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We study the first-order scalar conservation law with stochastic
forcing

du + div(A(u))dt = d(u)dW(t), te (0, T).

We consider a periodic space variable x: x € TV.
The flux function A € C2(R; RN), A and its derivatives have at
most polynomial growth.
The noise is constructed thanks to a cylindrical Wiener process:
W=>" Bre

k>1
e ) are independent brownian processes
e (ex)k>1 is a complete orthonormal system in a Hilbert space
L2(TN).
o ®(u) € L(LA(TN)), d(u)dW = &(u)erdpk.

keN
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» E, Khanin, Mazel & Sinai have studied the stochastic Burgers
equation with additive noise: A(u) = u?, ®(u)ex = ¢i, d = 1.



Pioneering works:

» E, Khanin, Mazel & Sinai have studied the stochastic Burgers
equation with additive noise: A(u) = u?, ®(u)ex = ¢i, d = 1.
— They use a Lax-Oleinik formula to construct solutions
and show that there exists a unique invariant measure:

£(0)
u(t,x) = Oaxg(lr)nc {Ao,t(§)+/0 uo(x)dx}

with
Ao.(€ /»s ds+2/¢k ))dBi(s)
A minimizer ¢ satisfies:

E(s) = v(s), dv(s) = ¢x(&(s))dBk(s).

and u(t,x) = £(t).
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Pioneering works:

» E, Khanin, Mazel & Sinai have studied the stochastic Burgers
equation
— They use a Lax-Oleinik formula to construct solutions
and show that there exists a unique invariant measure.

» Generalization by Iturriaga and Khanin.

» The ideas have been used by Dirr and Souganidis for general
Hamilton-Jacobi equations under some assumptions on the
Hamiltonian. The essential ingredients are:

1. The deterministic equation has an attractor which reduces to a
single trajectory.

2. When the noise is small, the stochastic solution is close to the
deterministic one, uniformly with respect to the initial data.

3. The noise is small on long time intervals with positive
probability.

4. With an additive noise, the distance between two solutions
cannot increase
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More

recently:

Saussereau and Stoica have generalized E, Khanin, Mazel &
Sinai's ideas to the case of a fractional noise.

Bakhtin, Cator and Khanin have considered the Burgers
equation on the real line with Poisson noise.

Boritchev has obtained very fine estimates on the moments of
solutions of the visous Burgers equation in terms of the
viscosity.
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Kinetic formulation

In this work we use the kinetic formulation introduced by Lions,
Perthame & Tadmor to prove existence and uniqueness of entropy
solutions in any space dimension.
— introduce a new variable £ and consider the equation satisfied
by

f(t7 X, 5) = 1u(t,x)>f

Let ¢ € C*°(R) with compact support and set

€
€)= | #(Q)dC, we have

(Lioew) = / 120/(€)d€ = / (€)de = 0(u)

(Ou=e¢,0) = 0(u)



By 1t6 Formula, we deduce
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By 1t6 Formula, we deduce
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By 1t6 Formula, we deduce
d(1ys¢, ) = db(u)

0/ (u)(—a(u) - Vudt + d(u)dW) + %9"(U)G2(u)dt

o #(u)a(v) -Vu =div </u a(§)9’(§)d§> = dive(aly>¢, )
- (a ’ v)<]-u>§7 90)

o 0"()G*(u) = (G(§)du=c, ¢'(£)) = —(0(G*(§)du=¢), ¥(£))

o (u)P(u)dW = (6u=¢P()dW,»(§))
d(Luse, ) = —(a- V1gse, 0)dt — 3(0e(G?0u—¢), ) dt + (Su—c PdW, ©)
We obtain the kinetic formulation:

1
dl,se +a(€) - V1sedt = 5, P(€)dW — 85(§G2(§)6U:§)dt.
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The kinetic formulation:

dlyse + a(€) - V1sedt = 6,_¢P(E)dW — 9¢(3G?(£)d,—¢)dt.
This computation is not rigourous and in fact wrong since v is not
smooth enough.

An additional measure accounting for the schocks of u has to be
added. We say that v is a kinetic solution if (x,&,t) = 1, r)>e
satisfies:

df +a(&) - Vidt = 0, ®(E)dW — 9e(3G2(£)Su—e)dt
+85m dt
where m is a non negative finite random measure on TV x[0, T] xR

satisfying convenient decay properties for large &.
Given a kinetic solution, we recover u by :

U(Xv t) - /Rlu(x,t)>5 - 10>§d§'
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The viscous approximation:
du + div(A(u"))dt —nAudt = d(u")dW(t), t>0,xec TN,
u(x,0) = uwp(x), xeTN

By It6 Formula, we have, for 0(¢) = ffoo o(¢)dc¢,
Ao ) = d [ Lunset/ () = do(u)
R
=0'(u")(—a(u") - Vu'dt + nAu"dt + &(u")dW) + %9”(u’7)G%dt.

We rewrite the second term as

O'(u")Au" = AG(u")dt — |Vu"[20" (u")

= A(]-u77>'£a el)dt + (a£(|vun|25u’7:£)v 9/)
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The viscous kinetic formulation

1
dlynse +a- Vlsedt = 6n_e®()dW — aé(EG%&,n:g)dt
+nAl s edt + Ocm'dt.

with m" = 9|V u"|?6,m_¢.
Energy inequality:

;
B (1u(2) ooy )+ [ [ a2 2V u(e) Pt < C(p. o, T).
0JT
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1
dlynse +a- Vlsedt = 6n_e®()dW — aé(EG%&,n:g)dt
+nAl s edt + Ocm'dt.

with m" = 9|V u"|?6,m_¢.
Energy inequality:

;
B (1u(2) ooy )+ [ [ a2 2V u(e) Pt < C(p. o, T).
0JT

Estimate of m": E/ |€]P~2dm"(x, t,€) < C
TNx[0, T]xR
We also have the improved estimate, for p > 0,

/ €17 2dm(x, t,€)
TNx[0,T]xR

Estimate on v/ = §,1_: ]E/ / §1Pdv (§)dx < Cp
JTN JR ’
€(0, 7).

2

E < G




E

2
[, lep-2dm(x t,£)| <Gk [ [P (€< G
T TV JR ’

Nx[0, T]xR

For a subsequence (7,) 1 0

1. " — v in the sense of Young measures indexed by
Q X TN X [O, T] and fn" = ].u'rln>£ — f in
L(Q x TN x (0, T) x R) — weak — . Moreover v, = —0¢f
2. m' — min L?(9; Mj)-weak star, where M}, denote the
space of bounded Borel measures over TV x [0, T| x R

1
—  df +a-Vfdt = vd(&)dW — 585(G$]y)dt + O¢m dt.

We say that f is a generalized kinetic solution.



2
E /T €l 2dm(x, t,£)| <G /T ] /R EPa (E)dx < G

Nx[0, T]xR

For a subsequence (7,) 1 0
1. " — v in the sense of Young measures indexed by
Q X TN X [O. T] and fn" = ].u'rln>£ — f in
L(Q x TN x (0, T) x R) — weak — . Moreover v, = —0¢f
2. m' — min L?(9; Mj)-weak star, where M}, denote the
space of bounded Borel measures over TV x [0, T| x R

— df +a-Vfdt =v®(&)dW — %85(Gflz/)dt + O¢m dt.

We say that f is a generalized kinetic solution.

We only have f € [0,1] and v, ¢ is a probability measure. To get a
kinetic solution, we need f € {0,1} then necessarily f = 1,-¢ and
Uxt = 5u:£-



Left and right limits of generalized solution

Proposition Let f be a generalized solution with initial datum f.
Then f admits almost surely left and right limits at all point

t. € [0, T]. For all t, € [0, T] there exists some kinetic functions
% on Q x TN x R such that P-a.s.

(f(te =€), ) = (F77,9)

and
<f(t* +€)>99> — <f*7+799>

as e — 0 for all ¢ € CH(TN x R). Moreover, almost surely,
(- = e, €)1 ey (B)Im(x, 1,€).
TN x[0, T]xR

In particular, almost surely, the set of t. € [0, T] such that
f*= = f*T is countable.



Doubling of variables

Proposition Let f;, i = 1,2, be generalized solution. Then, for
0 < t < T, and non-negative test functions p € C>(T"),

1 € C°(R), we have

B[ el y0lE — OFF (£ €)1~ B(y, t.0))dédCndy
RZX(']TN)2
<E // p(x — Y)U(E — O)folx E)(1 — oly, €))dédCdxdy
R2x (TN)2

+Ip + Iw,
where

L[ t /() [ fileos 0y, 5.0(al€) = al0)u(e - O)dedc
“Vxp(x — y)dxdyds,

1 t
o= [ ot [ w0
X Zkzl |gk(X7 5) - gk(y7 C)‘zdyi7s ® V}%,s(ga C)dXdde



Take p = ps, v = 1. ~> when § — 0, ¢ — 0:

B[, [ #@a- o< [ [ fa- hode
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Take p = ps, v = 1. ~> when § — 0, ¢ — 0:

]E/TN/Rfli(t)(l— ££ (1)) dxde < /T /]R fio(1 — foo)dxde.

If i = f = f is a generalized solution with initial datum 1, -,
we deduce f5(1 — f*) =0 ae., ie f¥ e {0,1} ae.

— ¥ =1,:_¢ is a kinetic solution. Moreover, u is continuous in
timeand v =u" = u".

If u; and wuy are two solutions, we deduce from the identity

/R Lyoe(l — Lypoe)dé = (un — )t
the contraction property
EJ((2) — i (6) oy < Ell(n0 — u20)* 11wy

This implies the L'-contraction property, comparison and
uniqueness of solutions.



Theorem: Let up € L>°(TN). There exists a unique kinetic
solution v with initial datum wg. It is the strong limit of (u") as
1n — 0: for every T > 0, for every 1 < p < 400,

lim E[u” = ull (s o,7y) = 0-

Furthemore it is a continuous process with values in LP(T").
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1n — 0: for every T > 0, for every 1 < p < 400,

lim Ellu” = ull o(rx (0,7 = O

Furthemore it is a continuous process with values in LP(T").

Assumptions on the coefficient of the noise:
We assume that ®(u)e,(x) = gk(x, u), x € TV and

e G’(x,u) = Z|gkxu 2 < Do(1+ |ul?)
k>1
o > lew(x, u) — gly, V)P < Dallx — y2 + [u - vIh(lu — v])),
k>1
where x,y € TN, u,v € R, and h is a continuous non-decreasing
function on R with h(0) = 0.



Theorem: Let up € L>°(TN). There exists a unique kinetic
solution v with initial datum wg. It is the strong limit of (u") as
1n — 0: for every T > 0, for every 1 < p < 400,

lim Ellu” = ull o(rx (0,7 = O

Furthemore it is a continuous process with values in LP(T").

Assumptions on the coefficient of the noise:
We assume that ®(u)e,(x) = gk(x, u), x € TV and

e G’(x,u) = Z|gkxu 2 < Do(1+ |ul?)
k>1
o 3 lgk(x, u) — gilys V)P < Dallx — yI2 + |u — viA(lu - v])),
k>1

where x,y € TN, u,v € R, and h is a continuous non-decreasing
function on R with h(0) = 0.
Remark:The result can be extended to initial data in L!(T")and
we obtain renomalized solutions.
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Other works on scalar conservation laws:

» Kim and Vallet & Wittbold consider an additive noise.
— setting v = u — ®W, the equation transtorms into

ﬂ ~

g + div(A(v,t)) =0,

with A(v, t) = A(v + W(t)).

» Feng & Nualart consider general noises:
— existence and uniqueness is established only in space
dimension 1. A notion of strong entropy solution is introduced
to enable the generalization of the doubling variable technique
of Kruzkov.

> Bauzet, Vallet and Wittbold have recently extended this to
any dimension.

» Hofmanova has treated the case of a degenerate parabolic
equation.
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existence of an invariant measure 7

» This is done in the work of E, Khanin, Mazel and Sinai thanks
to the Lax-Oleinik formula but it is not available in general ...
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Invariant measures

> Is it possible to use the dissipation due to the shocks to prove
existence of an invariant measure 7

» This is done in the work of E, Khanin, Mazel and Sinai thanks
to the Lax-Oleinik formula but it is not available in general ...

» The kinetic formulation seems appropriate since we keep track
of the dissipation thanks to kinetic measure m.

» We cannot consider any type of noise:
du + divA(u)dt = ®(u)dW

Integrate in x: d [y u(x, t)dx = [pn ¢(u)dWx.

— We need the right hand side to vanish. No realistic noise
depending on u satisfies this ... (except for noise in divergence
form which are not covered by our theory but by Lions, Perthame,
Souganidis).

— We restrict to additive noise with zero spatial average.
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Dissipation through averaging Lemma:

We have constructed a kinetic solution:
df +a(§) - Vfdt = 0,—¢PdW — 85(%G2(§)6u:§)dt
+85m dt

If the system is sufficiently nonlinear, we expect some smoothing,
which is related to dissipation, for u = fR fd¢. Classical condition:

we)=  sup  [{EeRfa+pB-a(f) <e} =0
a€R,BeSN-1

Introduce: B = v(—A)“ + §/ and rewrite the equation:
df +a(§) - Vfdt + Bf = Bf 4 §,-¢®(&)dW — 9¢(53G?(£)dy—¢)dt
+8§m dt

(Bouchut, Desvillettes)



Dissipation through averaging Lemma:

df +a(€) - Vfdt + Bf = Bf + 6,—¢®(€)dW — 0e(LG2(€)d,—¢ ) dt

—|—85m dt.
Let S, 5(t) be the semigroup associated to B + a(¢) - V:

t t
f(t) = %5(1')7% + / 5%5(1' — s)des + / 5%5(5u:€¢(f)dW
0 0

t
+ /O S,50e(m — SG(€)5,=e))ds.



Dissipation through averaging Lemma:

df +a(€) - Vfdt + Bf = Bf + §,_¢P(€)dW — 9¢(3G?(€)du—¢)dt

—|—85m dt.
Let S, 5(t) be the semigroup associated to B + a(¢) - V:

f(t) = S,(t fo+/ S, s(t—5s) des+/ S,,60u=¢®(§)dW

/ S, a(m — 2G(€)0,))ds

Integrate with respect to &:

t
2/575 t fodf—i—// 575 t—S)deSdf

/ [ Suate - s)o-core)awa
/ [ 51a0e(m — 262(@-e))asae.
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If n(e) = [;° e fu(te)dt < ceP, then

/
r

6t fod€ dt < am® ol

Ha(l b)+

2

.
L 5(t — 5)Bfdsd¢ dt < cpy2 P /0 Ju(t)] 1 dt.

H(1/2—a)b
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If n(e) = [;° e fu(te)dt < ceP, then

/OT
;
(/]

-
< a7, 0) (DOE/ ||a’(u)|‘L1(TN)dt + E/ O(up)dx + Do>
0 ™

2
s(t)fod§ dt < amy® ™ |uoll
¢ Ha(l—b)+g x

2

-
L 5(t — 5)Bfdsd¢ dt < cpy2 P /O Ju(t)] 1 dt.

H(1/2—a)b

5 (t = 5)0u=cP(E)

2
dt) <y ada Dy T
A

1
4,60 (m — 2G2(§)5u:§))d5dfu
)

for A < a, p depending on N, p, o, Dy the intensity of the noise
and O(u) = [y [/ 1a'(&)|d¢dv.



Assume

la'(&)] < C(]¢]+1)
then

1

T
1
TE/O HUHWAVP(TI) < C(N> «, )\a p,7, 57 DO)(?EHUOHi%'H‘l) + 1)

with )\ and p depending on the dimension.
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initial data in LP(TN), we easily obtain the existence of an
invariant measure.
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otherwise.



Assume
la'(&)] < C(]¢]+1)
then

1 (7 1
TE/O lullwrerry < C(N, o, A, p, 7,6, Do)(?EHUOHi:«:(Tl) +1)

with )\ and p depending on the dimension.

Since we can extend the existence and uniqueness of solutions for
initial data in LP(TN), we easily obtain the existence of an
invariant measure.

It is supported in LP(TN) for p < 2 + é’ if N=1and p < %
otherwise.

Note that for a stationary solution:

E/ dm(x,t,&) = T Dy.
TN x[0, T]xR



Uniqueness

We generalize the strategy used in Dirr and Souganidis:

1.

The deterministic equation has an attractor which reduces to
a single trajectory.

. When the noise is small, the stochastic solution is close to the

deterministic one, depending on the size of the initial
data. ~ we need to assume &’ is bounded.

The noise is small on long time intervals with positive
probability.

4. The solution enter in a fixed ball in a finite time.

5. With an additive noise, the distance between two solutions

cannot increase



Small noise yields small solutions
For any € > 0, there exists T > 0 and 6 > 0 such that:

L[ ooy <

[u(0) ]| 2wy < 2k0 and  sup [W]pyre < 6.
te[0,T]

N ™



Small noise yields small solutions
For any € > 0, there exists T > 0 and 6 > 0 such that:

L[ ooy <

[u(0)[ 1(pny < 260 and  sup [W[pre <.
te[0,T]

N ™

— Use the averaging technique for v = u — W:

%v + divA(v + W) = 0.

Set g(t7X7£) = 1v(t,x)>§:

%g +a(§) - Vg+Bg= Bg—a({+ W) VWi,
+(a(§) — a(§ + W)) - Vg + dem.



Small noise yields small solutions

v(t) :/gsvvd(t)fodéJr/&/otS%d(tS)Bgdef
+/§ /ot Syo(t = 9)a' (& + W) - VW(5)d,=cdE
+L[ngt—ﬂ@@%—#£+ww'vﬂ%
+41:%Mt—ﬂ&m$%-

For any ¢ > 0, there exists T > 0 and ¢ > 0 such that:

1 /7 €
7 | ) ues < 5

[u(O)|[2(m1y < 2K0,  sup [W[pree <0
te[0,T]

— We need to assume a’ bounded.



The solution enters in a fixed ball in a finite time

1 (7 1 5
TE [ ulloomdt < ral FElolfeny + 1)

t+T
E( [ luts)lusmes
t

72} < rallu(0) s + T)

4T
E( 1u(S) ] 3oy s
t

t
ft) < wofllolfisgzny + 300 [ Jul9)lsamos
0

+3 [ ((ule)P. oW () o + T)



The solution enters in a fixed ball in a finite time

Define recursively the sequences of times (tx)c>0 and (tx)k>0

to =0,

thy1 = tk + 1k,
where (ri)k>0 will be chosen below. And the events:
Ak = { inf

s€[te,teg1

Then, for all kK >0,

| HU(S)HU(T’V) > 2I<L0, l= 0, ey k}
P ( inf ||U(S)HL1 (TN) > 2:‘{0 -/—"tk>
SE[tk tk+1]

fk+rk
< P (/ ||L1(']TN ds > 2/€0

%)
ty 1
(luolisrny + 300 [ u(e)lagemy + 1)+ 5

1
27 t,
+2i ((u(s))?, ®dW(5)) 12 (rm).-



The solution enters in a fixed ball in a finite time

Then, for all kK > 0,
]-"tk>

t+ rk
< P (/ ||L1('IFN ds > 2%0

P ( inf ||U(S)HL1 (TN) > 2I€0

Se[tk fk+1]

)

1 tr
< Tm(||u0||L3(TN) + 3Do/0 ||u(s)HL1(TN) +1)+ =
3 [

b [ ()R 0w (s

Multiply this inequality by 14, and take the expectation:

5 3D tk
Pl < P+ 508 ([ 1umasta,

e ([M R emeDemta )



The solution enter in a fixed ball in a finite time

For r, large enough:

k
P(Aur) < 3P+ (3) -

We then define the stopping time
7 =inf{t > 0| [[u(t)|| (1) < 4Ko}-

and by Borel-Cantelli 70 < 0o almost surely.
It follows that for T > 0 the following stopping times are also
almost surely finite:

e =inf{t > 71+ T [ [|u(t)l[2(m1) < 4Ko}, To =0,



Conclusion

1

Take two solutions u!, 12 starting from u(l), ug:

T—‘—Tg
P70 16H6) — Py ds 2 € Fo) < (1= ).

4

By Borel-Cantelli and the fact that |[u'(t) — u2(t)\|L1(T1)
decreases:

P(lim [[u}(t) — *(£)]| 2y > ) = 0.

t—00



Thanks for your attention.



