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It is easy to construct flows!

simple
—

approximate flow flow

continuous

Deal with

» classical RDEs with infinite dimensional state
space/signal: choose an approximate flow with the
awaited " Taylor expansion”

» stochastic mean field RDEs
» path-dependent RDEs

» analogue of Le Jan-Watanabe-Kunita... stochastic flows



Layout of the talk

1. Approximate flows and flows
2. From controlled ODEs to RDEs

3. Rough flows



1.1 Feyel-de la Pradelle’ sewing lemma

» Definition. E a Banach space. An E-valued map (Mt5>0<s<t<1
to be approximately additive if we have

is said
| (boew + trus) — pus| < calt — s,

for all 0 < s < u < t <1, for some positive constants ¢; and a > 1.

For a partition mss = {s < t; < --- < t, < t} of [s, 1], set

n—1

Hrmp = E Htipat;-

i=0



1.1 Feyel-de la Pradelle’ sewing lemma

» Definition. E a Banach space. An E-valued map (/l,t5>0<s<t<1 is said
to be approximately additive if we have

| (boew + trus) — pus| < calt — s,
for all 0 < s < u < t <1, for some positive constants ¢; and a > 1.

For a partition mss = {s < t; < --- < t, < t} of [s, 1], set

n—1

Py -= § Htiat;

i=0

» Lemma [FdIP, 06']. An approximately additive continuous map
defines a unique additive map ¢ st. |¢w — 11| < |t — s|°; moreover
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1.2 Approximate flows and flows

» Definition. A C'-approximate flow is a family of C?> maps
s - E — E, continuous wrt (s, t) for uniform convergence, with
||,U/ts - IHC2 < Ot*S(]‘)r and

(|t © frus — pes|| o < 1|t — s
for some positive constants c; anda>1land all0 <s<u<t<T.

For a partition mss = {s <ty < --- < t, < t} of [s, t], set

L n—1
Py = OI:O Ht;qt;-



1.2 Approximate flows and flows

» Definition. A C'-approximate flow is a family of C> maps
s © E — E, continuous wrt (s, t) for uniform convergence, with
|| 1ees — IHc2 < o; (1), and

(|t © frus — pes|| o < 1|t — s
for some positive constants c; anda>1land all0 <s<u<t<T.

For a partition mss = {s <ty < --- < t, < t} of [s, t], set
L n—1
Py = OI:O Ht;qt;-

» Theorem [B1, 12']. A Cl-approximate flow . defines a unique flow
@ st. ||99t5 — /l,tSHOC < |t — s|?; moreover

}afl,

Hifjts ~ M| oo S C12 |7rts

and the pys are uniformly Lipschitz continuous.

Rks. e Elementary and short proof.

e In practical situations, choice of us guided by local considerations
on " Taylor expansions” .



2.1 Flows generated by classical controlled ODEs

Given h e C*, o > % and F = (Vl7 ce V[) vector fields on E, of class C2

dZt = F(Zt) dht (21)
» Definition. A solution flow to equation (2.1) is a flow ¢ with a
"uniform Taylor expansion”, at any time s and any point x, of the form

f(0es(x)) = (x) + hig(Vif)(x) + Olt — 5|77, (2-2)

for all f regular enough.



2.1 Flows generated by classical controlled ODEs

Given h e C*, o > % and F = (Vl7 ce V[) vector fields on E, of class C2

dZt = F(Zt) dht (21)
» Definition. A solution flow to equation (2.1) is a flow ¢ with a
"uniform Taylor expansion”, at any time s and any point x, of the form

f(apts(x)) = f(x) + his(\/,-f)(x) + Ot — 5|71, (2.2)

for all f regular enough.

» Method for constructing the solution flow to equation (2.1)
1. Candidate for a map u:s with good Taylor expansion
pes(x) = x + hi Vi(x).
It satisfies (2.2) but is not a flow.
2. puis a Ct-approximate flow: ||1iey © f1us — fiss || < 1 [t — s

3. Its associated flow satisfies (2.2) since ||¢¢s — Mts”oo <t — s



2.2 Flows generated by classical RDEs
F= (Vl, ceey Vg) : Lips vector fields on E, X a weak geometric Holder
_ ‘
p-rough path over R*. dz = F(z:) X(dt). (2.3)

» Definition. A solution flow to equation (2.3) is a flow ¢ with
"uniform Taylor expansion”, at any time s and any point x, of the form

f(Wts( —f Z +O‘t |>1a
[11<[p]

with V; identified with a first order diff. operator and
V/f:\/,'l- Zf/—(ll,...,ik>.



2.2 Flows generated by classical RDEs
F= (Vl, ceey V[) : Lips vector fields on E, X a weak geometric Holder

i ¢
p-rough path over R*. dz = F(z:) X(dt). (2.3)

» Definition. A solution flow to equation (2.3) is a flow ¢ with
"uniform Taylor expansion”, at any time s and any point x, of the form

Flos(x) =)+ > X x) 4 0|t — s,
[<I[p]
with V; identified with a first order diff. operator and
V/f:\/,'l- Zf/—(ll,...,ik>.

» Coordinate-free formulation: F a Lip;(E, E)-valued 1-form on R’.
Set F¥(1) = 1d, and for u, u; € R, e,e’ € TV

F®(u) = F(u) : 1% order diff. op.

FO>un @ @ ug) = F(uy) - F(ug) - k™M order diff. op.
Extend by linearity; we have

FE(ee') = F®(e)F®(e’), and F®([e,e]) = [Fg)(e),F@(e’)}



2.2 Flows generated by classical RDEs

In those terms, ¢ is a solution flow to the preceeding RDE iff
f(cpts(x)) = (F®(th)f) (x)+ O|t — 5|~

Formalism adapted to infinite dimensional rough signals! Given an
infinite dimensional weak geometric Holder p-rough path X, set

Ats - |ogxts-
Define /i as the time 1 map of the ODE
Yu= F®(Ats)()/u)a O<u<l



2.2 Flows generated by classical RDEs

In those terms, ¢ is a solution flow to the preceeding RDE iff
f(cpts(x)) = (F®(th)f) (x)+ O|t — 5|~

Formalism adapted to infinite dimensional rough signals! Given an
infinite dimensional weak geometric Holder p-rough path X, set

A = log Xss.
Define /i as the time 1 map of the ODE
Yu=F(Ns)(v), 0<u<l.
» Proposition [B1-B2, 12'-13']. We have for all f nice enough
£ 0 pes — FE(Xes) || < (£, X) [t — s/,
for some a > 1, and ji is a Cl-approximate flow.

» Theorem [B1-B2, 12'-13']. The RDE dz; = F(z:) X(dt) has a unique
solution flow ¢. It satisfies

}afl
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where ¢ is polynomial in the norm of X.



2.2 Flows generated by classical RDEs

» Proof of proposition: idea. Based on the following exact formula
obtained by using repeatedly the identity

700 =100+ [ (F2 () () 0<r<,

and the morphism property of F®, and by separating terms according to
their size.

F(pes(x)) = F(x) +Z S (F¥(mi s mig o) F) (x)

kit ke <[P]

+ Z / {(F’X‘(ﬂkn/\ts»-.mql\ts)f) (ysn) — <F®(71'knl\ts'"WklAts)f>(X)}ds

ke Akn<[p] 7 A

T Z % 3 (F® (i s - %/\ts)f>(x)

" kytetke=[pl+1

+ 3 / { (P2 (i es = mia Nes) F) (35,) = (B (i s+ iy M) ) (x) bl

kit tknz[pl+17 70

Same computation made independently by Boutaib, Gyurko, Lyons,
Yang, 13’, to prove the Taylor expansion of the proposition.



2.3 An illustration: stochastic mean field RDEs

Rk. The above results also hold for time-dependent vector fields,
depending on time as a Lipschitz function.

Let X be a random (infinite dimensional) Holder weak geometric
p-rough path. The equation

dze = V(z¢, £(z:))dt + F(z:) X(dt) (2.4)

represents the dynamics in E of a typical particle in a large N limit of an
interacting particle system with mean field interaction in the drift.



2.3 An illustration: stochastic mean field RDEs

Rk. The above results also hold for time-dependent vector fields,
depending on time as a Lipschitz function.

Let X be a random (infinite dimensional) Holder weak geometric
p-rough path. The equation

dze = V(z¢, £(z:))dt + F(z:) X(dt) (2.4)

represents the dynamics in E of a typical particle in a large N limit of an
interacting particle system with mean field interaction in the drift.

d(P.@) =sup { (&.P) ~ (6. Q); llgller <1}

» Theorem [B1, 12']. Assume F is Ci** and V(- P) is C}, uniformly
wrt P, and
V(. P) = V(- Q)| < (P, Q).

If B ||X|]?UPIHY) < oo, then equation (2.4) has a unique solution.



2.4 Variations and refinements

» Refined definition of Cl-approximate flow and theorem on their
associated flow give existence and well-posedness results for
classical RDEs under optimal regularity conditions (with infinite
dimensional rough signal and state space), [B1-B2, 12'-13].

> A notion of local C!-approximate flow can be used to prove
existence and well-posedness results for RDEs with unbounded

vector fields, [B1, 12].



3. From stochastic flows to rough flows

o lto setting odx; = Vi(x;)odB!  one can separate
space (V;) and noise (B)

e Le Jan-Watanabe-Kunita  dy; = F(y;, odB;) one cannot separate

stochastic flow setting space from noise

Stochastic flows: the fundamental object is a vector field-valued
semimartingale.



From stochastic flows to rough flows

o lto setting odx; = Vi(x;)odB!  one can separate
space (V;) and noise (B)

e Le Jan-Watanabe-Kunita  dy; = F(y;, odB;) one cannot separate

stochastic flow setting space from noise

Stochastic flows: the fundamental object is a vector field-valued
semimartingale.

e Rough paths setting  lift B to a rough path B RDE dx; = F(x;) X(dt)

¢ Rough flows setting lift F(x, odB;) to ? ?!



3.1 Rough vector fields
Let 2 < p < 3 be given, and V(- t) a time-dependent velocity field on
E. Set Vis() = V(- t) — V(-, ).
» Definition. A (geometric Holder) p-rough vector field is a family
(Vis)ocs<e<T, where Vs = (Vis, Vis) and Vs is a second order
differential operator s.t.

(i) the vector fields Vs are C} with
Vel _

0<s<t<T |t — 5\%




3.1 Rough vector fields

Let 2 < p < 3 be given, and V(- t) a time-dependent velocity field on
E. Set Vis(-) = V(-,t) — V(- 5).

» Definition. A (geometric Holder) p-rough vector field is a family
(Vis)ocs<e<T, where Vs = (Vis, Vis) and Vs is a second order
differential operator s.t.

(i) the vector fields Vs are C} with
[Vislles

0<s<t<T |t — 5\%

(ii) the second order differential operators
1
Wts = Vts - § Vts Vts

are actually vector fields, and
| Wis||c2

0<s<t<T |t — 5\;%



3.1 Rough vector fields

Let 2 < p < 3 be given, and V(- t) a time-dependent velocity field on
E. Set Vis(-) = V(-,t) — V(- 5).

» Definition. A (geometric Holder) p-rough vector field is a family
(Vis)ocs<e<T, where Vs = (Vis, Vis) and Vs is a second order
differential operator s.t.

(i) the vector fields Vs are C} with
[Vislles

0<s<t<T |t — 5\%

(ii) the second order differential operators
1
Wts = Vts - § Vts Vts

are actually vector fields, and
| Wis||c2

0<s<t<T |t — 5\%
(iii) we have
Vts - Vtu + Vus Vtu + Vus
forall0<s<u<t<T.



3.2 Rough flows

» Definition. We define a norm

% W,
HVH — sup H fSHCi v || tSHC;
0<s<t<T | [t —s|p |t —s|»

and a metric on the set of geometric p-rough vector fields setting
d(V,V') :=||V-V|.

Let /s be the time 1 map of the ODE
)./u: (Vts+Wts)(}/u)7 O<u<1



3.2 Rough flows

» Definition. We define a norm

V, W,
HVH — sup H fSHC3 || tSHC2
0<s<t<T |t—5\ |t—5\

and a metric on the set of geometric p-rough vector fields setting
d(V,V') :=||V-V|.

Let /s be the time 1 map of the ODE
yu: (Vts+Wts)(YU)7 0<U<1

» Proposition [B3, 14']. We have for all f nice enough
[ o pes = (F + Vst +Visf)|| < e(F,V) |t — 57,
and Ju is a C*-approximate flow which depends continuously on V.
The unique flow associated to y is said to solve the RDE on flows
dp = V(p, odt),

and is called a rough flow; it is a continuous function of V.



3.3 Stochastic rough flows

Let V; be a vector valued semimartingale on R?. Canonical
decomposition " martingale+BV"

Vi(x) = M(x) + Be(x).
Assume
L (Mi(x,-), Mi(x,-)), = 3 a¥(x,y;s) ds, for some
Ci;fy—valued processes (a(-, -, S))ogng'

2. B(x,t) = fot b(x; s) ds, for some C;“-valued process
(b('vs»ogsgr



3.3 Stochastic rough flows

Let V; be a vector valued semimartingale on R?. Canonical
decomposition " martingale+BV"

Vi(x) = Me(x) 4+ Be(x).
Assume
L (Mi(x,-), Mi(x,-)), = 3 a¥(x,y;s) ds, for some
Ci;fy—valued processes (a(-, -, S))ogng'
2. B(x,t) = fot b(x; s) ds, for some C;“-valued process

(b('vs»ogsgr

» Theorem [B3, 14']. One can lift V to a rough vector field V, and the
solution to the RDE on flows

dp = V(\p Odt)
is the stochastic flow associated with the nonlinear SDE

er = V(Xf, Odt)

» One can also lift Gaussian vector fields to rough vector-fields.



[B1, 12'] Flows driven by rough paths
(Submitted)

[B2, 13']  Flows driven by Banach space-valued rough paths
(To appear in Séminaire Prob., 14")

[B3, 141 Rough flows
(To be submitted)

Lebesgue Centre invites applications for a 1 year postdoc position, in
Rennes, France, starting Sept. 2014: www.lebesgue.fr

Deadline for application: March 30th 2014. Answer shortly afterward.



Local C!-approximate flows with exponential growth

» Definition. An E-valued map 11 of class C? defined on

U{X} X {(s7 £);0<t—s< coefcllx‘}.

xeE

o forall R >0and all0 < t—s< cye R, we have

| (s = 10) )js, | <c(R)E=sl#

H [hts — Id)

el e = Oc/(R) le=I(1)-

Given € > 0,3 R. s.t. gy, o pys well-defined on Bg, for R > R., if
0<t—s<cge Fande< =2 <1—e

e There are positive constants ¢, and a > 1 s.t. for all R > R, all
0<s<u<tasabove and x € Br, we have

|ll/ru 0 tys(x) — uts(x)| < ce2X|r — g2

| Dx (12 © frus) — Dxpies| < c e[t — 5|2,



Local C!-approximate flows with exponential growth

» Theorem [B1, 12']. A local C!-approximate flows with exponential
growth defines a unique flow on E to which one can associate a
function € : (0,00) — Ry such that

| (e =), | < clRIIE =P

oo

holds for all R > 0 and t — s < ¢(R).
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