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Motivation

The motivation of the talk is to study regularization properties of
rough differential equations on Rn

X x
t = x +

d∑
i=1

∫ t

0
Vi (X x

s )dB i
s (1)

where the Vi ’s are C∞-bounded vector fields on Rn and B is a
d -dimensional fractional Brownian motion with parameter H > 1

4 .



Fractional Brownian motion

A fractional Brownian motion (Bt)t≥0 is a Gaussian process with
mean 0 and covariance function

1
2

(
t2H + s2H − |t − s|2H

)
.

Unless H = 1
2 , fractional Brownian motion is neither a Markov a

process nor a semimartingale. From Kolmogorov’s continuity
theorem, the paths of (Bt)t≥0 are almost surely locally Hölder with
index H − ε.
Rough differential equations driven by fractional Brownian motions
provide toy models for the study of non Markov random dynamical
systems.
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Young’s differential equation driven by fBm

If H > 1/2, the equation

X x
t = x +

n∑
i=1

∫ t

0
Vi (X x

s )dB i
s

is understood in the Young’s sense:

The integral
∫ t
0 Vi (X x

s )dB i
s is

simply a limit of Riemann sums. Existence and uniqueness solutions
have been discussed by Nualart-Rascanu and Zähle.



Young’s differential equation driven by fBm

If H > 1/2, the equation

X x
t = x +

n∑
i=1

∫ t

0
Vi (X x

s )dB i
s

is understood in the Young’s sense: The integral
∫ t
0 Vi (X x

s )dB i
s is

simply a limit of Riemann sums.

Existence and uniqueness solutions
have been discussed by Nualart-Rascanu and Zähle.



Young’s differential equation driven by fBm

If H > 1/2, the equation

X x
t = x +

n∑
i=1

∫ t

0
Vi (X x

s )dB i
s

is understood in the Young’s sense: The integral
∫ t
0 Vi (X x

s )dB i
s is

simply a limit of Riemann sums. Existence and uniqueness solutions
have been discussed by Nualart-Rascanu and Zähle.



Rough differential equations driven by fBm

If H > 1/4, the equation has to be understood in the Lyons’ rough
paths sense.

Consider the sequence Bm of piecewise linear interpolations of B
along the dyadic subdivision of [0, 1]. The equation

Xm,x
t = x +

n∑
i=1

∫ t

0
Vi (Xm,x

s )dBm,i
s

has a unique solution. It is then possible to prove that Xm,x

converges in p-variation (p > 1/H) to some process X x that we
call the solution of the rough differential equation (Coutin-Qian).
Equations driven by more general Gaussian processes may be
considered (Friz-Victoir).
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Rough differential equations driven by fBm

Several properties of the probability distribution of the solution Xt
have been discussed:

I Existence and smoothness of a density (B.-Hairer, Cass-Friz,
Hairer-Pilai, Cass-Hairer-Litterer-Tindel)

I Small time asymptotics of the density (B.-Coutin, B.-Ouyang,
Inahama)

I Concentration properties (Cass-Litterer-Lyons)
I Upper and lower bounds for the density (B.-Ouyang-Tindel,

B.-Nualart-Ouyang-Tindel, Besalu-Kohatsu-Tindel)
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Smoothing property

We consider the functional operator

Pt f (x) = E (f (X x
t )) .

under Kusuoka’s condition:

Assumption

There exists an integer l ≥ 1 and ωJ
I ∈ C∞b (Rn,R) such that for

any x ∈ Rn and word I ,

V[I ](x) =
∑

J∈A(l)

ωJ
I (x)V[J](x).



Smoothing property

We prove the following regularisation bound,

Theorem
If Kusuoka’s condition is satisfied,

|Vi1 · · ·VikPt f (x)| ≤
Ck,q(x)

tkH
(Pt |f |q)1/q (x), 0 < t < 1.

Observe that it implies

|Vi1 · · ·VikPt f (x)| ≤ Ck(x)

tkH
‖f ‖∞, 0 < t < 1.
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Integration by parts on the path space

For simplicity we first present the proof in the simple case where
the Vi ’s is a uniformly elliptic system of vector fields.

Since we assume ellipticity

[Vi ,Vj ] =
n∑

k=1

ωk
ijVk .

Lemma

ViPt f (x) = E

(
n∑

k=1

αk
i (t, x)Vk f (X x

t )

)
,

where α solves the following system of SDEs:

dαj
i (t, x) =

n∑
k,l=1

αk
i (t, x)ωj

kl (X
x
t )dB l

t , αj
i (0, x) = δji .
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Integration by parts on the path space

Proof.
By the chain rule, we have

ViPt f (x) =

E ((JtVi f )(X x
t ))

Then by ellipticity, we can find αj
i (t, x) such that

(JtVi )(X x
t ) =

n∑
j=1

αj
i (t, x)Vj(X x

t ).

The change of variable formula shows that α solves the above
system of SDEs.
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Malliavin calculus with respect to fBm

Developed by Decreusefond-Üstunel, Nualart et al.

Let E be the
space of Rd -valued step functions on [0, 1]. We denote by H the
closure of E for the inner product:

〈(1[0,t1], · · · , 1[0,tn]), (1[0,s1], · · · , 1[0,sn])〉H =
n∑

i=1

R(ti , si ).

I Asume H > 1/2. Let γ > H − 1/2. There exist constants
c1, c2 > 0 such that for every continuous f ∈ H, and t ∈ (0, 1],

c1t2H min[0,1] |f |4

‖f ‖2∞ + ‖f ‖2γ
≤ ‖f 1[0,t]‖2H ≤ c2t2H‖f ‖2∞.

I Assume H ≤ 1/2 and let γ > 1/2− H. There exist constants
c1, c2 > 0 such that for every f ∈ C γ , and t ∈ (0, 1],

c1t2H min
[0,1]
|f |2 ≤ ‖f 1[0,t]‖2H ≤ c2t2H(‖f ‖2γ + ‖f ‖2∞).
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Malliavin calculus with respect to fBm

A random variable F is said to be cylindrical (F ∈ S) if it can be
written as

F = f
(∫ 1

0
〈h1

s , dBs〉, . . . ,
∫ 1

0
〈hm

s , dBs〉
)
,

where hi ∈ H and f : Rn → R is a C∞ bounded function with
bounded derivatives. The Malliavin derivative of F ∈ S is the Rn

valued stochastic process (DtF )0≤t≤1 given by

DtF =
m∑

i=1

hi (t)
∂f
∂xi

(∫ 1

0
〈h1

s , dBs〉, . . . ,
∫ 1

0
〈hm

s , dBs〉
)
.



Integration by parts on the path space

The keypoint of using Malliavin calculus in our problem is the
following result:

Theorem
Let F = (F1, , · · · ,Fn) be a non degenerate vector in D∞ with
Malliavin matrix γF . Let G ∈ D∞ and Φ ∈ C∞b (Rn). For
i = 1, · · · , n,

E (∂iΦ(F )G ) = E (Φ(F )Hi (F ,G )) ,

where

Hi (F ,G ) =
n∑

j=1

δ
(
G (γ−1

F )ijDF i) .



Integration by parts on the path space

Coming back to our problem, we can thus write

E

(
n∑

k=1

αk
i (t, x)Vk f (X x

t )

)
= E

(
n∑

l=1

G l
i (t, x)∂l f (X x

t )

)
,

and finally get

ViPt f (x) = E

f (X x
t )

n∑
l ,j=1

δ
(
G j

i (t, x)
(
γ−1)

lj DX
l
t

) .

By continuity of δ : Dk,p → Dk−1,p, we are let with the problem of
estimating DX and γ−1.
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Estimates of the Malliavin derivatives

It is possible to prove the following estimates:

Theorem (B., Ouyang, E. Nualart, Tindel)

For 1/4 < H, m, p > 1 and t ∈ [0, 1],

‖DX x
t ‖m,p ≤ c1tH

and
‖γ−1

t ‖m,p ≤ c2 t−2H .

Putting back the pieces together finishes the proof of the
regularization bound.
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General case

We now turn to the general case where the vector fields satisfy
Kusuoka’s condition.

The proof is more challenging since X may be
degenerate in Malliavin sense. We present the main steps. The
main idea (due to Kusuoka and Stroock) is to perform the
integration by parts by identifying the vector fields Vi ’s as operators
on the path space of X . Adaptation of Kusuoka’s method in the
rough setting is not trivial, since the Kusuoka-Stroock estimates
(quantitative versions of Norris type lemma) were originally proved
by heavily using Markov and martingale methods.
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General case

Let us introduce βJ
I (t, x) that satisfies the following linear

equations:
dβJ

I (t, x) =
d∑

j=1

 ∑
K∈A1(l)

−ωK
I∗j(X

x
t )βJ

K (t, x)

 dB j
t

βJ
I (0, x) = δJI

Now, let us introduce the following notations: for any J ∈ A1(l),

D(J)f (X x
t ) = 〈D·f (X x

t ), βJ(·, x)1[0,t]〉H.

Also, for any I , J ∈ A1(l), we define

MI ,J(t, x) = 〈βI (·, x)1[0,t](·), βJ(·, x)1[0,t]〉H.
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MI ,J(t, x) = 〈βI (·, x)1[0,t](·), βJ(·, x)1[0,t]〉H.



General case

The following result is the main technical difficulty

Theorem
For I ∈ A1(l),

V[I ][f (X x
t )] =

∑
J∈A1(l)

(MI ,J(t, x))−1D(J)f (X x
t )

and for any p ∈ (1,∞),

sup
x∈Rn

E
(
‖(MI ,J(t, x))I ,J∈A1(l)‖

−p) <∞
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Estimate for the inverse of M

Step 1: A Taylor estimate shows that for |I | ≤ |J| ≤ l ,

βJ
I (t, x) =

∑
L∈A

δJI∗L(−1)|L|BL
t + γJ

I (t, x)

where

sup
x∈Rn

E

[(
sup

t∈(0,1]
t−(l+1−|I |)H |γJ

I (t, x)|

)p]
<∞

holds for any p ≥ 1.



Estimate for the inverse of M

Step 2: For m ≥ 0 and p ≥ 1, there exists a constant CH,d ,p > 0
such that for any ε > 0

sup∑
a2
I =1

P


∥∥∥∥∥∥
∑

I∈A(m)

aIB I
t

∥∥∥∥∥∥
∞,[0,1]

< ε

 ≤ CH,n,pε
p

Step 3: Use of interpolation inequalities (B.-Hairer 2007 and
Hairer-Pilai 2013)



IPP formula

With the formula in hands, we may then integrate by parts:

E(ΦV[I ][f (X x
t )]) = E

(
f (X x

t )T ∗V[I ]
Φ
)
.

where

T ∗V[I ]
Φ = δ

Φ
∑

J∈A1(l)

βJ(t, x)(MI ,J(t, x))−1


is a nice operator in Malliavin sense.



Extension

Along the same lines we can prove the following result:

Theorem
If Kusuoka’s condition is satisfied,∣∣VI1 · · ·VIkPtVIk+1 · · ·VIk+l f (x)

∣∣ ≤ C (x)

t(|I1|+···+|Ik+l |)H
‖f ‖∞, 0 < t < 1.



Extension

Global gradient bounds require geometric conditions.

Assume that
the Vi ’s form an elliptic system of vector fields and that

[Vi ,Vj ] =
∑
k

ωk
ijVk

with
ωk

ij = −ωj
ik ,

then we have the following global bound

Theorem

n∑
i=1

(ViPt f )2(x) ≤ Pt

(
n∑

i=1

(Vi f )2

)
(x)
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