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It is easy to construct flows!

approximate flow
simple−→

continuous
flow

Deal with

I classical RDEs with infinite dimensional state
space/signal: choose an approximate flow with the
awaited ”Taylor expansion”

I stochastic mean field RDEs

I path-dependent RDEs

I analogue of Le Jan-Watanabe-Kunita... stochastic flows



Layout of the talk

1. Approximate flows and flows

2. From controlled ODEs to RDEs

3. Rough flows



1.1 Feyel-de la Pradelle’ sewing lemma

I Definition. E a Banach space. An E-valued map
(
µts

)
06s6t61

is said

to be approximately additive if we have∣∣(µtu + µus

)
− µts

∣∣ 6 c1|t − s|a,

for all 0 6 s 6 u 6 t 6 1, for some positive constants c1 and a > 1.

For a partition πts = {s < t1 < · · · < tn < t} of [s, t], set

µπts :=
n−1∑
i=0

µti+1ti .

I Lemma [FdlP, 06’]. An approximately additive continuous map
defines a unique additive map ϕ st.

∣∣ϕts − µts

∣∣ . |t − s|a; moreover∣∣ϕts − µπts

∣∣ . c2
1

∣∣πts ∣∣a−1
.
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1.2 Approximate flows and flows
I Definition. A C1-approximate flow is a family of C2 maps
µts : E → E , continuous wrt (s, t) for uniform convergence, with∥∥µts − I

∥∥
C2 6 ot−s(1), and∥∥µtu ◦ µus − µts

∥∥
C1 6 c1 |t − s|a

for some positive constants c1 and a > 1 and all 0 6 s 6 u 6 t 6 T .

For a partition πts = {s < t1 < · · · < tn < t} of [s, t], set

µπts :=©n−1
i=0 µti+1ti .

I Theorem [B1, 12’]. A C1-approximate flow µ defines a unique flow
ϕ st.

∥∥ϕts − µts

∥∥
∞ . |t − s|a; moreover∥∥ϕts − µπts

∥∥
∞ . c2

1

∣∣πts ∣∣a−1
,

and the ϕts are uniformly Lipschitz continuous.

Rks. • Elementary and short proof.

• In practical situations, choice of µts guided by local considerations
on ”Taylor expansions”.
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2.1 Flows generated by classical controlled ODEs

Given h ∈ Cα, α > 1
2 and F =

(
V1, . . . ,V`

)
vector fields on E, of class C2

b

dzt = F(zt) dht . (2.1)

I Definition. A solution flow to equation (2.1) is a flow ϕ with a
”uniform Taylor expansion”, at any time s and any point x, of the form

f
(
ϕts(x)

)
= f
(
x
)

+ hi
ts(Vi f )(x) + O|t − s|>1, (2.2)

for all f regular enough.

I Method for constructing the solution flow to equation (2.1)

1. Candidate for a map µts with good Taylor expansion

µts(x) = x + hi
tsVi (x).

It satisfies (2.2) but is not a flow.

2. µ is a C1-approximate flow:
∥∥µtu ◦ µus − µts

∥∥
C1 6 c1 |t − s|2α.

3. Its associated flow satisfies (2.2) since
∥∥ϕts − µts

∥∥
∞ . |t − s|2α.
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2.2 Flows generated by classical RDEs
F =

(
V1, . . . ,V`

)
: Lip3 vector fields on E, X a weak geometric Hölder

p-rough path over R`.
dzt = F(zt) X(dt). (2.3)

I Definition. A solution flow to equation (2.3) is a flow ϕ with
”uniform Taylor expansion”, at any time s and any point x, of the form

f
(
ϕts(x)

)
= f (x) +

∑
|I |6[p]

X I
ts(VI f )(x) + O|t − s|>1,

with Vi identified with a first order diff. operator and

VI f = Vi1 · · ·Vik f , if I =
(
i1, . . . , ik

)
.

I Coordinate-free formulation: F a Lip3(E,E)-valued 1-form on R`.
Set F⊗(1) = Id, and for u, ui ∈ R`, e, e′ ∈ T

[p]
`

F⊗(u) = F(u) : 1st order diff. op.

F⊗(u1 ⊗ · · · ⊗ uk) = F(u1) · · ·F(uk) : kth order diff. op.

Extend by linearity; we have

F⊗(ee′) = F⊗(e)F⊗(e′), and F⊗
(
[e, e′]

)
=
[
F⊗(e),F⊗(e′)

]
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2.2 Flows generated by classical RDEs
In those terms, ϕ is a solution flow to the preceeding RDE iff

f
(
ϕts(x)

)
=
(
F⊗(Xts)f

)
(x) + O|t − s|>1.

Formalism adapted to infinite dimensional rough signals! Given an
infinite dimensional weak geometric Hölder p-rough path X, set

Λts = log Xts .

Define µts as the time 1 map of the ODE

ẏu = F⊗(Λts)(yu), 0 6 u 6 1.

I Proposition [B1-B2, 12’-13’]. We have for all f nice enough∥∥f ◦ µts − F⊗(Xts)f
∥∥
∞ 6 c(f ,X) |t − s|a,

for some a > 1, and µ is a C1-approximate flow.

I Theorem [B1-B2, 12’-13’]. The RDE dzt = F(zt) X(dt) has a unique
solution flow ϕ. It satisfies∥∥ϕts − µπts

∥∥
∞ . c2

1

∣∣πts ∣∣a−1
,

where c1 is polynomial in the norm of X.
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2.2 Flows generated by classical RDEs
I Proof of proposition: idea. Based on the following exact formula
obtained by using repeatedly the identity

f (yr ) = f (x) +

∫ r

0

(
F⊗
(
Λts

)
f
)

(yu) du, 0 6 r 6 1,

and the morphism property of F⊗, and by separating terms according to
their size.

f
(
µts(x)

)
= f (x) +

n∑
`=1

1

`!

∑
k1+···+k`6[p]

(
F⊗(πk`Λts · · ·πk1

Λts
)
f
)

(x)

+
∑

k1+···+kn6[p]

∫
∆n

{(
F⊗(πknΛts · · ·πk1

Λts
)
f
)(

ysn
)
−
(
F⊗(πknΛts · · ·πk1

Λts
)
f
)

(x)
}
ds

+
n∑

`=1

1

`!

∑
k1+···+k`>[p]+1

(
F⊗(πk`Λts · · ·πk1

Λts
)
f
)

(x)

+
∑

k1+···+kn>[p]+1

∫
∆n

{(
F⊗(πk[p]

Λts · · ·πk1
Λts
)
f
)(

ysn
)
−
(
F⊗(πk[p]

Λts · · ·πk1
Λts
)
f
)

(x)
}
ds

Same computation made independently by Boutaib, Gyurko, Lyons,
Yang, 13’, to prove the Taylor expansion of the proposition.



2.3 An illustration: stochastic mean field RDEs

Rk. The above results also hold for time-dependent vector fields,
depending on time as a Lipschitz function.

Let X be a random (infinite dimensional) Holder weak geometric
p-rough path. The equation

dzt = V
(
zt ,L(zt)

)
dt + F(zt) X(dt) (2.4)

represents the dynamics in E of a typical particle in a large N limit of an
interacting particle system with mean field interaction in the drift.

d(P,Q) := sup
{

(g ,P)− (g ,Q) ; ‖g‖Cγ 6 1
}

I Theorem [B1, 12’]. Assume F is C[p]+1
b and V (·,P) is C2

b , uniformly
wrt P, and ∥∥V (·,P)− V (·,Q)

∥∥
∞ 6 λd(P,Q).

If E ‖X‖2([p]+1) <∞, then equation (2.4) has a unique solution.
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2.4 Variations and refinements

I Refined definition of C1-approximate flow and theorem on their
associated flow give existence and well-posedness results for
classical RDEs under optimal regularity conditions (with infinite
dimensional rough signal and state space), [B1-B2, 12’-13’].

I A notion of local C1-approximate flow can be used to prove
existence and well-posedness results for RDEs with unbounded
vector fields, [B1, 12’].



3. From stochastic flows to rough flows

• Ito setting ◦dxt = Vi (xt) ◦dB i
t one can separate

space (Vi ) and noise (B)

• Le Jan-Watanabe-Kunita dyt = F(yt , ◦dBt) one cannot separate
stochastic flow setting space from noise

Stochastic flows: the fundamental object is a vector field-valued
semimartingale.

• Rough paths setting lift B to a rough path B RDE dxt = F(xt) X(dt)

• Rough flows setting lift F(x , ◦dBt) to ? ?!
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3.1 Rough vector fields
Let 2 < p < 3 be given, and V (·, t) a time-dependent velocity field on
E. Set Vts(·) = V (·, t)− V (·, s).

I Definition. A (geometric Holder) p-rough vector field is a family
(Vts)06s6t6T , where Vts = (Vts ,Vts) and Vts is a second order
differential operator s.t.

(i) the vector fields Vts are C3
b with

sup
06s6t6T

‖Vts‖C3

|t − s|
1
p

<∞,

(ii) the second order differential operators

Wts := Vts −
1

2
VtsVts

are actually vector fields, and

sup
06s6t6T

‖Wts‖C2

|t − s|
2
p

<∞,

(iii) we have
Vts = Vtu + VusVtu + Vus

for all 0 6 s 6 u 6 t 6 T .
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3.2 Rough flows
I Definition. We define a norm

‖V‖ := sup
06s6t6T

{
‖Vts‖C3

|t − s|
1
p

∨ ‖Wts‖C2

|t − s|
2
p

}
and a metric on the set of geometric p-rough vector fields setting

d(V,V′) := ‖V − V′‖.

Let µts be the time 1 map of the ODE

ẏu =
(
Vts + Wts

)
(yu), 0 6 u 6 1.

I Proposition [B3, 14’]. We have for all f nice enough∥∥f ◦ µts −
(
f + Vts f + Vts f

)∥∥
∞ 6 c(f ,V) |t − s|>1,

and µ is a C1-approximate flow which depends continuously on V.

The unique flow associated to µ is said to solve the RDE on flows

dϕ = V(ϕ, ◦dt),

and is called a rough flow; it is a continuous function of V.



3.2 Rough flows
I Definition. We define a norm

‖V‖ := sup
06s6t6T

{
‖Vts‖C3

|t − s|
1
p

∨ ‖Wts‖C2

|t − s|
2
p

}
and a metric on the set of geometric p-rough vector fields setting

d(V,V′) := ‖V − V′‖.

Let µts be the time 1 map of the ODE
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3.3 Stochastic rough flows
Let Vt be a vector valued semimartingale on Rd . Canonical
decomposition ”martingale+BV”

Vt(x) = Mt(x) + Bt(x).

Assume

1.
〈
M i (x , ·),M j(x , ·)

〉
t

=
∫ t

0
aij(x , y ; s) ds, for some

C3+ε
b;x,y -valued processes

(
a(·, ·, s)

)
06s6T

,

2. B(x , t) =
∫ t

0
b(x ; s) ds, for some C3+ε

b -valued process(
b(·, s)

)
06s6T

.

I Theorem [B3, 14’]. One can lift V to a rough vector field V, and the
solution to the RDE on flows

dϕ = V(ϕ, ◦dt)

is the stochastic flow associated with the nonlinear SDE

dxt = V (xt , ◦dt).

I One can also lift Gaussian vector fields to rough vector fields.
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[B1, 12’] Flows driven by rough paths
(Submitted)

[B2, 13’] Flows driven by Banach space-valued rough paths
(To appear in Séminaire Prob., 14’)

[B3, 14’] Rough flows
(To be submitted)

Lebesgue Centre invites applications for a 1 year postdoc position, in
Rennes, France, starting Sept. 2014: www.lebesgue.fr

Deadline for application: March 30th 2014. Answer shortly afterward.



Local C1-approximate flows with exponential growth

I Definition. An E-valued map µ of class C2 defined on⋃
x∈E
{x} ×

{
(s, t) ; 0 6 t − s 6 c0e−c1|x|

}
.

• for all R > 0 and all 0 6 t − s 6 c0e−c1R , we have∥∥∥(µts − Id
)∣∣BR

∥∥∥
C1

6 c(R) |t − s|
1

2p∥∥∥(µts − Id
)∣∣BR

∥∥∥
C2

= oc′(R) |t−s|(1).

Given ε > 0,∃Rε s.t. µtu ◦ µus well-defined on BR , for R > Rε, if
0 6 t − s 6 c0e−c1R and ε 6 u−s

t−s 6 1− ε.
• There are positive constants c2 and a > 1 s.t. for all R > Rε, all

0 6 s 6 u 6 t as above, and x ∈ BR , we have∣∣µtu ◦ µus(x)− µts(x)
∣∣ 6 c ec2|x||t − s|a∣∣Dx

(
µtu ◦ µus

)
− Dxµts

∣∣ 6 c ec2|x||t − s|a.



Local C1-approximate flows with exponential growth

I Theorem [B1, 12’]. A local C1-approximate flows with exponential
growth defines a unique flow on E to which one can associate a
function ε : (0,∞)→ R+ such that∥∥∥(ϕts − µts

)∣∣BR

∥∥∥
∞

6 c(R) |t − s|a

holds for all R > 0 and t − s 6 ε(R).
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