Smoothing property for stochastic differential equations driven by fractional Brownian motions

Fabrice Baudoin

Purdue University
Based on a joint work with C. Ouyang and X. Zhang

Motivation

The motivation of the talk is to study regularization properties of rough differential equations on \mathbb{R}^{n}

$$
\begin{equation*}
X_{t}^{x}=x+\sum_{i=1}^{d} \int_{0}^{t} V_{i}\left(X_{s}^{x}\right) d B_{s}^{i} \tag{1}
\end{equation*}
$$

where the V_{i} 's are C^{∞}-bounded vector fields on \mathbb{R}^{n} and B is a d-dimensional fractional Brownian motion with parameter $H>\frac{1}{4}$.

Fractional Brownian motion

A fractional Brownian motion $\left(B_{t}\right)_{t \geq 0}$ is a Gaussian process with mean 0 and covariance function

$$
\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) .
$$

Fractional Brownian motion

A fractional Brownian motion $\left(B_{t}\right)_{t \geq 0}$ is a Gaussian process with mean 0 and covariance function

$$
\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) .
$$

Unless $H=\frac{1}{2}$, fractional Brownian motion is neither a Markov a process nor a semimartingale.

Fractional Brownian motion

A fractional Brownian motion $\left(B_{t}\right)_{t \geq 0}$ is a Gaussian process with mean 0 and covariance function

$$
\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) .
$$

Unless $H=\frac{1}{2}$, fractional Brownian motion is neither a Markov a process nor a semimartingale. From Kolmogorov's continuity theorem, the paths of $\left(B_{t}\right)_{t \geq 0}$ are almost surely locally Hölder with index $H-\varepsilon$.

Fractional Brownian motion

A fractional Brownian motion $\left(B_{t}\right)_{t \geq 0}$ is a Gaussian process with mean 0 and covariance function

$$
\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

Unless $H=\frac{1}{2}$, fractional Brownian motion is neither a Markov a process nor a semimartingale. From Kolmogorov's continuity theorem, the paths of $\left(B_{t}\right)_{t \geq 0}$ are almost surely locally Hölder with index $H-\varepsilon$.
Rough differential equations driven by fractional Brownian motions provide toy models for the study of non Markov random dynamical systems.

Young's differential equation driven by fBm

If $H>1 / 2$, the equation

$$
X_{t}^{x}=x+\sum_{i=1}^{n} \int_{0}^{t} V_{i}\left(X_{s}^{x}\right) d B_{s}^{i}
$$

is understood in the Young's sense:

Young's differential equation driven by fBm

If $H>1 / 2$, the equation

$$
X_{t}^{x}=x+\sum_{i=1}^{n} \int_{0}^{t} V_{i}\left(X_{s}^{x}\right) d B_{s}^{i}
$$

is understood in the Young's sense: The integral $\int_{0}^{t} V_{i}\left(X_{s}^{x}\right) d B_{s}^{i}$ is simply a limit of Riemann sums.

Young's differential equation driven by fBm

If $H>1 / 2$, the equation

$$
X_{t}^{x}=x+\sum_{i=1}^{n} \int_{0}^{t} V_{i}\left(X_{s}^{x}\right) d B_{s}^{i}
$$

is understood in the Young's sense: The integral $\int_{0}^{t} V_{i}\left(X_{s}^{x}\right) d B_{s}^{i}$ is simply a limit of Riemann sums. Existence and uniqueness solutions have been discussed by Nualart-Rascanu and Zähle.

Rough differential equations driven by fBm

If $H>1 / 4$, the equation has to be understood in the Lyons' rough paths sense.

Rough differential equations driven by fBm

If $H>1 / 4$, the equation has to be understood in the Lyons' rough paths sense.

Consider the sequence B^{m} of piecewise linear interpolations of B along the dyadic subdivision of $[0,1]$.

Rough differential equations driven by fBm

If $H>1 / 4$, the equation has to be understood in the Lyons' rough paths sense.

Consider the sequence B^{m} of piecewise linear interpolations of B along the dyadic subdivision of $[0,1]$. The equation

$$
X_{t}^{m, x}=x+\sum_{i=1}^{n} \int_{0}^{t} V_{i}\left(X_{s}^{m, x}\right) d B_{s}^{m, i}
$$

has a unique solution.

Rough differential equations driven by fBm

If $H>1 / 4$, the equation has to be understood in the Lyons' rough paths sense.

Consider the sequence B^{m} of piecewise linear interpolations of B along the dyadic subdivision of $[0,1]$. The equation

$$
X_{t}^{m, x}=x+\sum_{i=1}^{n} \int_{0}^{t} V_{i}\left(X_{s}^{m, x}\right) d B_{s}^{m, i}
$$

has a unique solution. It is then possible to prove that $X^{m, x}$ converges in p-variation $(p>1 / H)$ to some process X^{x} that we call the solution of the rough differential equation (Coutin-Qian).

Rough differential equations driven by fBm

If $H>1 / 4$, the equation has to be understood in the Lyons' rough paths sense.

Consider the sequence B^{m} of piecewise linear interpolations of B along the dyadic subdivision of $[0,1]$. The equation

$$
X_{t}^{m, x}=x+\sum_{i=1}^{n} \int_{0}^{t} V_{i}\left(X_{s}^{m, x}\right) d B_{s}^{m, i}
$$

has a unique solution. It is then possible to prove that $X^{m, x}$ converges in p-variation $(p>1 / H)$ to some process X^{x} that we call the solution of the rough differential equation (Coutin-Qian). Equations driven by more general Gaussian processes may be considered (Friz-Victoir).

Rough differential equations driven by fBm

Several properties of the probability distribution of the solution X_{t} have been discussed:

- Existence and smoothness of a density (B.-Hairer, Cass-Friz, Hairer-Pilai, Cass-Hairer-Litterer-Tindel)

Rough differential equations driven by fBm

Several properties of the probability distribution of the solution X_{t} have been discussed:

- Existence and smoothness of a density (B.-Hairer, Cass-Friz, Hairer-Pilai, Cass-Hairer-Litterer-Tindel)
- Small time asymptotics of the density (B.-Coutin, B.-Ouyang, Inahama)

Rough differential equations driven by fBm

Several properties of the probability distribution of the solution X_{t} have been discussed:

- Existence and smoothness of a density (B.-Hairer, Cass-Friz, Hairer-Pilai, Cass-Hairer-Litterer-Tindel)
- Small time asymptotics of the density (B.-Coutin, B.-Ouyang, Inahama)
- Concentration properties (Cass-Litterer-Lyons)

Rough differential equations driven by fBm

Several properties of the probability distribution of the solution X_{t} have been discussed:

- Existence and smoothness of a density (B.-Hairer, Cass-Friz, Hairer-Pilai, Cass-Hairer-Litterer-Tindel)
- Small time asymptotics of the density (B.-Coutin, B.-Ouyang, Inahama)
- Concentration properties (Cass-Litterer-Lyons)
- Upper and lower bounds for the density (B.-Ouyang-Tindel, B.-Nualart-Ouyang-Tindel, Besalu-Kohatsu-Tindel)

Smoothing property

We consider the functional operator

$$
P_{t} f(x)=\mathbb{E}\left(f\left(X_{t}^{x}\right)\right)
$$

under Kusuoka's condition:

Assumption

There exists an integer $I \geq 1$ and $\omega_{l}^{J} \in C_{b}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ such that for any $x \in \mathbb{R}^{n}$ and word I,

$$
V_{[I]}(x)=\sum_{J \in \mathcal{A}(I)} \omega_{l}^{J}(x) V_{[J]}(x)
$$

Smoothing property

We prove the following regularisation bound,

Theorem

If Kusuoka's condition is satisfied,

$$
\left|V_{i_{1}} \cdots V_{i_{k}} P_{t} f(x)\right| \leq \frac{C_{k, q}(x)}{t^{k H}}\left(P_{t}|f|^{q}\right)^{1 / q}(x), \quad 0<t<1
$$

Smoothing property

We prove the following regularisation bound,

Theorem

If Kusuoka's condition is satisfied,

$$
\left|V_{i_{1}} \cdots V_{i_{k}} P_{t} f(x)\right| \leq \frac{C_{k, q}(x)}{t^{k H}}\left(P_{t}|f|^{q}\right)^{1 / q}(x), \quad 0<t<1
$$

Observe that it implies

$$
\left|V_{i_{1}} \cdots V_{i_{k}} P_{t} f(x)\right| \leq \frac{C_{k}(x)}{t^{k H}}\|f\|_{\infty}, \quad 0<t<1
$$

Integration by parts on the path space

For simplicity we first present the proof in the simple case where the V_{i} 's is a uniformly elliptic system of vector fields.

Integration by parts on the path space

For simplicity we first present the proof in the simple case where the V_{i} 's is a uniformly elliptic system of vector fields.
Since we assume ellipticity

$$
\left[V_{i}, V_{j}\right]=\sum_{k=1}^{n} \omega_{i j}^{k} V_{k}
$$

Integration by parts on the path space

For simplicity we first present the proof in the simple case where the V_{i} 's is a uniformly elliptic system of vector fields.
Since we assume ellipticity

$$
\left[V_{i}, V_{j}\right]=\sum_{k=1}^{n} \omega_{i j}^{k} V_{k}
$$

Lemma

$$
V_{i} P_{t} f(x)=\mathbb{E}\left(\sum_{k=1}^{n} \alpha_{i}^{k}(t, x) V_{k} f\left(X_{t}^{x}\right)\right)
$$

where α solves the following system of SDEs:

$$
d \alpha_{i}^{j}(t, x)=\sum_{k, l=1}^{n} \alpha_{i}^{k}(t, x) \omega_{k l}^{j}\left(X_{t}^{\times}\right) d B_{t}^{l}, \quad \alpha_{i}^{j}(0, x)=\delta_{i}^{j}
$$

Integration by parts on the path space

Proof.

By the chain rule, we have

$$
V_{i} P_{t} f(x)=
$$

Integration by parts on the path space

Proof.

By the chain rule, we have

$$
V_{i} P_{t} f(x)=\mathbb{E}\left(\left(\mathrm{J}_{t} V_{i} f\right)\left(X_{t}^{x}\right)\right)
$$

Integration by parts on the path space

Proof.

By the chain rule, we have

$$
V_{i} P_{t} f(x)=\mathbb{E}\left(\left(\mathrm{J}_{t} V_{i} f\right)\left(X_{t}^{x}\right)\right)
$$

Then by ellipticity, we can find $\alpha_{i}^{j}(t, x)$ such that

$$
\left(\mathrm{J}_{t} V_{i}\right)\left(X_{t}^{\times}\right)=\sum_{j=1}^{n} \alpha_{i}^{j}(t, x) V_{j}\left(X_{t}^{x}\right)
$$

Integration by parts on the path space

Proof.

By the chain rule, we have

$$
V_{i} P_{t} f(x)=\mathbb{E}\left(\left(\mathrm{J}_{t} V_{i} f\right)\left(X_{t}^{x}\right)\right)
$$

Then by ellipticity, we can find $\alpha_{i}^{j}(t, x)$ such that

$$
\left(\mathrm{J}_{t} V_{i}\right)\left(X_{t}^{\times}\right)=\sum_{j=1}^{n} \alpha_{i}^{j}(t, x) V_{j}\left(X_{t}^{\times}\right)
$$

The change of variable formula shows that α solves the above system of SDEs.

Malliavin calculus with respect to fBm

Developed by Decreusefond-Üstunel, Nualart et al.

Malliavin calculus with respect to fBm

Developed by Decreusefond-Üstunel, Nualart et al. Let \mathcal{E} be the space of \mathbb{R}^{d}-valued step functions on $[0,1]$. We denote by \mathcal{H} the closure of \mathcal{E} for the inner product:

$$
\left\langle\left(\mathbf{1}_{\left[0, t_{1}\right]}, \cdots, \mathbf{1}_{\left[0, t_{n}\right]}\right),\left(\mathbf{1}_{\left[0, s_{1}\right]}, \cdots, \mathbf{1}_{\left[0, s_{n}\right]}\right)\right\rangle_{\mathcal{H}}=\sum_{i=1}^{n} R\left(t_{i}, s_{i}\right) .
$$

Malliavin calculus with respect to fBm

Developed by Decreusefond-Üstunel, Nualart et al. Let \mathcal{E} be the space of \mathbb{R}^{d}-valued step functions on $[0,1]$. We denote by \mathcal{H} the closure of \mathcal{E} for the inner product:

$$
\left\langle\left(\mathbf{1}_{\left[0, t_{1}\right]}, \cdots, \mathbf{1}_{\left[0, t_{n}\right]}\right),\left(\mathbf{1}_{\left[0, s_{1}\right]}, \cdots, \mathbf{1}_{\left[0, s_{n}\right]}\right)\right\rangle_{\mathcal{H}}=\sum_{i=1}^{n} R\left(t_{i}, s_{i}\right) .
$$

- Asume $H>1 / 2$. Let $\gamma>H-1 / 2$. There exist constants $c_{1}, c_{2}>0$ such that for every continuous $f \in \mathcal{H}$, and $t \in(0,1]$,

$$
c_{1} t^{2 H} \frac{\min _{[0,1]}|f|^{4}}{\|f\|_{\infty}^{2}+\|f\|_{\gamma}^{2}} \leq\left\|f 1_{[0, t]}\right\|_{\mathcal{H}}^{2} \leq c_{2} t^{2 H}\|f\|_{\infty}^{2}
$$

Malliavin calculus with respect to fBm

Developed by Decreusefond-Üstunel, Nualart et al. Let \mathcal{E} be the space of \mathbb{R}^{d}-valued step functions on $[0,1]$. We denote by \mathcal{H} the closure of \mathcal{E} for the inner product:

$$
\left\langle\left(\mathbf{1}_{\left[0, t_{1}\right]}, \cdots, \mathbf{1}_{\left[0, t_{n}\right]}\right),\left(\mathbf{1}_{\left[0, s_{1}\right]}, \cdots, \mathbf{1}_{\left[0, s_{n}\right]}\right)\right\rangle_{\mathcal{H}}=\sum_{i=1}^{n} R\left(t_{i}, s_{i}\right) .
$$

- Asume $H>1 / 2$. Let $\gamma>H-1 / 2$. There exist constants $c_{1}, c_{2}>0$ such that for every continuous $f \in \mathcal{H}$, and $t \in(0,1]$,

$$
c_{1} t^{2 H} \frac{\min _{[0,1]}|f|^{4}}{\|f\|_{\infty}^{2}+\|f\|_{\gamma}^{2}} \leq\left\|f 1_{[0, t]}\right\|_{\mathcal{H}}^{2} \leq c_{2} t^{2 H}\|f\|_{\infty}^{2}
$$

- Assume $H \leq 1 / 2$ and let $\gamma>1 / 2-H$. There exist constants $c_{1}, c_{2}>0$ such that for every $f \in C^{\gamma}$, and $t \in(0,1]$,

$$
c_{1} t^{2 H} \min _{[0,1]}|f|^{2} \leq\left\|f 1_{[0, t]}\right\|_{\mathcal{H}}^{2} \leq c_{2} t^{2 H}\left(\|f\|_{\gamma}^{2}+\|f\|_{\infty}^{2}\right) .
$$

Malliavin calculus with respect to fBm

A random variable F is said to be cylindrical $(F \in \mathcal{S})$ if it can be written as

$$
F=f\left(\int_{0}^{1}\left\langle h_{s}^{1}, d B_{s}\right\rangle, \ldots, \int_{0}^{1}\left\langle h_{s}^{m}, d B_{s}\right\rangle\right),
$$

where $h^{i} \in \mathcal{H}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a C^{∞} bounded function with bounded derivatives. The Malliavin derivative of $F \in \mathcal{S}$ is the \mathbb{R}^{n} valued stochastic process $\left(D_{t} F\right)_{0 \leq t \leq 1}$ given by

$$
\mathrm{D}_{t} F=\sum_{i=1}^{m} h^{i}(t) \frac{\partial f}{\partial x_{i}}\left(\int_{0}^{1}\left\langle h_{s}^{1}, d B_{s}\right\rangle, \ldots, \int_{0}^{1}\left\langle h_{s}^{m}, d B_{s}\right\rangle\right) .
$$

Integration by parts on the path space

The keypoint of using Malliavin calculus in our problem is the following result:

Theorem

Let $F=\left(F_{1},, \cdots, F_{n}\right)$ be a non degenerate vector in \mathbb{D}^{∞} with Malliavin matrix γ_{F}. Let $G \in \mathbb{D}^{\infty}$ and $\Phi \in \mathcal{C}_{b}^{\infty}\left(\mathbb{R}^{n}\right)$. For $i=1, \cdots, n$,

$$
\mathbb{E}\left(\partial_{i} \Phi(F) G\right)=\mathbb{E}\left(\Phi(F) H_{i}(F, G)\right),
$$

where

$$
H_{i}(F, G)=\sum_{j=1}^{n} \delta\left(G\left(\gamma_{F}^{-1}\right)_{i j} D F^{i}\right)
$$

Integration by parts on the path space

Coming back to our problem, we can thus write

$$
\mathbb{E}\left(\sum_{k=1}^{n} \alpha_{i}^{k}(t, x) V_{k} f\left(X_{t}^{x}\right)\right)=\mathbb{E}\left(\sum_{l=1}^{n} G_{i}^{\prime}(t, x) \partial_{l} f\left(X_{t}^{x}\right)\right),
$$

Integration by parts on the path space

Coming back to our problem, we can thus write

$$
\mathbb{E}\left(\sum_{k=1}^{n} \alpha_{i}^{k}(t, x) V_{k} f\left(X_{t}^{x}\right)\right)=\mathbb{E}\left(\sum_{l=1}^{n} G_{i}^{\prime}(t, x) \partial_{l} f\left(X_{t}^{x}\right)\right)
$$

and finally get

$$
V_{i} P_{t} f(x)=\mathbb{E}\left(f\left(X_{t}^{x}\right) \sum_{l, j=1}^{n} \delta\left(G_{i}^{j}(t, x)\left(\gamma^{-1}\right)_{l j} D X_{t}^{\prime}\right)\right)
$$

Integration by parts on the path space

Coming back to our problem, we can thus write

$$
\mathbb{E}\left(\sum_{k=1}^{n} \alpha_{i}^{k}(t, x) V_{k} f\left(X_{t}^{x}\right)\right)=\mathbb{E}\left(\sum_{l=1}^{n} G_{i}^{\prime}(t, x) \partial_{l} f\left(X_{t}^{x}\right)\right),
$$

and finally get

$$
V_{i} P_{t} f(x)=\mathbb{E}\left(f\left(X_{t}^{x}\right) \sum_{l, j=1}^{n} \delta\left(G_{i}^{j}(t, x)\left(\gamma^{-1}\right)_{l j} D X_{t}^{\prime}\right)\right)
$$

By continuity of $\delta: \mathbb{D}^{k, p} \rightarrow \mathbb{D}^{k-1, p}$, we are let with the problem of estimating $D X$ and γ^{-1}.

Estimates of the Malliavin derivatives

It is possible to prove the following estimates:

Theorem (B., Ouyang, E. Nualart, Tindel)

For $1 / 4<H, m, p>1$ and $t \in[0,1]$,

$$
\left\|\mathbf{D} X_{t}^{x}\right\|_{m, p} \leq c_{1} t^{H}
$$

and

$$
\left\|\gamma_{t}^{-1}\right\|_{m, p} \leq c_{2} t^{-2 H}
$$

Estimates of the Malliavin derivatives

It is possible to prove the following estimates:

Theorem (B., Ouyang, E. Nualart, Tindel)

For $1 / 4<H, m, p>1$ and $t \in[0,1]$,

$$
\left\|\mathbf{D} X_{t}^{X}\right\|_{m, p} \leq c_{1} t^{H}
$$

and

$$
\left\|\gamma_{t}^{-1}\right\|_{m, p} \leq c_{2} t^{-2 H}
$$

Putting back the pieces together finishes the proof of the regularization bound.

General case

We now turn to the general case where the vector fields satisfy Kusuoka's condition.

General case

We now turn to the general case where the vector fields satisfy Kusuoka's condition. The proof is more challenging since X may be degenerate in Malliavin sense.

General case

We now turn to the general case where the vector fields satisfy Kusuoka's condition. The proof is more challenging since X may be degenerate in Malliavin sense. We present the main steps.

General case

We now turn to the general case where the vector fields satisfy Kusuoka's condition. The proof is more challenging since X may be degenerate in Malliavin sense. We present the main steps. The main idea (due to Kusuoka and Stroock) is to perform the integration by parts by identifying the vector fields V_{i} 's as operators on the path space of X.

General case

We now turn to the general case where the vector fields satisfy Kusuoka's condition. The proof is more challenging since X may be degenerate in Malliavin sense. We present the main steps. The main idea (due to Kusuoka and Stroock) is to perform the integration by parts by identifying the vector fields V_{i} 's as operators on the path space of X. Adaptation of Kusuoka's method in the rough setting is not trivial, since the Kusuoka-Stroock estimates (quantitative versions of Norris type lemma) were originally proved by heavily using Markov and martingale methods.

General case

Let us introduce $\beta_{J}^{J}(t, x)$ that satisfies the following linear equations:

$$
\left\{\begin{array}{l}
d \beta_{I}^{J}(t, x)=\sum_{j=1}^{d}\left(\sum_{K \in \mathcal{A}_{1}(I)}-\omega_{I * j}^{K}\left(X_{t}^{x}\right) \beta_{K}^{J}(t, x)\right) d B_{t}^{j} \\
\beta_{I}^{J}(0, x)=\delta_{I}^{J}
\end{array}\right.
$$

Now, let us introduce the following notations: for any $J \in \mathcal{A}_{1}(I)$,

$$
D^{(J)} f\left(X_{t}^{x}\right)=\left\langle\mathbf{D} \cdot f\left(X_{t}^{x}\right), \beta^{J}(\cdot, x) 1_{[0, t]}\right\rangle_{\mathcal{H}}
$$

General case

Let us introduce $\beta_{I}^{J}(t, x)$ that satisfies the following linear equations:

$$
\left\{\begin{array}{l}
d \beta_{I}^{J}(t, x)=\sum_{j=1}^{d}\left(\sum_{K \in \mathcal{A}_{1}(I)}-\omega_{I * j}^{K}\left(X_{t}^{x}\right) \beta_{K}^{J}(t, x)\right) d B_{t}^{j} \\
\beta_{I}^{J}(0, x)=\delta_{I}^{J}
\end{array}\right.
$$

Now, let us introduce the following notations: for any $J \in \mathcal{A}_{1}(I)$,

$$
D^{(J)} f\left(X_{t}^{x}\right)=\left\langle\mathbf{D} \cdot f\left(X_{t}^{x}\right), \beta^{J}(\cdot, x) 1_{[0, t]}\right\rangle_{\mathcal{H}}
$$

Also, for any $I, J \in \mathcal{A}_{1}(I)$, we define

$$
M_{I, J}(t, x)=\left\langle\beta^{\prime}(\cdot, x) 1_{[0, t]}(\cdot), \beta^{J}(\cdot, x) 1_{[0, t]}\right\rangle_{\mathcal{H}}
$$

General case

The following result is the main technical difficulty

Theorem

For $I \in \mathcal{A}_{1}(I)$,

$$
V_{[I]}\left[f\left(X_{t}^{x}\right)\right]=\sum_{J \in \mathcal{A}_{1}(I)}\left(M_{I, J}(t, x)\right)^{-1} D^{(J)} f\left(X_{t}^{x}\right)
$$

General case

The following result is the main technical difficulty

Theorem

For $I \in \mathcal{A}_{1}(I)$,

$$
V_{[I]}\left[f\left(X_{t}^{\times}\right)\right]=\sum_{J \in \mathcal{A}_{1}(I)}\left(M_{I, J}(t, x)\right)^{-1} D^{(J)} f\left(X_{t}^{\times}\right)
$$

and for any $p \in(1, \infty)$,

$$
\sup _{x \in \mathbb{R}^{n}} \mathbb{E}\left(\left\|\left(M_{I, J}(t, x)\right)_{I, J \in \mathcal{A}_{1}(I)}\right\|^{-p}\right)<\infty
$$

Estimate for the inverse of M

Step 1: A Taylor estimate shows that for $|I| \leq|J| \leq I$,

$$
\beta_{I}^{J}(t, x)=\sum_{L \in \mathcal{A}} \delta_{l * L}^{J}(-1)^{|L|} B_{t}^{L}+\gamma_{I}^{J}(t, x)
$$

where

$$
\sup _{x \in \mathbb{R}^{n}} \mathbb{E}\left[\left(\sup _{t \in(0,1]} t^{-(I+1-|| |) H}\left|\gamma_{l}^{J}(t, x)\right|\right)^{p}\right]<\infty
$$

holds for any $p \geq 1$.

Estimate for the inverse of M

Step 2: For $m \geq 0$ and $p \geq 1$, there exists a constant $C_{H, d, p}>0$ such that for any $\epsilon>0$

$$
\sup _{\sum a_{l}^{2}=1} \mathbb{P}\left(\left\|\sum_{I \in \mathcal{A}(m)} a_{l} B_{t}^{\prime}\right\|_{\infty,[0,1]}<\epsilon\right) \leq C_{H, n, p} \epsilon^{p}
$$

Step 3: Use of interpolation inequalities (B.-Hairer 2007 and Hairer-Pilai 2013)

IPP formula

With the formula in hands, we may then integrate by parts:

$$
\mathbb{E}\left(\Phi V_{[I]}\left[f\left(X_{t}^{x}\right)\right]\right)=\mathbb{E}\left(f\left(X_{t}^{x}\right) T_{V_{[I]}}^{*} \Phi\right)
$$

where

$$
T_{V_{[l]}}^{*} \Phi=\delta\left(\Phi \sum_{J \in \mathcal{A}_{1}(I)} \beta^{J}(t, x)\left(M_{I, J}(t, x)\right)^{-1}\right)
$$

is a nice operator in Malliavin sense.

Extension

Along the same lines we can prove the following result:

Theorem

If Kusuoka's condition is satisfied,

$$
\left|V_{l_{1}} \cdots V_{I_{k}} P_{t} V_{l_{k+1}} \cdots V_{I_{k+1}} f(x)\right| \leq \frac{C(x)}{t^{\left(\left|I_{1}\right|+\cdots+\left|I_{k+1}\right|\right) H}}\|f\|_{\infty}, 0<t<1 .
$$

Extension

Global gradient bounds require geometric conditions.

Extension

Global gradient bounds require geometric conditions. Assume that the V_{i} 's form an elliptic system of vector fields and that

$$
\left[V_{i}, V_{j}\right]=\sum_{k} \omega_{i j}^{k} V_{k}
$$

with

$$
\omega_{i j}^{k}=-\omega_{i k}^{j}
$$

then we have the following global bound

Theorem

$$
\sum_{i=1}^{n}\left(V_{i} P_{t} f\right)^{2}(x) \leq P_{t}\left(\sum_{i=1}^{n}\left(V_{i} f\right)^{2}\right)(x)
$$

