Delta u^n dt + \Phi(u^n)dW) + \frac{1}{2} \theta''(u^n)G^2_\eta dt.
\]
We rewrite the second term as
\[
\theta'(u^n)\Delta u^n = \Delta \theta(u^n)dt - |\nabla u^n|^2 \theta''(u^n)
\]
The viscous approximation:
\[
\begin{cases}
 du^n + \text{div}(A(u^n))dt - \eta \Delta u^n dt &= \Phi(u^n)dW(t), \quad t > 0, x \in \mathbb{T}^N, \\
 u^n(x, 0) &= u_0(x), \quad x \in \mathbb{T}^N.
\end{cases}
\]

By Itô Formula, we have, for \(\theta(\xi) = \int_{-\infty}^{\xi} \varphi(\zeta)d\zeta\),

\[
d(1_{u^n > \xi}, \varphi) = d\int_{\mathbb{R}} 1_{u^n > \xi} \theta'(\xi)d\xi = d\theta(u^n)
\]

\[
= \theta'(u^n)(-a(u^n) \cdot \nabla u^n dt + \eta \Delta u^n dt + \Phi(u^n)dW) + \frac{1}{2} \theta''(u^n)G^2_{u^n}dt.
\]

We rewrite the second term as

\[
\theta'(u^n)\Delta u^n = \Delta \theta(u^n) dt - |\nabla u^n|^2 \theta''(u^n)
\]

\[
= \Delta(1_{u^n > \xi}, \theta') dt + (\partial_{\xi}(|\nabla u^n|^2 \delta_{u^n = \xi}), \theta').
\]
The viscous kinetic formulation

\[
d1_{u^n > \xi} + a \cdot \nabla 1_{u^n > \xi} dt = \delta_{u^n = \xi} \Phi(\xi) dW - \partial_\xi \left(\frac{1}{2} G_\eta^2 \delta_{u^n = \xi} \right) dt \\
+ \eta \Delta 1_{u^n > \xi} dt + \partial_\xi m^n dt.
\]

with \(m^n = \eta |\nabla u^n|^2 \delta_{u^n = \xi} \).
The viscous kinetic formulation

\[
d1_{u^n > \xi} + a \cdot \nabla 1_{u^n > \xi} = \delta_{u^n = \xi} \Phi(\xi) dW - \partial_\xi \left(\frac{1}{2} G_{\eta}^2 \delta_{u^n = \xi} \right) dt \\
+ \eta \Delta 1_{u^n > \xi} dt + \partial_\xi m^n dt.
\]

with \(m^n = \eta |\nabla u^n|^2 \delta_{u^n = \xi} \).

Energy inequality:

\[
\mathbb{E} \left(\left\| u^n(t) \right\|_{L^p(\mathbb{T}^N)}^p \right) + \eta \mathbb{E} \int_0^T \int_{\mathbb{T}^N} |u^n(t, x)|^{p-2} |\nabla u^n(t)|^2 dx dt \leq C(p, u_0, T).
\]
The viscous kinetic formulation

\[
d1_{u^n > \xi} + a \cdot \nabla 1_{u^n > \xi} dt = \delta_{u^n = \xi} \Phi(\xi) dW - \partial_{\xi} \left(\frac{1}{2} G^2_{\eta} \delta_{u^n = \xi} \right) dt \\
+ \eta \Delta 1_{u^n > \xi} dt + \partial_{\xi} m^n dt.
\]

with \(m^n = \eta |\nabla u^n|^2 \delta_{u^n = \xi} \).

Energy inequality:

\[
\mathbb{E} \left(\|u^n(t)\|_{L^p(T^N)}^p \right) + \eta \mathbb{E} \int_0^T \int_{T^N} |u^n(t, x)|^{p-2} |\nabla u^n(t)|^2 dx dt \leq C(p, u_0, T).
\]

Estimate of \(m^n \): \(\mathbb{E} \int_{T^N \times [0, T] \times \mathbb{R}} |\xi|^{p-2} dm^n(x, t, \xi) \leq C_p. \)
The viscous kinetic formulation

\[d1_{\eta > \xi} + a \cdot \nabla 1_{\eta > \xi} dt = \delta_{\eta = \xi} \Phi(\xi) dW - \partial_\xi \left(\frac{1}{2} G_\eta^2 \delta_{\eta = \xi} \right) dt + \eta \Delta 1_{\eta > \xi} dt + \partial_\xi m^\eta dt. \]

with \(m^\eta = \eta |\nabla u^\eta|^2 \delta_{\eta = \xi}. \)

Energy inequality:

\[
\mathbb{E} \left(\| u^\eta(t) \|_{L_p(T^N)}^p \right) + \eta \mathbb{E} \int_0^T \int_{T^N} |u^\eta(t, x)|^{p-2} |\nabla u^\eta(t)|^2 dx dt \leq C(p, u_0, T).
\]

Estimate of \(m^\eta: \) \(\mathbb{E} \int_{T^N \times [0, T] \times \mathbb{R}} |\xi|^{p-2} dm^\eta(x, t, \xi) \leq C_p. \)

We also have the improved estimate, for \(p \geq 0, \)

\[
\mathbb{E} \left| \int_{T^N \times [0, T] \times \mathbb{R}} |\xi|^{p-2} dm^\eta(x, t, \xi) \right|^2 \leq C_p.
\]
The viscous kinetic formulation

\[d1_{u^n > \xi} + a \cdot \nabla 1_{u^n > \xi} dt \]

\[= \delta_{u^n = \xi} \Phi(\xi) dW - \partial_\xi \left(\frac{1}{2} G_{\eta}^2 \delta_{u^n = \xi} \right) dt \]

\[+ \eta \Delta 1_{u^n > \xi} dt + \partial_\xi m^\eta dt. \]

with \(m^\eta = \eta |\nabla u^\eta|^2 \delta_{u^n = \xi} \).

Energy inequality:

\[\mathbb{E} \left(\| u^\eta(t) \|_{L^p_{\mathbb{T}^N}}^p \right) + \eta \mathbb{E} \int_0^T \int_{\mathbb{T}^N} |u^\eta(t, x)|^{p-2} |\nabla u^\eta(t)|^2 dxdt \leq C(p, u_0, T). \]

Estimate of \(m^\eta \): \(\mathbb{E} \int_{\mathbb{T}^N \times [0, T] \times \mathbb{R}} |\xi|^{p-2} dm^\eta(x, t, \xi) \leq C_p. \)

We also have the improved estimate, for \(p \geq 0 \),

\[\mathbb{E} \left[\int_{\mathbb{T}^N \times [0, T] \times \mathbb{R}} |\xi|^{p-2} dm^\eta(x, t, \xi) \right]^2 \leq C_p. \]

Estimate on \(\nu^\eta = \delta_{u^n = \xi} \): \(\mathbb{E} \int_{\mathbb{T}^N} \int_{\mathbb{R}} |\xi|^p d\nu^\eta_{x, t}(\xi) dx \leq C_p, t \in (0, T). \)
\[\mathbb{E} \left| \int_{\mathbb{T}^N \times [0, T] \times \mathbb{R}} |\xi|^{p-2} dm^n(x, t, \xi) \right|^2 \leq C_p, \mathbb{E} \int_{\mathbb{T}^N} \int_{\mathbb{R}} |\xi|^p d\nu^n_{x,t}(\xi) dx \leq C_p \]

For a subsequence \((\eta_n) \downarrow 0\)

1. \(\nu^{\eta_n} \rightharpoonup \nu\) in the sense of Young measures indexed by
\(\Omega \times \mathbb{T}^N \times [0, T]\) and \(f^{\eta_n} = 1_{u^{\eta_n} > \xi} \rightharpoonup f\) in
\(L^\infty(\Omega \times \mathbb{T}^N \times (0, T) \times \mathbb{R}) \rightharpoonup \nu_{x,t} = -\partial_x f\)

2. \(m^{\eta_n} \rightharpoonup m\) in \(L^2(\Omega; \mathcal{M}_b)\)-weak star, where \(\mathcal{M}_b\) denote the
space of bounded Borel measures over \(\mathbb{T}^N \times [0, T] \times \mathbb{R}\)

\[df + a \cdot \nabla f dt = \nu \Phi(\xi) dW - \frac{1}{2} \partial_\xi (G^2_{\eta} \nu) dt + \partial_\xi m dt. \]

We say that \(f\) is a generalized kinetic solution.
For a subsequence \((\eta_n) \downarrow 0\)

1. \(\nu^n \eta_n \rightarrow \nu\) in the sense of Young measures indexed by \(\Omega \times \mathbb{T}^N \times [0, T]\) and \(f^{n} = 1_{u^n > \xi} \rightarrow f\) in \(L^\infty(\Omega \times \mathbb{T}^N \times (0, T) \times \mathbb{R}) - weak - \ast\). Moreover \(\nu_{x,t} = -\partial_\xi f\)

2. \(m^n \eta_n \rightharpoonup m\) in \(L^2(\Omega; \mathcal{M}_b)\)-weak star, where \(\mathcal{M}_b\) denote the space of bounded Borel measures over \(\mathbb{T}^N \times [0, T] \times \mathbb{R}\).

\[\begin{align*}
 df + a \cdot \nabla fd\tau = \nu \Phi(\xi) dW - \frac{1}{2} \partial_\xi (G^2 \nu) dt + \partial_\xi m dt.
\end{align*}\]

We say that \(f\) is a generalized kinetic solution.

We only have \(f \in [0, 1]\) and \(\nu_{x,t}\) is a probability measure. To get a kinetic solution, we need \(f \in \{0, 1\}\) then necessarily \(f = 1_{u > \xi}\) and \(\nu_{x,t} = \delta_{u=\xi}\).
Left and right limits of generalized solution

Proposition Let f be a generalized solution with initial datum f_0. Then f admits almost surely left and right limits at all point $t_* \in [0, T]$. For all $t_* \in [0, T]$ there exists some kinetic functions $f^*;\pm$ on $\Omega \times \mathbb{T}^N \times \mathbb{R}$ such that \mathbb{P}-a.s.

$$\langle f(t_* - \varepsilon), \varphi \rangle \to \langle f^*, - \rangle, \varphi \rangle$$

and

$$\langle f(t_* + \varepsilon), \varphi \rangle \to \langle f^*, + \rangle, \varphi \rangle$$

as $\varepsilon \to 0$ for all $\varphi \in C^1_c(\mathbb{T}^N \times \mathbb{R})$. Moreover, almost surely,

$$\langle f^*, + - f^*, - \rangle, \varphi \rangle = - \int_{\mathbb{T}^N \times [0, T] \times \mathbb{R}} \partial_\xi \varphi(x, \xi) \mathbf{1}_{\{t_*\}}(t) dm(x, t, \xi).$$

In particular, almost surely, the set of $t_* \in [0, T]$ such that $f^*, - \neq f^*, +$ is countable.
Doubling of variables

Proposition Let f_i, $i = 1, 2$, be generalized solution. Then, for $0 \leq t \leq T$, and non-negative test functions $\rho \in C^\infty(\mathbb{T}^N)$, $\psi \in C^\infty_c(\mathbb{R})$, we have

$$
\mathbb{E} \int \int_{\mathbb{R}^2 \times (\mathbb{T}^N)^2} \rho(x - y) \psi(\xi - \zeta) f_1^\pm(x, t, \xi)(1 - f_2^\pm(y, t, \zeta)) \, d\xi \, d\zeta \, dx \, dy
\leq \mathbb{E} \int \int_{\mathbb{R}^2 \times (\mathbb{T}^N)^2} \rho(x - y) \psi(\xi - \zeta) f_{1,0}(x, \xi)(1 - f_{2,0}(y, \zeta)) \, d\xi \, d\zeta \, dx \, dy
+ I_\rho + I_\psi,
$$

where

$$
I_\rho = \mathbb{E} \int_0^t \int_{(\mathbb{T}^N)^2} \int_{\mathbb{R}^2} f_1(x, s, \xi) \bar{f}_2(y, s, \zeta)(a(\xi) - a(\zeta)) \psi(\xi - \zeta) \, d\xi \, d\zeta
\cdot \nabla_x \rho(x - y) \, dx \, dy \, ds,
$$

$$
I_\psi = \frac{1}{2} \int_{(\mathbb{T}^N)^2} \rho(x - y) \mathbb{E} \int_0^t \int_{\mathbb{R}^2} \psi(\xi - \zeta)
\times \sum_{k \geq 1} |g_k(x, \xi) - g_k(y, \zeta)|^2 \, d\nu_{x, s}^1 \otimes \nu_{y, s}^2(\xi, \zeta) \, dx \, dy \, ds.
$$
Take $\rho = \rho_\delta, \psi = \psi_\varepsilon \rightsquigarrow$ when $\delta \to 0, \varepsilon \to 0$:

$$E \int_{T^N} \int_{\mathbb{R}} f_{1,0}^\pm (t)(1 - f_{2,0}^\pm(t)) dxd\xi \leq \int_{T^N} \int_{\mathbb{R}} f_{1,0}(1 - f_{2,0}) dxd\xi.$$
Take $\rho = \rho_\delta$, $\psi = \psi_\varepsilon \rightsquigarrow$ when $\delta \to 0$, $\varepsilon \to 0$:

$$\mathbb{E} \int_{\mathbb{T}^N} \int_{\mathbb{R}} f_1^\pm(t)(1 - f_2^\pm(t)) dx d\xi \leq \int_{\mathbb{T}^N} \int_{\mathbb{R}} f_{1,0}(1 - f_{2,0}) dx d\xi.$$

If $f_1 = f_2 = f$ is a generalized solution with initial datum $1_{u_0 > \xi}$, we deduce $f^\pm(1 - f^\pm) = 0$ a.e., i.e.
Take $\rho = \rho_\delta, \psi = \psi_\varepsilon \leadsto$ when $\delta \to 0, \varepsilon \to 0$:

$$\mathbb{E} \int_{T^N} \int_{\mathbb{R}} f_1^\pm(t)(1 - f_2^\pm(t))dxd\xi \leq \int_{T^N} \int_{\mathbb{R}} f_{1,0}(1 - f_{2,0})dxd\xi.$$

If $f_1 = f_2 = f$ is a generalized solution with initial datum $1_{u_0 > \xi}$, we deduce $f^\pm(1 - f^\pm) = 0$ a.e., i.e. $f^\pm \in \{0, 1\}$ a.e. $\leadsto f^\pm = 1_{u^\pm > \xi}$ is a kinetic solution.
Take \(\rho = \rho_\delta, \psi = \psi_\varepsilon \Rightarrow \) when \(\delta \to 0, \varepsilon \to 0: \)

\[
\mathbb{E} \int_{\mathbb{T}^N} \int_{\mathbb{R}} f_1^\pm(t)(1 - f_2^\pm(t))dx d\xi \leq \int_{\mathbb{T}^N} \int_{\mathbb{R}} f_{1,0}(1 - f_{2,0})dx d\xi.
\]

If \(f_1 = f_2 = f \) is a generalized solution with initial datum \(\mathbf{1}_{u_0 > \xi} \), we deduce \(f^\pm(1 - f^\pm) = 0 \) a.e., i.e. \(f^\pm \in \{0, 1\} \) a.e. \(\Rightarrow f^\pm = \mathbf{1}_{u^\pm > \xi} \) is a kinetic solution. Moreover, \(u \) is continuous in time and \(u = u^+ = u^- \).
Take \(\rho = \rho_\delta, \psi = \psi_\varepsilon \rightsquigarrow \) when \(\delta \to 0, \varepsilon \to 0 \):

\[
\mathbb{E} \int_{\mathbb{T}^N} \int_{\mathbb{R}} f_{1,0}^\pm(1 - f_2^\pm) \, dx \, d\xi \leq \int_{\mathbb{T}^N} \int_{\mathbb{R}} f_{1,0}(1 - f_{2,0}) \, dx \, d\xi.
\]

If \(f_1 = f_2 = f \) is a generalized solution with initial datum \(1_{u_0 > \xi} \), we deduce \(f^\pm(1 - f^\pm) = 0 \) a.e., i.e. \(f^\pm \in \{0, 1\} \) a.e.

\(\rightarrow f^\pm = 1_{u^\pm > \xi} \) is a kinetic solution. Moreover, \(u \) is continuous in time and \(u = u^+ = u^- \).

If \(u_1 \) and \(u_2 \) are two solutions, we deduce from the identity

\[
\int_{\mathbb{R}} 1_{u_1 > \xi}(1 - 1_{u_2 > \xi}) \, d\xi = (u_1 - u_2)^+
\]

the contraction property

\[
\mathbb{E} \left\| (u_1^\pm(t) - u_2^\pm(t))^+ \right\|_{L^1(\mathbb{T}^N)} \leq \mathbb{E} \left\| (u_{1,0} - u_{2,0})^+ \right\|_{L^1(\mathbb{T}^N)}.
\]

This implies the \(L^1 \)-contraction property, comparison and uniqueness of solutions.
Theorem: Let $u_0 \in L^\infty(\mathbb{T}^N)$. There exists a unique kinetic solution u with initial datum u_0. It is the strong limit of (u^η) as $\eta \to 0$: for every $T > 0$, for every $1 \leq p < +\infty$,

$$\lim_{\eta \to 0} \mathbb{E}\|u^\eta - u\|_{L^p(\mathbb{T}^N \times (0, T))} = 0.$$

Furthermore it is a continuous process with values in $L^p(\mathbb{T}^N)$.
Theorem: Let \(u_0 \in L^\infty(\mathbb{T}^N) \). There exists a unique kinetic solution \(u \) with initial datum \(u_0 \). It is the strong limit of \((u^\eta) \) as \(\eta \to 0 \): for every \(T > 0 \), for every \(1 \leq p < +\infty \),

\[
\lim_{\eta \to 0} \mathbb{E}\|u^\eta - u\|_{L^p(\mathbb{T}^N \times (0, T))} = 0.
\]

Furthermore it is a continuous process with values in \(L^p(\mathbb{T}^N) \).

Assumptions on the coefficient of the noise:

We assume that \(\Phi(u)e_k(x) = g_k(x, u), x \in \mathbb{T}^N \) and

- \(G^2(x, u) = \sum_{k \geq 1} |g_k(x, u)|^2 \leq D_0(1 + |u|^2) \)
- \(\sum_{k \geq 1} |g_k(x, u) - g_k(y, v)|^2 \leq D_1(|x - y|^2 + |u - v|h(|u - v|)), \)

where \(x, y \in \mathbb{T}^N, u, v \in \mathbb{R} \), and \(h \) is a continuous non-decreasing function on \(\mathbb{R}_+ \) with \(h(0) = 0 \).
Theorem: Let $u_0 \in L^\infty(\mathbb{T}^N)$. There exists a unique kinetic solution u with initial datum u_0. It is the strong limit of (u^η) as $\eta \to 0$: for every $T > 0$, for every $1 \leq p < +\infty$,

$$\lim_{\eta \to 0} \mathbb{E}\|u^\eta - u\|_{L^p(\mathbb{T}^N \times (0,T))} = 0.$$

Furthermore it is a continuous process with values in $L^p(\mathbb{T}^N)$.

Assumptions on the coefficient of the noise:

We assume that

$$\Phi(u)e_k(x) = g_k(x, u), \ x \in \mathbb{T}^N$$

and

- $G^2(x, u) = \sum_{k \geq 1} |g_k(x, u)|^2 \leq D_0(1 + |u|^2)$
- $\sum_{k \geq 1} |g_k(x, u) - g_k(y, v)|^2 \leq D_1(|x - y|^2 + |u - v|h(|u - v|))$,

where $x, y \in \mathbb{T}^N$, $u, v \in \mathbb{R}$, and h is a continuous non-decreasing function on \mathbb{R}_+ with $h(0) = 0$.

Remark: The result can be extended to initial data in $L^1(\mathbb{T}^N)$ and we obtain renormalized solutions.
Other works on scalar conservation laws:

- Kim and Vallet & Wittbold consider an additive noise. Setting \(v = u - \Phi W \), the equation transforms into

\[
\frac{dv}{dt} + \text{div}(\tilde{A}(v, t)) = 0,
\]

with \(\tilde{A}(v, t) = A(v + W(t)) \).

- Feng & Nualart consider general noises: existence and uniqueness is established only in space dimension 1. A notion of strong entropy solution is introduced to enable the generalization of the doubling variable technique of Kruzkov.

- Bauzet, Vallet and Wittbold have recently extended this to any dimension.

- Hofmanova has treated the case of a degenerate parabolic equation.
Other works on scalar conservation laws:

- Kim and Vallet & Wittbold consider an additive noise. Setting \(v = u - \Phi W \), the equation transforms into

\[
\frac{dv}{dt} + \text{div}(\tilde{A}(v, t)) = 0,
\]

with \(\tilde{A}(v, t) = A(v + W(t)) \).

- Feng & Nualart consider general noises: existence and uniqueness is established only in space dimension 1. A notion of strong entropy solution is introduced to enable the generalization of the doubling variable technique of Kruzkov.
Other works on scalar conservation laws:

- Kim and Vallet & Wittbold consider an additive noise. Setting $v = u - \Phi W$, the equation transforms into
 \[
 \frac{dv}{dt} + \text{div}(\tilde{A}(v, t)) = 0,
 \]
 with $\tilde{A}(v, t) = A(v + W(t))$.

- Feng & Nualart consider general noises: existence and uniqueness is established only in space dimension 1. A notion of strong entropy solution is introduced to enable the generalization of the doubling variable technique of Kruzkov.

- Bauzet, Vallet and Wittbold have recently extended this to any dimension.

- Hofmanova has treated the case of a degenerate parabolic equation.
Other works on scalar conservation laws:

▶ Kim and Vallet & Wittbold consider an additive noise.
 setting \(v = u - \Phi W \), the equation transforms into
 \[
 \frac{dv}{dt} + \text{div}(\tilde{A}(v, t)) = 0,
 \]
 with \(\tilde{A}(v, t) = A(v + W(t)) \).

▶ Feng & Nualart consider general noises:
 existence and uniqueness is established only in space dimension 1. A notion of strong entropy solution is introduced to enable the generalization of the doubling variable technique of Kruzkov.

▶ Bauzet, Vallet and Wittbold have recently extended this to any dimension.

▶ Hofmanova has treated the case of a degenerate parabolic equation.
Invariant measures

- Is it possible to use the dissipation due to the shocks to prove existence of an invariant measure?
- This is done in the work of E, Khanin, Mazel and Sinai thanks to the Lax-Oleinik formula but it is not available in general ...
- The kinetic formulation seems appropriate since we keep track of the dissipation thanks to kinetic measure m.

\[
\begin{align*}
du + \text{div} A(u) dt &= \Phi(u) dW \\
\int_{\mathbb{T}^N} u(x,t) dx &= \int_{\mathbb{T}^N} \phi(u) dW dx.
\end{align*}
\]

→ We need the right hand side to vanish. No realistic noise depending on u satisfies this ... (except for noise in divergence form which are not covered by our theory but by Lions, Perthame, Souganidis).

→ We restrict to additive noise with zero spatial average.
Invariant measures

- Is it possible to use the dissipation due to the shocks to prove existence of an invariant measure?
- This is done in the work of E, Khanin, Mazel and Sinai thanks to the Lax-Oleinik formula but it is not available in general ...
- The kinetic formulation seems appropriate since we keep track of the dissipation thanks to kinetic measure m.
- We cannot consider any type of noise:

$$
du + \text{div}A(u)dt = \Phi(u)dW
$$

Integrate in x: $d\int_{T^N} u(x, t)dx = \int_{T^N} \phi(u)dWdx$.
Invariant measures

- Is it possible to use the dissipation due to the shocks to prove existence of an invariant measure?
- This is done in the work of E, Khanin, Mazel and Sinai thanks to the Lax-Oleinik formula but it is not available in general ...
- The kinetic formulation seems appropriate since we keep track of the dissipation thanks to kinetic measure m.
- We cannot consider any type of noise:

$$du + \text{div}A(u)dt = \Phi(u)dW$$

Integrate in x: $d\int_{TN} u(x, t)dx = \int_{TN} \phi(u)dWdx$.

→ We need the right hand side to vanish. No realistic noise depending on u satisfies this ... (except for noise in divergence form which are not covered by our theory but by Lions, Perthame, Souganidis).
→ We restrict to additive noise with zero spatial average.
Dissipation through averaging Lemma:

We have constructed a kinetic solution:

\[
df + a(\xi) \cdot \nabla f dt = \delta_{u=\xi} \Phi dW - \partial_{\xi} \left(\frac{1}{2} G^2(\xi) \delta_{u=\xi} \right) dt
\]

\[+ \partial_{\xi} m dt\]

If the system is sufficiently nonlinear, we expect some smoothing, which is related to dissipation, for \(u = \int_{\mathbb{R}} fd\xi \).
Dissipation through averaging Lemma:

We have constructed a kinetic solution:

\[df + a(\xi) \cdot \nabla f dt = \delta_{u=\xi} \Phi d\mathcal{W} - \partial_{\xi}(\frac{1}{2}G^2(\xi)\delta_{u=\xi}) dt \]

\[+ \partial_{\xi} m dt \]

If the system is sufficiently nonlinear, we expect some smoothing, which is related to dissipation, for \(u = \int_{\mathbb{R}} f d\xi \). Classical condition:

\[\nu(\varepsilon) = \sup_{\alpha \in \mathbb{R}, \beta \in S^{N-1}} |\{ \xi \in \mathbb{R}; |\alpha + \beta \cdot a(\xi)| < \varepsilon \}| \rightarrow 0 \]
Dissipation through averaging Lemma:

We have constructed a kinetic solution:

\[
df + a(\xi) \cdot \nabla fdt = \delta_{u=\xi} \Phi dW - \partial_\xi \left(\frac{1}{2} G^2(\xi) \delta_{u=\xi} \right) dt
\]

\[+ \partial_\xi m \, dt\]

If the system is sufficiently nonlinear, we expect some smoothing, which is related to dissipation, for \(u = \int_\mathbb{R} f d\xi \). Classical condition:

\[
\iota(\varepsilon) = \sup_{\alpha \in \mathbb{R}, \beta \in S^{N-1}} \left| \{ \xi \in \mathbb{R}; |\alpha + \beta \cdot a(\xi)| < \varepsilon \} \right| \to 0
\]

Introduce: \(B = \gamma (-\Delta)^\alpha + \delta I \) and rewrite the equation:

\[
df + a(\xi) \cdot \nabla fdt + Bf = Bf + \delta_{u=\xi} \Phi(\xi) dW - \partial_\xi \left(\frac{1}{2} G^2(\xi) \delta_{u=\xi} \right) dt
\]

\[+ \partial_\xi m \, dt\]

(Bouchut, Desvillettes)
Dissipation through averaging Lemma:

\[df + a(\xi) \cdot \nabla f dt + Bf = Bf + \delta_{u=\xi} \Phi(\xi) dW - \partial_\xi (\frac{1}{2} G^2(\xi) \delta_{u=\xi}) dt \]

\[+ \partial_\xi m dt. \]

Let \(S_{\gamma,\delta}(t) \) be the semigroup associated to \(B + a(\xi) \cdot \nabla \):

\[f(t) = S_{\gamma,\delta}(t)f_0 + \int_0^t S_{\gamma,\delta}(t-s)Bfds + \int_0^t S_{\gamma,\delta} \delta_{u=\xi} \Phi(\xi) dW \]

\[+ \int_0^t S_{\gamma,\delta} \partial_\xi (m - \frac{1}{2} G^2(\xi) \delta_{u=\xi})) ds. \]
Dissipation through averaging Lemma:

\[df + a(\xi) \cdot \nabla f dt + Bf = Bf + \delta_{u=\xi} \Phi(\xi) dW - \partial_\xi \left(\frac{1}{2} G^2(\xi) \delta_{u=\xi} \right) dt \]

\[+ \partial_\xi m dt. \]

Let \(S_{\gamma,\delta}(t) \) be the semigroup associated to \(B + a(\xi) \cdot \nabla \):

\[f(t) = S_{\gamma,\delta}(t)f_0 + \int_0^t S_{\gamma,\delta}(t-s)Bfds + \int_0^t S_{\gamma,\delta}\delta_{u=\xi} \Phi(\xi) dW \]

\[+ \int_0^t S_{\gamma,\delta} \partial_\xi (m - \frac{1}{2} G^2(\xi) \delta_{u=\xi})) ds. \]

Integrate with respect to \(\xi \):

\[u(t) = \int_\xi S_{\gamma,\delta}(t)f_0 d\xi + \int_\xi \int_0^t S_{\gamma,\delta}(t-s)Bfdsd\xi \]

\[+ \int_\xi \int_0^t S_{\gamma,\delta}(t-s)\delta_{u=\xi} \Phi(\xi) dWd\xi \]

\[+ \int_\xi \int_0^t S_{\gamma,\delta} \partial_\xi (m - \frac{1}{2} G^2(\xi) \delta_{u=\xi})) dsd\xi. \]
If \(\eta(\varepsilon) := \int_0^\infty e^{-t} \nu(t\varepsilon) dt \leq c\varepsilon^b, \)
If $\eta(\varepsilon) := \int_0^\infty e^{-t} \nu(t\varepsilon) dt \leq c\varepsilon^b$, then

$$\int_0^T \left\| \int_\xi S_{\gamma,\delta}(t)f_0 d\xi \right\|^2_{H^{\alpha(1-b)+\frac{b}{2}}} dt \leq c_1 \pi \gamma^{b-1} \| u_0 \|_{L^1_x}$$
If $\eta(\varepsilon) := \int_0^\infty e^{-t \nu(t\varepsilon)} dt \leq c\varepsilon^b$, then

$$
\int_0^T \left\| \int_\xi S_{\gamma,\delta}(t) f_0 d\xi \right\|^2_{H^{\alpha(1-b) + b/2}} dt \leq c_1 \pi \gamma^{b-1} \| u_0 \|_{L_x^1}
$$

$$
\int_0^T \left\| \int_\xi \int_0^t S_{\gamma,\delta}(t-s) Bf ds d\xi \right\|^2_{H^{(1/2-\alpha)b}} dt \leq c_2 \gamma^{(2\alpha-1)b} \int_0^T \| u(t) \|_{L_x^1} dt.
$$
If $\eta(\varepsilon) := \int_0^\infty e^{-t} \nu(t\varepsilon) dt \leq c\varepsilon^b$, then

\[
\int_0^T \left\| \int_\xi \int_0^T S_{\gamma,\delta}(t) f_0 d\xi \right\|^2 dt \leq c_1 \pi \gamma^{b-1} \| u_0 \|_{L^1_x}
\]

\[
\int_0^T \left\| \int_\xi \int_0^t S_{\gamma,\delta}(t - s) Bfdsd\xi \right\|^2 dt \leq c_2 \gamma^{(2\alpha-1)b} \int_0^T \| u(t) \|_{L^1_x} dt.
\]

\[
E \left(\int_0^T \left\| \int_\xi \int_0^t S_{\gamma,\delta}(t - s) \delta_{u=\xi} \Phi(\xi) dWd\xi \right\|^2 dt \right) \leq c_3 \gamma^{-\frac{\lambda}{\alpha}} \delta^{\frac{\lambda}{\alpha}-1} D_0 T.
\]
If \(\eta(\varepsilon) := \int_0^\infty e^{-t} \nu(t\varepsilon) dt \leq c \varepsilon^b \), then

\[
\int_0^T \left\| \int_\xi S_{\gamma,\delta}(t)f_0 d\xi \right\|^2 dt \leq c_1 \pi \gamma^{b-1} \| u_0 \|_{L^1_x}
\]

\[
\int_0^T \left\| \int_\xi \int_0^t S_{\gamma,\delta}(t-s)Bf dsd\xi \right\|^2 dt \leq c_2 \gamma^{(2\alpha-1)b} \int_0^T \| u(t) \|_{L^1_x} dt.
\]

\[
\mathbb{E} \left(\int_0^T \left\| \int_\xi \int_0^t S_{\gamma,\delta}(t-s)\delta_{u=\xi} \Phi(\xi) dWd\xi \right\|^2 dt \right) \leq c_3 \gamma^{-\frac{\lambda}{\alpha}} \delta^{\frac{\lambda}{\alpha}-1} D_0 T
\]

\[
\mathbb{E} \int_0^T \left\| \int_\xi \int_0^t S_{\gamma,\delta} \partial_{\xi}(m - \frac{1}{2} G^2(\xi) \delta_{u=\xi})) dsd\xi \right\|_{W^{\mu,p}(T^N)} dt \\
\leq c_4(\gamma, \delta) \left(D_0 \mathbb{E} \int_0^T \| a'(u) \|_{L^1(T^N)} dt + \mathbb{E} \int_{T^N} \Theta(u_0) dx + D_0 \right)
\]

for \(\lambda < \alpha, \mu \) depending on \(N, p, \alpha, D_0 \) the intensity of the noise and \(\Theta(u) = \int_0^u \int_0^v |a'(\xi)| d\xi dv \).
Assume

\[|a'(\xi)| \leq C(|\xi| + 1) \]

then

\[
\frac{1}{T} \mathbb{E} \int_0^T \|u\|_{W^{\lambda, p}(\mathbb{T})} \leq C(N, \alpha, \lambda, p, \gamma, \delta, D_0)(\frac{1}{T} \mathbb{E}\|u_0\|_{L^3(\mathbb{T})}^3 + 1)
\]

with \(\lambda \) and \(p \) depending on the dimension.
Assume
\[|a'(\xi)| \leq C(|\xi| + 1) \]
then
\[
\frac{1}{T} \mathbb{E} \int_0^T \|u\|_{W^{\lambda,p}(\mathbb{T}^1)} \leq C(N, \alpha, \lambda, p, \gamma, \delta, D_0)(\frac{1}{T} \mathbb{E} \|u_0\|_{L^3(\mathbb{T}^1)}^3 + 1)
\]
with \(\lambda \) and \(p \) depending on the dimension.
Since we can extend the existence and uniqueness of solutions for initial data in \(L^p(\mathbb{T}^N) \), we easily obtain the existence of an invariant measure.
Assume
\[|a'(\xi)| \leq C(|\xi| + 1) \]
then
\[\frac{1}{T} \mathbb{E} \int_{0}^{T} \|u\|_{W^{\lambda, p}(\mathbb{T}^1)} \leq C(N, \alpha, \lambda, p, \gamma, \delta, D_0)(\frac{1}{T} \mathbb{E}\|u_0\|^{3}_{L^3(\mathbb{T}^1)} + 1) \]

with \(\lambda \) and \(p \) depending on the dimension. Since we can extend the existence and uniqueness of solutions for initial data in \(L^p(\mathbb{T}^N) \), we easily obtain the existence of an invariant measure. It is supported in \(L^p(\mathbb{T}^N) \) for \(p < 2 + \frac{b}{2} \) if \(N = 1 \) and \(p < \frac{N}{N-1} \). otherwise.
Assume

$$|a'(\xi)| \leq C(|\xi| + 1)$$

then

$$\frac{1}{T} \mathbb{E} \int_0^T \|u\|_{W^\lambda,p(\mathbb{T}^1)} \leq C(N, \alpha, \lambda, p, \gamma, \delta, D_0)(\frac{1}{T} \mathbb{E}\|u_0\|_{L^3(\mathbb{T}^1)}^3 + 1)$$

with λ and p depending on the dimension.

Since we can extend the existence and uniqueness of solutions for initial data in $L^p(\mathbb{T}^N)$, we easily obtain the existence of an invariant measure.

It is supported in $L^p(\mathbb{T}^N)$ for $p < 2 + \frac{b}{2}$ if $N = 1$ and $p < \frac{N}{N-1}$, otherwise.

Note that for a stationary solution:

$$\mathbb{E} \int_{\mathbb{T}^N \times [0, T] \times \mathbb{R}} dm(x, t, \xi) = T D_0.$$
Uniqueness

We generalize the strategy used in Dirr and Souganidis:

1. The deterministic equation has an attractor which reduces to a single trajectory.
2. When the noise is small, the stochastic solution is close to the deterministic one, depending on the size of the initial data. \(\sim \) we need to assume \(a' \) is bounded.
3. The noise is small on long time intervals with positive probability.
4. The solution enter in a fixed ball in a finite time.
5. With an additive noise, the distance between two solutions cannot increase.
Small noise yields small solutions

For any $\varepsilon > 0$, there exists $T > 0$ and $\delta > 0$ such that:

$$\frac{1}{T} \int_0^T \|u(s)\|_{L^1(\mathbb{T}^N)} ds \leq \frac{\varepsilon}{2}$$

if

$$\|u(0)\|_{L^1(\mathbb{T}^N)} \leq 2\kappa_0 \text{ and } \sup_{t \in [0, T]} |W|_{W^{1,\infty}} \leq \delta.$$
Small noise yields small solutions

For any $\varepsilon > 0$, there exists $T > 0$ and $\delta > 0$ such that:

$$\frac{1}{T} \int_0^T \| u(s) \|_{L^1(\mathbb{T}^N)} ds \leq \frac{\varepsilon}{2}$$

if

$$\| u(0) \|_{L^1(\mathbb{T}^N)} \leq 2\kappa_0 \text{ and } \sup_{t \in [0, T]} | W |_{W^{1, \infty}} \leq \delta.$$

→ Use the averaging technique for $v = u - W$:

$$\frac{d}{dt} v + \text{div} A (v + W) = 0.$$

Set $g(t, x, \xi) = 1_{v(t, x) > \xi}$:

$$\frac{d}{dt} g + a(\xi) \cdot \nabla g + B g = B g - a'(\xi + W) \cdot \nabla W \delta_{u=\xi}$$

$$+ (a(\xi) - a(\xi + W)) \cdot \nabla g + \partial_{\xi} m.$$
Small noise yields small solutions

\[v(t) = \int_{\xi} S_{\gamma, \delta}(t) f_0 d\xi + \int_{\xi} \int_0^t S_{\gamma, \delta}(t - s) B g d s d\xi \]
\[+ \int_{\xi} \int_0^t S_{\gamma, \delta}(t - s) a'(\xi + W) \cdot \nabla W(s) \delta_{u=\xi} d\xi \]
\[+ \int_{\xi} \int_0^t S_{\gamma, \delta}(t - s) (a(\xi) - a(\xi + W)) \cdot \nabla g d\xi \]
\[+ \int_{\xi} \int_0^t S_{\gamma, \delta}(t - s) \partial_{\xi} m d s d\xi. \]

For any \(\varepsilon > 0 \), there exists \(T > 0 \) and \(\delta > 0 \) such that:
\[\frac{1}{T} \int_0^T \| u(s) \|_{L^1(\mathbb{T}^1)} ds \leq \frac{\varepsilon}{2} \]
if
\[\| u(0) \|_{L^1(\mathbb{T}^1)} \leq 2\kappa_0, \quad \sup_{t \in [0, T]} |W|_{W^{1, \infty}} \leq \delta. \]
→ We need to assume \(a' \) bounded.
The solution enters in a fixed ball in a finite time

\[
\frac{1}{T} \mathbb{E} \int_0^T \|u\|_{L^1(\mathbb{T}^N)} dt \leq \kappa_0 \left(\frac{1}{T} \mathbb{E} \|u_0\|_{L^3(\mathbb{T}^N)}^2 + 1 \right)
\]

\[
\mathbb{E} \left(\int_t^{t+T} \|u(s)\|_{L^1(\mathbb{T}^N)} ds \bigg| \mathcal{F}_t \right) \leq \kappa_0 \left(\|u(t)\|_{L^3(\mathbb{T}^N)}^3 + T \right)
\]

\[
\mathbb{E} \left(\int_t^{t+T} \|u(s)\|_{L^1(\mathbb{T}^N)} ds \bigg| \mathcal{F}_t \right) \leq \kappa_0 \left(\|u_0\|_{L^3(\mathbb{T}^N)}^3 + 3D_0 \int_0^t \|u(s)\|_{L^1(\mathbb{T}^N)} ds + 3 \int_0^t ((u(s))^2, \Phi dW(s))_{L^2(\mathbb{T}^N)} + T \right)
\]
The solution enters in a fixed ball in a finite time

Define recursively the sequences of times \((t_k)_{k \geq 0}\) and \((t_k)_{k \geq 0}\):

\[t_0 = 0, \]

\[t_{k+1} = t_k + r_k, \]

where \((r_k)_{k \geq 0}\) will be chosen below. And the events:

\[A_k = \left\{ \inf_{s \in [t_{\ell}, t_{\ell+1}]} \| u(s) \|_{L^1(\mathbb{T}^N)} \geq 2\kappa_0, \; \ell = 0, \ldots, k \right\}. \]

Then, for all \(k \geq 0\),

\[
\mathbb{P} \left(\inf_{s \in [t_k, t_{k+1}]} \| u(s) \|_{L^1(\mathbb{T}^N)} \geq 2\kappa_0 \Big| \mathcal{F}_{t_k} \right) \\
\leq \mathbb{P} \left(\frac{1}{r_k} \int_{t_k}^{t_k + r_k} \| u(s) \|_{L^1(\mathbb{T}^N)} ds \geq 2\kappa_0 \Big| \mathcal{F}_{t_k} \right) \\
\leq \frac{1}{2r_k} (\| u_0 \|_{L^3(\mathbb{T}^N)}^3 + 3D_0 \int_0^{t_k} \| u(s) \|_{L^1(\mathbb{T}^N)} + 1) + \frac{1}{2} \\
+ \frac{3}{2r_k} \int_0^{t_k} ((u(s))^2, \Phi dW(s))_{L^2(\mathbb{T}^N)}.
\]
The solution enters in a fixed ball in a finite time

Then, for all \(k \geq 0 \),

\[
\mathbb{P} \left(\inf_{s \in [t_k, t_{k+1}]} \| u(s) \|_{L^1(\mathbb{T}^N)} \geq 2\kappa_0 \bigg| \mathcal{F}_{t_k} \right) \\
\leq \mathbb{P} \left(\frac{1}{r_k} \int_{t_k}^{t_k+r_k} \| u(s) \|_{L^1(\mathbb{T}^N)} ds \geq 2\kappa_0 \bigg| \mathcal{F}_{t_k} \right) \\
\leq \frac{1}{2r_k} \left(\| u_0 \|_{L^3(\mathbb{T}^N)}^3 + 3D_0 \int_0^{t_k} \| u(s) \|_{L^1(\mathbb{T}^N)} + 1 \right) + \frac{1}{2} \\
+ \frac{3}{2r_k} \int_0^{t_k} ((u(s))^2, \Phi dW(s))_{L^2(\mathbb{T}^N)}.
\]

Multiply this inequality by \(1_{A_k} \) and take the expectation:

\[
\mathbb{P} (A_{k+1}) \leq \frac{5}{8} \mathbb{P} (A_k) + \frac{3D_0}{2r_k} \mathbb{E} \left(\int_0^{t_k} \| u(s) \|_{L^1(\mathbb{T}^N)} ds 1_{A_k} \right) \\
+ \frac{3}{2r_k} \mathbb{E} \left(\int_0^{t_k} ((u(s))^2, \Phi dW(s))_{L^2(\mathbb{T}^N)} 1_{A_k} \right).
\]
The solution enter in a fixed ball in a finite time

For r_k large enough:

$$
\mathbb{P}(A_{k+1}) \leq \frac{3}{4} \mathbb{P}(A_k) + \left(\frac{3}{4}\right)^k.
$$

We then define the stopping time

$$
\tau^{u_0} = \inf\{t \geq 0 \mid \|u(t)\|_{L^1(T^1)} \leq 4\kappa_0\}.
$$

and by Borel-Cantelli $\tau^{u_0} < \infty$ almost surely.

It follows that for $T > 0$ the following stopping times are also almost surely finite:

$$
\tau_\ell = \inf\{t \geq \tau_{\ell-1} + T \mid \|u(t)\|_{L^1(T^1)} \leq 4\kappa_0\}, \quad \tau_0 = 0.
$$
Conclusion

Take two solutions u^1, u^2 starting from u_0^1, u_0^2:

$$P\left(\frac{1}{T} \int_{T+\tau}^{T+\tau} \| u^1(s) - u^2(s) \|_{L^1(T^1)} ds \geq \varepsilon \right) \leq (1 - \eta).$$

By Borel-Cantelli and the fact that $\| u^1(t) - u^2(t) \|_{L^1(T^1)}$ decreases:

$$P\left(\lim_{t \to \infty} \| u^1(t) - u^2(t) \|_{L^1(T^1)} \geq \varepsilon \right) = 0.$$
Thanks for your attention.