Stochastic Burgers-Type Equations

M. Hairer

University of Warwick

IPAM, January 25, 2011

Take μ_0 Brownian bridge measure and μ the law of

du = b(u) dt + dB(t) .

By Girsanov's formula, one has

$$\mu(du) = \exp\left(\int b(u) \, du(t) - \frac{1}{2} \int |b(u)|^2 \, dt\right) \mu_0(du)$$
 ,

with $\Phi(u) = |b(u)|^2 - \operatorname{div} b(u)$. Thus, formally, μ is invariant for

$$du = \partial_t^2 u \, d\tau - \frac{1}{2} \nabla \Phi(u) \, d\tau - \left(Db(u) - Db(u)^T \right) \partial_t u \, d\tau + \sqrt{2} \, dW \, d\tau$$

Take μ_0 Brownian bridge measure and μ the law of

du = b(u) dt + dB(t) .

By Girsanov's formula, one has

$$\mu(du) = \exp\left(\int b(u) \circ du(t) - \frac{1}{2} \int \Phi(u) \, dt\right) \mu_0(du) ,$$

with $\Phi(u) = |b(u)|^2 - \operatorname{div} b(u)$. Thus, formally, μ is invariant for

$$du = \partial_t^2 u \, d\tau - \frac{1}{2} \nabla \Phi(u) \, d\tau - \left(Db(u) - Db(u)^T \right) \partial_t u \, d\tau + \sqrt{2} \, dW$$

Take μ_0 Brownian bridge measure and μ the law of

du = b(u) dt + dB(t) .

By Girsanov's formula, one has

$$\mu(du) = \exp\left(\int b(u) \circ du(t) - \frac{1}{2} \int \Phi(u) \, dt\right) \mu_0(du) ,$$

with $\Phi(u) = |b(u)|^2 - \operatorname{div} b(u)$. Thus, formally, μ is invariant for

$$du = \partial_t^2 u \, d\tau - \frac{1}{2} \nabla \Phi(u) \, d\tau - \left(Db(u) - Db(u)^T \right) \partial_t u \, d\tau + \sqrt{2} \, dW$$

Take μ_0 Brownian bridge measure and μ the law of

du = b(u) dt + dB(t) .

By Girsanov's formula, one has

$$\mu(du) = \exp\left(\int b(u) \circ du(t) - \frac{1}{2} \int \Phi(u) \, dt\right) \mu_0(du) ,$$

with $\Phi(u) = |b(u)|^2 - \operatorname{div} b(u)$. Thus, formally, μ is invariant for

$$du = \partial_t^2 u \, d\tau - \frac{1}{2} \nabla \Phi(u) \, d\tau - \left(Db(u) - Db(u)^T \right) \partial_t u \, d\tau + \sqrt{2} \, dW$$

Object of interest

Stochastic "Burgers-type" equations of the form

$$\partial_t u = \partial_x^2 u + f(u) + g(u) \, \partial_x u + \xi$$
, $x \in S^1$,

with ξ space-time white noise, $\mathbf{E}\xi(x,t)\xi(y,s) = \delta(t-s)\delta(x-y)$.

Important: x is one-dimensional, but $u(x,t) \in \mathbb{R}^n$. We do not assume that there exists G such that $g(u)\partial_x u = \partial_x G(u)!$

Questions: Are there solutions, what do they look like, and what does it even mean to be a solution?

Object of interest

Stochastic "Burgers-type" equations of the form

$$\partial_t u = \partial_x^2 u + f(u) + g(u) \, \partial_x u + \xi$$
, $x \in S^1$,

with ξ space-time white noise, $\mathbf{E}\xi(x,t)\xi(y,s) = \delta(t-s)\delta(x-y)$.

Important: x is one-dimensional, but $u(x,t) \in \mathbb{R}^n$. We do not assume that there exists G such that $g(u)\partial_x u = \partial_x G(u)!$

Questions: Are there solutions, what do they look like, and what does it even mean to be a solution?

Object of interest

Stochastic "Burgers-type" equations of the form

$$\partial_t u = \partial_x^2 u + f(u) + g(u) \, \partial_x u + \xi$$
, $x \in S^1$,

with ξ space-time white noise, $\mathbf{E}\xi(x,t)\xi(y,s) = \delta(t-s)\delta(x-y)$.

Important: x is one-dimensional, but $u(x,t) \in \mathbb{R}^n$. We do not assume that there exists G such that $g(u)\partial_x u = \partial_x G(u)!$

Questions: Are there solutions, what do they look like, and what does it even mean to be a solution?

What is the problem?

Consider the linearised equation

$$\partial_t \psi = \partial_x^2 \psi + \xi \; .$$

Law at any t > 0 equivalent to Wiener measure.

Consequence: Cannot give classical meaning to

 $\int arphi(x) g(u(x)) \, \partial_x u \, dx$,

even for smooth φ . No good notion of weak solution!

Expected behaviour: Solution might depend on space-discretisation, even in the simple cases where $g(u)\partial_x u = \partial_x G(u)!$ Just like Itô integral \neq Stratonovich integral.

What is the problem?

Consider the linearised equation

$$\partial_t \psi = \partial_x^2 \psi + \xi \,.$$

Law at any t > 0 equivalent to Wiener measure.

Consequence: Cannot give classical meaning to

$$\int arphi(x) g(u(x)) \, \partial_x u \, dx$$
 ,

even for smooth φ . No good notion of weak solution!

Expected behaviour: Solution might depend on space-discretisation, even in the simple cases where $g(u)\partial_x u = \partial_x G(u)!$ Just like Itô integral \neq Stratonovich integral.

What is the problem?

Consider the linearised equation

$$\partial_t \psi = \partial_x^2 \psi + \xi \,.$$

Law at any t > 0 equivalent to Wiener measure.

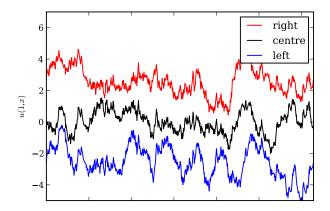
Consequence: Cannot give classical meaning to

$$\int arphi(x) g(u(x)) \, \partial_x u \, dx$$
 ,

even for smooth φ . No good notion of weak solution!

Expected behaviour: Solution might depend on space-discretisation, even in the simple cases where $g(u)\partial_x u = \partial_x G(u)!$ Just like Itô integral \neq Stratonovich integral.

Numerical Evidence (With J. Voß)



Numerical solution of stochastic Burgers at time 1 with three discretisations for the nonlinear term $u \partial_x u$. The centred discretisation converges to the "correct" solution.

Theoretical result (With J. Maas)

Take $u \in \mathbf{R}$ (say) and consider approximations of the form

$$\partial_t u_{\varepsilon} = f(-\varepsilon^2 \partial_x^2) \partial_x^2 u_{\varepsilon} + g(u_{\varepsilon}) D_{\varepsilon} u_{\varepsilon} + \sigma(-\varepsilon^2 \partial_x^2) \xi , \qquad (\star)$$

where f(0) = 1, $\sigma(0) = 1$, and $D_{\varepsilon}u(x) = \frac{1}{\varepsilon}\int u(x + \varepsilon y)\,\mu(dy)$ with $\int d\mu = 0$ and $\int x \,d\mu = 1$. (μ signed measure of finite variance.)

Theorem: Let K be the constant given by

$$K = \frac{1}{2\pi} \int_0^\infty \frac{\sigma^2(t^2)}{t^2 f(t^2)} \int_{\mathbf{R}} (1 - \cos(yt)) d\mu(y) dt .$$

Then solutions to (*) converge as arepsilon o 0 to solutions to

$$\partial_t u = \partial_x^2 u + g(u)\partial_x u - Kg'(u) + \xi$$

Theoretical result (With J. Maas)

Take $u \in \mathbf{R}$ (say) and consider approximations of the form

$$\partial_t u_{\varepsilon} = f(-\varepsilon^2 \partial_x^2) \partial_x^2 u_{\varepsilon} + g(u_{\varepsilon}) D_{\varepsilon} u_{\varepsilon} + \sigma(-\varepsilon^2 \partial_x^2) \xi , \qquad (\star)$$

where f(0) = 1, $\sigma(0) = 1$, and $D_{\varepsilon}u(x) = \frac{1}{\varepsilon}\int u(x + \varepsilon y)\,\mu(dy)$ with $\int d\mu = 0$ and $\int x \,d\mu = 1$. (μ signed measure of finite variance.)

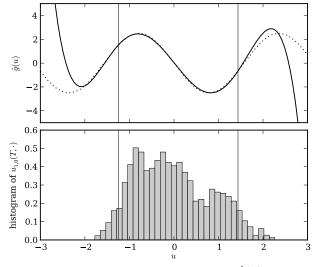
Theorem: Let K be the constant given by

$$K = \frac{1}{2\pi} \int_0^\infty \frac{\sigma^2(t^2)}{t^2 f(t^2)} \int_{\mathbf{R}} (1 - \cos(yt)) d\mu(y) dt \, .$$

Then solutions to (*) converge as $\varepsilon \to 0$ to solutions to

$$\partial_t u = \partial_x^2 u + g(u)\partial_x u - Kg'(u) + \xi$$

Numerical Evidence 4



Fifth order fit for correction term in the case $g'(u) = \sin u$.

A standard trick

Write $u = \psi + v$ with ψ solution to linearised equation. New form of equation:

$$\partial_t v = \partial_x^2 v + g(\psi + v)\partial_x v + g(\psi + v)\partial_x \psi$$
.

Problem: Last term still just as badly behaved...

Advantage: The 'worst' part is $\partial_x \psi$, which is considered given. Solution v is expected to be more regular.

A standard trick

Write $u = \psi + v$ with ψ solution to linearised equation. New form of equation:

$$\partial_t v = \partial_x^2 v + g(\psi + v)\partial_x v + g(\psi + v)\partial_x \psi$$
.

Problem: Last term still just as badly behaved...

Advantage: The 'worst' part is $\partial_x \psi$, which is considered given. Solution v is expected to be more regular.

Possible approach

Could try to define concept of weak solution be interpreting the nonlinearity as

$$\int \varphi(x)g(u_t(x)) \circ d\psi_t(x) . \qquad (\star)$$

Problems:

- 1. Integrand not adapted to filtration generated by ψ_t .
- 2. Complicated dependency of u_t on ψ_t and additional randomness \Rightarrow not easy to control Malliavin derivatives.
- 3. How to stitch together bounds for different values of t?

Solution: Use Lyon's rough path theory to interpret (\star) .

Possible approach

Could try to define concept of weak solution be interpreting the nonlinearity as

$$\int \varphi(x) g(u_t(x)) \circ d\psi_t(x) . \qquad (\star)$$

Problems:

- 1. Integrand not adapted to filtration generated by ψ_t .
- 2. Complicated dependency of u_t on ψ_t and additional randomness \Rightarrow not easy to control Malliavin derivatives.
- 3. How to stitch together bounds for different values of t?

Solution: Use Lyon's rough path theory to interpret (\star) .

Possible approach

Could try to define concept of weak solution be interpreting the nonlinearity as

$$\int \varphi(x) g(u_t(x)) \circ d\psi_t(x) . \qquad (\star)$$

Problems:

- 1. Integrand not adapted to filtration generated by ψ_t .
- 2. Complicated dependency of u_t on ψ_t and additional randomness \Rightarrow not easy to control Malliavin derivatives.
- 3. How to stitch together bounds for different values of t?

Solution: Use Lyon's rough path theory to interpret (\star) .

Crash course in rough paths I

Aim: Give meaning to $\int Y dX$ for X, Y rougher than just C^{α} with $\alpha > \frac{1}{2}$. Additional ingredient: Assume that we know a priori how to define $\int X dX$:

$$\int_x^y \delta X_{x,z} \otimes dX_z := \mathbf{X}_{x,y} , \quad \mathbf{X}_{x,y} + \mathbf{X}_{y,z} = \mathbf{X}_{x,z} - \delta X_{x,y} \otimes \delta X_{y,z} .$$

A rough path (X, \mathbf{X}) consists of both. If $\alpha < \frac{1}{2}$, \mathbf{X} is never determined by X! We say $(X, \mathbf{X}) \in \mathcal{D}^{\alpha}$ if

$$\|X\|_{\alpha} := \sup_{x \neq y} \frac{|\delta X_{x,y}|}{|x-y|^{\alpha}} < \infty , \quad \|\mathbf{X}\|_{2\alpha} := \sup_{x \neq y} \frac{|\mathbf{X}_{x,y}|}{|x-y|^{2\alpha}} < \infty .$$

Crash course in rough paths I

Aim: Give meaning to $\int Y dX$ for X, Y rougher than just C^{α} with $\alpha > \frac{1}{2}$. Additional ingredient: Assume that we know a priori how to define $\int X dX$:

$$\int_x^y \delta X_{x,z} \otimes dX_z := \mathbf{X}_{x,y} , \quad \mathbf{X}_{x,y} + \mathbf{X}_{y,z} = \mathbf{X}_{x,z} - \delta X_{x,y} \otimes \delta X_{y,z} .$$

A rough path (X, \mathbf{X}) consists of both. If $\alpha < \frac{1}{2}$, \mathbf{X} is never determined by X! We say $(X, \mathbf{X}) \in \mathcal{D}^{\alpha}$ if

$$\|X\|_{\alpha} := \sup_{x \neq y} \frac{|\delta X_{x,y}|}{|x-y|^{\alpha}} < \infty , \quad \|\mathbf{X}\|_{2\alpha} := \sup_{x \neq y} \frac{|\mathbf{X}_{x,y}|}{|x-y|^{2\alpha}} < \infty .$$

Crash course in rough paths II

Idea (Lyons, Gubinelli): We can give meaning to $\int Y dX$ if $Y \approx X$ at small scales. Say $Y \in C_X^{\alpha}$ if there is Y' such that

$$\delta Y_{x,y} = Y_x' \, \delta X_{x,y} + R_{x,y}$$
 ,

with

$$\|Y'\|_{lpha} < \infty$$
 , $\|R\|_{2lpha} < \infty$.

Given (X, \mathbf{X}) and (Y, Y'), define $\int Y \, dX$ by

$$\int_0^1 Y \, dX = \lim_{|\mathcal{P}| \to 0} \sum_{[x,y] \in \mathcal{P}} \left(Y_x \, \delta X_{x,y} + Y'_x \, \mathbf{X}_{x,y} \right)$$

Fact: Operation continuous for $\alpha > \frac{1}{3}$!

Crash course in rough paths II

Idea (Lyons, Gubinelli): We can give meaning to $\int Y dX$ if $Y \approx X$ at small scales. Say $Y \in C_X^{\alpha}$ if there is Y' such that

$$\delta Y_{x,y} = Y_x' \, \delta X_{x,y} + R_{x,y}$$
 ,

with

$$\|Y'\|_{lpha} < \infty$$
 , $\|R\|_{2lpha} < \infty$.

Given (X, \mathbf{X}) and (Y, Y'), define $\int Y \, dX$ by

$$\int_0^1 Y\,dX = \lim_{|\mathcal{P}| o 0} \sum_{[x,y] \in \mathcal{P}} \left(Y_x\,\delta X_{x,y} + Y'_x\, \mathrm{X}_{x,y}
ight)$$

Fact: Operation continuous for $\alpha > \frac{1}{3}$!

Crash course in rough paths II

Idea (Lyons, Gubinelli): We can give meaning to $\int Y dX$ if $Y \approx X$ at small scales. Say $Y \in C_X^{\alpha}$ if there is Y' such that

$$\delta Y_{x,y} = Y_x' \, \delta X_{x,y} + R_{x,y}$$
 ,

with

$$\|Y'\|_{lpha} < \infty$$
 , $\|R\|_{2lpha} < \infty$.

Given (X, \mathbf{X}) and (Y, Y'), define $\int Y \, dX$ by

$$\int_0^1 Y \, dX = \lim_{|\mathcal{P}| \to 0} \sum_{[x,y] \in \mathcal{P}} \left(Y_x \, \delta X_{x,y} + Y'_x \, \mathbf{X}_{x,y} \right)$$

Fact: Operation continuous for $\alpha > \frac{1}{3}$!

A concept of solution

Using probabilistic techniques, one can lift ψ canonically to a continuous \mathcal{D}^{α} -valued process (Ψ_t, Ψ_t) for every $\alpha < \frac{1}{2}$ (see Coutin & Qian, Friz & Victoir).

Easy to check that if $g \in C^2$ and $v \in C^{2\alpha}$, then

 $x \mapsto \varphi(x)g(v(x) + \Psi(x))$

belongs to C_{Ψ}^{α} for every $(\Psi, \Psi) \in \mathcal{D}^{\alpha} \Rightarrow$ concept of weak solutions for $u = \psi + v$ with $v \in C^{2\alpha}$.

A concept of solution

Using probabilistic techniques, one can lift ψ canonically to a continuous \mathcal{D}^{α} -valued process (Ψ_t, Ψ_t) for every $\alpha < \frac{1}{2}$ (see Coutin & Qian, Friz & Victoir).

Easy to check that if $g \in \mathcal{C}^2$ and $v \in \mathcal{C}^{2\alpha}$, then

$$x \mapsto \varphi(x)g(v(x) + \Psi(x))$$

belongs to C_{Ψ}^{α} for every $(\Psi, \Psi) \in \mathcal{D}^{\alpha} \Rightarrow$ concept of weak solutions for $u = \psi + v$ with $v \in C^{2\alpha}$.

Uniqueness of solutions?

Picard iteration \Rightarrow local well-posedness. Global well-posedness if g and all its derivatives and bounded.

However, solution depends on the choice of Ψ_t !

Perform Picard iteration with $(\Psi, \tilde{\Psi})$ for

$$(\tilde{\Psi}_t)_{x,y} = (\Psi_t)_{x,y} + \int_x^y h(t,z) dz .$$

Proposition: Solution is same as with (Ψ, Ψ) , but with the nonlinearity replaced by $g_{ij}(u) \partial_x u_j + \partial_k g_{ij}(u) h_{jk}$. Explains form of correction term

Uniqueness of solutions?

Picard iteration \Rightarrow local well-posedness. Global well-posedness if g and all its derivatives and bounded.

However, solution depends on the choice of Ψ_t !

Perform Picard iteration with $(\Psi, \tilde{\Psi})$ for

$$(\tilde{\Psi}_t)_{x,y} = (\Psi_t)_{x,y} + \int_x^y h(t,z) \, dz \; .$$

Proposition: Solution is same as with (Ψ, Ψ) , but with the nonlinearity replaced by $g_{ij}(u) \partial_x u_j + \partial_k g_{ij}(u) h_{jk}$. Explains form of correction term

Uniqueness of solutions?

Picard iteration \Rightarrow local well-posedness. Global well-posedness if g and all its derivatives and bounded.

However, solution depends on the choice of Ψ_t !

Perform Picard iteration with $(\Psi, \tilde{\Psi})$ for

$$(\tilde{\Psi}_t)_{x,y} = (\Psi_t)_{x,y} + \int_x^y h(t,z) \, dz \; .$$

Proposition: Solution is same as with (Ψ, Ψ) , but with the nonlinearity replaced by $g_{ij}(u) \partial_x u_j + \partial_k g_{ij}(u) h_{jk}$. Explains form of correction term

Approximation results

The following equations are classically well-posed:

$$\partial_t u = \partial_x^2 u + g(u) \, \partial_x u + \xi_{\varepsilon} ,$$

 $\partial_t u = \partial_x^2 u - \varepsilon^2 \partial_x^4 u + g(u) \, \partial_x u + \xi ,$

where ξ_{ε} is the spatial convolution of ξ with a mollifier.

Theorem: Both sequences converge as $\varepsilon \to 0$ to the same limit, which is given by the solution to

$$\partial_t u = \partial_x^2 u + g(u) \, \partial_x u + \xi$$
,

interpreted as above.

Work in progress (with J. Maas and H.Weber): Appearance of correction term for full discretisation.

Approximation results

The following equations are classically well-posed:

$$\partial_t u = \partial_x^2 u + g(u) \, \partial_x u + \xi_{\varepsilon} ,$$

 $\partial_t u = \partial_x^2 u - \varepsilon^2 \partial_x^4 u + g(u) \, \partial_x u + \xi ,$

where ξ_{ε} is the spatial convolution of ξ with a mollifier.

Theorem: Both sequences converge as $\varepsilon \to 0$ to the same limit, which is given by the solution to

$$\partial_t u = \partial_x^2 u + g(u) \, \partial_x u + \xi$$
 ,

interpreted as above.

Work in progress (with J. Maas and H.Weber): Appearance of correction term for full discretisation.

Approximation results

The following equations are classically well-posed:

$$\partial_t u = \partial_x^2 u + g(u) \, \partial_x u + \xi_{\varepsilon} ,$$

 $\partial_t u = \partial_x^2 u - \varepsilon^2 \partial_x^4 u + g(u) \, \partial_x u + \xi ,$

where ξ_{ε} is the spatial convolution of ξ with a mollifier.

Theorem: Both sequences converge as $\varepsilon \to 0$ to the same limit, which is given by the solution to

$$\partial_t u = \partial_x^2 u + g(u) \, \partial_x u + \xi$$
 ,

interpreted as above.

Work in progress (with J. Maas and H.Weber): Appearance of correction term for full discretisation.

Back to original problem (kind of)

Let μ_0 be the Gaussian measure on $\mathcal{C}(S^1, \mathbf{R}^n)$ with covariance operator $(1 + \partial_x^2)^{-1}$. For \mathcal{C}_b^{∞} functions F and G, set

$$\frac{d\mu}{d\mu_0}(u) = Z^{-1} \exp\left(\int_0^{2\pi} G(u_t) \circ du_t + \int_0^{2\pi} F(u_t) \, dt\right) \,.$$

(Well-defined Stratonovich integral since μ_0 locally equivalent to Wiener measure.)

Theorem: The measure μ is invariant for the equation

$$\partial_t u = \partial_x^2 u + g(u) \, \partial_x u + f(u) + \sqrt{2} \xi$$
 ,

where $f_i(u) = \partial_i F(u) - u_i$ and $g_{ij}(u) = \partial_i G_j(u) - \partial_j G_i(u)$.

Proof: Show it for μ_0 replaced by μ_{ε} and pass to limit.

Back to original problem (kind of)

Let μ_0 be the Gaussian measure on $\mathcal{C}(S^1, \mathbf{R}^n)$ with covariance operator $(1 + \partial_x^2)^{-1}$. For \mathcal{C}_b^{∞} functions F and G, set

$$\frac{d\mu}{d\mu_0}(u) = Z^{-1} \exp\left(\int_0^{2\pi} G(u_t) \circ du_t + \int_0^{2\pi} F(u_t) \, dt\right) \,.$$

(Well-defined Stratonovich integral since μ_0 locally equivalent to Wiener measure.)

Theorem: The measure μ is invariant for the equation

$$\partial_t u = \partial_x^2 u + g(u) \, \partial_x u + f(u) + \sqrt{2} \xi$$
 ,

where $f_i(u) = \partial_i F(u) - u_i$ and $g_{ij}(u) = \partial_i G_j(u) - \partial_j G_i(u)$.

Proof: Show it for μ_0 replaced by μ_{ε} and pass to limit.

Back to original problem (kind of)

Let μ_0 be the Gaussian measure on $\mathcal{C}(S^1, \mathbf{R}^n)$ with covariance operator $(1 + \partial_x^2)^{-1}$. For \mathcal{C}_b^{∞} functions F and G, set

$$\frac{d\mu}{d\mu_0}(u) = Z^{-1} \exp\left(\int_0^{2\pi} G(u_t) \circ du_t + \int_0^{2\pi} F(u_t) \, dt\right) \, .$$

(Well-defined Stratonovich integral since μ_0 locally equivalent to Wiener measure.)

Theorem: The measure μ is invariant for the equation

$$\partial_t u = \partial_x^2 u + g(u) \, \partial_x u + f(u) + \sqrt{2} \xi$$
 ,

where $f_i(u) = \partial_i F(u) - u_i$ and $g_{ij}(u) = \partial_i G_j(u) - \partial_j G_i(u)$.

Proof: Show it for μ_0 replaced by μ_{ε} and pass to limit.

Multiplicative noise (With H. Weber)

What about equations of the form

$$\partial_t u = \partial_x^2 u + f(u) + g(u) \,\partial_x u + h(u)\xi$$
 ?

Key observation: For θ an adapted process, set

$$d\psi_t = \partial_x^2 \psi_t \, dt + dW(t)$$
, $d\psi_t^{\theta} = \partial_x^2 \psi_t^{\theta} \, dt + \theta_t \, dW(t)$

in the Itô sense.

Proposition: Let θ be α -Hölder in space and $\frac{\alpha}{2}$ -Hölder in time for some $\alpha \in (\frac{1}{3}, \frac{1}{2})$. Then, for any t > 0, ψ_t^{θ} is a rough path (in x) controlled by (Ψ_t, Ψ_t) with "derivative process" θ_t .

Leads to concept of mild solution as before.

Multiplicative noise (With H. Weber)

What about equations of the form

$$\partial_t u = \partial_x^2 u + f(u) + g(u) \,\partial_x u + h(u)\xi$$
 ?

Key observation: For $\boldsymbol{\theta}$ an adapted process, set

$$d\psi_t = \partial_x^2 \psi_t \, dt + dW(t)$$
, $d\psi_t^{\theta} = \partial_x^2 \psi_t^{\theta} \, dt + \theta_t \, dW(t)$

in the Itô sense.

Proposition: Let θ be α -Hölder in space and $\frac{\alpha}{2}$ -Hölder in time for some $\alpha \in (\frac{1}{3}, \frac{1}{2})$. Then, for any t > 0, ψ_t^{θ} is a rough path (in x) controlled by (Ψ_t, Ψ_t) with "derivative process" θ_t .

Leads to concept of mild solution as before.

Multiplicative noise (With H. Weber)

What about equations of the form

$$\partial_t u = \partial_x^2 u + f(u) + g(u) \,\partial_x u + h(u)\xi$$
 ?

Key observation: For $\boldsymbol{\theta}$ an adapted process, set

$$d\psi_t = \partial_x^2 \psi_t \, dt + dW(t)$$
, $d\psi_t^{\theta} = \partial_x^2 \psi_t^{\theta} \, dt + \theta_t \, dW(t)$

in the Itô sense.

Proposition: Let θ be α -Hölder in space and $\frac{\alpha}{2}$ -Hölder in time for some $\alpha \in (\frac{1}{3}, \frac{1}{2})$. Then, for any t > 0, ψ_t^{θ} is a rough path (in x) controlled by (Ψ_t, Ψ_t) with "derivative process" θ_t .

Leads to concept of mild solution as before.

Well-posedness

Idea: Combine Itô calculus (in time) with rough path analysis (in space).

"Inner loop": For a fixed rough-path valued process $(\Phi, oldsymbol{\Phi})$, solve

$$\partial_t v^\Phi = \partial_x^2 v^\Phi + g(\Phi + v^\Phi) \partial_x v^\Phi + g(\varphi + v^\Phi) \partial_x \Phi ,$$

in the same sense as before.

"Outer loop": Solve the fixed point equation

$$u = v^{\Psi^{h(u)}} + \Psi^{h(u)} .$$

Make judicious use of cut-offs to get contraction for short times, then concatenate solutions.

Well-posedness

Idea: Combine Itô calculus (in time) with rough path analysis (in space).

"Inner loop": For a fixed rough-path valued process (Φ, Φ) , solve

$$\partial_t v^\Phi = \partial_x^2 v^\Phi + g(\Phi + v^\Phi) \partial_x v^\Phi + g(\varphi + v^\Phi) \partial_x \Phi \; ,$$

in the same sense as before.

"Outer loop": Solve the fixed point equation

$$u = v^{\Psi^{h(u)}} + \Psi^{h(u)} .$$

Make judicious use of cut-offs to get contraction for short times, then concatenate solutions.

Well-posedness

Idea: Combine Itô calculus (in time) with rough path analysis (in space).

"Inner loop": For a fixed rough-path valued process (Φ, Φ) , solve

$$\partial_t v^\Phi = \partial_x^2 v^\Phi + g(\Phi + v^\Phi) \partial_x v^\Phi + g(\varphi + v^\Phi) \partial_x \Phi \; ,$$

in the same sense as before.

"Outer loop": Solve the fixed point equation

$$u = v^{\Psi^{h(u)}} + \Psi^{h(u)} .$$

Make judicious use of cut-offs to get contraction for short times, then concatenate solutions.

- What about numerical schemes for state-dependent noise? One can guess answer and we "almost" have a proof.
- Higher space dimensions? (What is the "right" class of equations in this case?)
- What about starting from SDEs with multiplicative noise?
- What about KPZ equation in 1D? Seems quite far off (one derivative), but one can exploit bilinear structure to gain something.
- Other KPZ-related dynamics. For example: motion of a random string constrained on a manifold.

- What about numerical schemes for state-dependent noise? One can guess answer and we "almost" have a proof.
- Higher space dimensions? (What is the "right" class of equations in this case?)
- What about starting from SDEs with multiplicative noise?
- What about KPZ equation in 1D? Seems quite far off (one derivative), but one can exploit bilinear structure to gain something.
- Other KPZ-related dynamics. For example: motion of a random string constrained on a manifold.

- What about numerical schemes for state-dependent noise? One can guess answer and we "almost" have a proof.
- Higher space dimensions? (What is the "right" class of equations in this case?)
- What about starting from SDEs with multiplicative noise?
- What about KPZ equation in 1D? Seems quite far off (one derivative), but one can exploit bilinear structure to gain something.
- Other KPZ-related dynamics. For example: motion of a random string constrained on a manifold.

- What about numerical schemes for state-dependent noise? One can guess answer and we "almost" have a proof.
- Higher space dimensions? (What is the "right" class of equations in this case?)
- What about starting from SDEs with multiplicative noise?
- What about KPZ equation in 1D? Seems quite far off (one derivative), but one can exploit bilinear structure to gain something.
- Other KPZ-related dynamics. For example: motion of a random string constrained on a manifold.

- What about numerical schemes for state-dependent noise? One can guess answer and we "almost" have a proof.
- Higher space dimensions? (What is the "right" class of equations in this case?)
- What about starting from SDEs with multiplicative noise?
- What about KPZ equation in 1D? Seems quite far off (one derivative), but one can exploit bilinear structure to gain something.
- Other KPZ-related dynamics. For example: motion of a random string constrained on a manifold.