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Motivation (Path Sampling)

Take 19 Brownian bridge measure and p the law of
du = b(u)dt + dB(t) .
By Girsanov's formula, one has
p(du) = exp / b(u) o du(t) — % / @(u)dt ) o)

with ®(u) = |b(u)|? — divb(u). Thus, formally, 1 is invariant for
du = 0?udr — %V@(u) dr — (Db(u) — Db(u)T)dudr + V2 dW .
(Work with A. Stuart and J. Voss in the case b = VV. See also

Zabczyk, Vanden Eijnden, Reznikoff & Maths Physics literature)
Problem: What does this actually mean if b is not a gradient?
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Object of interest

Stochastic "Burgers-type” equations of the form
Opu = O%u+ f(u) + g(u) Opu + £, zest,
with £ space-time white noise, E¢(z,1){(y, s) = 6(t — s)d(z — y).

Important: z is one-dimensional, but u(z,t) € R™. We do not
assume that there exists G such that g(u)0,u = 9,G(u)!

Questions: Are there solutions, what do they look like, and what
does it even mean to be a solution?
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What is the problem?

Consider the linearised equation
Oy = Oyp + € .
Law at any ¢ > 0 equivalent to Wiener measure.

Consequence: Cannot give classical meaning to

/sO(x)g(u(x)) dpudz

even for smooth . No good notion of weak solution!

Expected behaviour: Solution might depend on
space-discretisation, even in the simple cases where
g(u)O0zu = 0;G(u)! Just like 1t6 integral # Stratonovich integral.



Numerical Evidence (With J. VoB)
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Numerical solution of stochastic Burgers at time 1 with three
discretisations for the nonlinear term uw 0,u. The centred
discretisation converges to the “correct” solution.
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Theoretical result (With J. Maas)
Take u € R (say) and consider approximations of the form
Opu: = f(_52a§)8gua + g(us)Dsua + (7(_528325)5 , (*)

where f(0) =1, 0(0) = 1, and D.u(z) = 1 [u(z + cy) p(dy) with
Jdp=0and [zdu=1. (usigned measure of finite vanance.)

Theorem: Let K be the constant given by

1 [ %)
Com )y /()

Then solutions to (x) converge as £ — 0 to solutions to

/ (1 — cos(yt))du(y) dt .
R

Ou = 2u+ g(u)0yu — Kg'(u) + ¢,
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Fifth order fit for correction term in the case ¢'(u) = sin u.
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A standard trick

Write u = v + v with 1) solution to linearised equation. New form
of equation:

v = 020 + g +v) v + g(¥ + v) Iyt .
Problem: Last term still just as badly behaved...

Advantage: The ‘worst’ part is 0,1, which is considered given.
Solution v is expected to be more regular.
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Could try to define concept of weak solution be interpreting the
nonlinearity as

[ e@tul@) o din(a) (%)
Problems:

1. Integrand not adapted to filtration generated by ;.

2. Complicated dependency of u; on %; and additional
randomness = not easy to control Malliavin derivatives.

3. How to stitch together bounds for different values of ¢?

Solution: Use Lyon's rough path theory to interpret (x).
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Aim: Give meaning to [ Y dX for X,Y rougher than just C* with
a > % Additional ingredient: Assume that we know a priori how
to define [ X dX:

Y
/ 0X,p @dX. = Xpy, Xpy+Xy.=Xo.—0Xp, ©0X,. .
xr

A rough path (X, X) consists of both. If a < % X is never
determined by X! We say (X, X) € D if

X
<oo, [X|2a:= Supw <00
x

Ay |7 —y[*®

5X
X o o= sup 122l
Ay ZL‘—y|
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Crash course in rough paths [l
Idea (Lyons, Gubinelli): We can give meaning to [ Y dX if
Y ~ X at small scales. Say Y € C% if there is Y’ such that
Yy = vy 0Xzy + Rey

with
1Y la <00,  ||R]|2a < oo .

Given (X,X) and (Y,Y”), define [Y dX by

Vax = lim > (Y,6X,,+V/X,,)
[z,y]eP

Fact: Operation continuous for o > %!



A concept of solution

Using probabilistic techniques, one can lift ¢ canonically to a
continuous D-valued process (U;, ¥;) for every o < 1 (see
Coutin & Qian, Friz & Victoir).



A concept of solution

Using probabilistic techniques, one can lift ¢ canonically to a
continuous D-valued process (U;, ¥;) for every o < 1 (see
Coutin & Qian, Friz & Victoir).

Easy to check that if g € C? and v € C?@, then
T go(;r)g(v(x) + \Il(x))

belongs to Cg, for every (¥, ¥) € D = concept of weak solutions
for u = 1) + v with v € C?“.
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Uniqueness of solutions?

Picard iteration = local well-posedness. Global well-posedness if g
and all its derivatives and bounded.

However, solution depends on the choice of ¥;!

Perform Picard iteration with (¥, ®) for

(‘I’t):c,y = (‘I’t)m,y + /y h(t,z)dz .

Proposition: Solution is same as with (U, ¥), but with the
nonlinearity replaced by g;;(u) Oru; 4 Orgij(u) hji. Explains form
of correction term
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Approximation results

The following equations are classically well-posed:
Oy = 3§u + g(u) Opu + -,
O = 02u — 29u 4 g(u) Opu + €,

where & is the spatial convolution of £ with a mollifier.
Theorem: Both sequences converge as € — 0 to the same limit,
which is given by the solution to

Opu = 0%u + g(u) Opu + £

interpreted as above.

Work in progress (with J. Maas and H.Weber): Appearance of
correction term for full discretisation.
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Back to original problem (kind of)

Let o be the Gaussian measure on C(S!, R™) with covariance
operator (1 + 02)~%. For C° functions F and G, set

d,u I 27 27

d—m)(u) =7 exp( ; G(uy) o duy +/0 F(ut)dt) .

(Well-defined Stratonovich integral since pg locally equivalent to
Wiener measure.)

Theorem: The measure p is invariant for the equation
Bru = Dpu + g(u) Opu + f(u) +V2¢,
where f,(u) = 8,F(u) — U; and gij(u) = asz(u) — E)]G,(u)

Proof: Show it for g replaced by u. and pass to limit.
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Multiplicative noise (With H. Weber)

What about equations of the form
Ou = 02u+ f(u) + g(u) Opu + h(u)é ?
Key observation: For € an adapted process, set
dipy = 0% dt +dW (t),  d? = 020 dt + 6, AW (t) ,
in the [t sense.

Proposition: Let 6 be a-Holder in space and §-Holder in time for
some a € (3, 3). Then, for any ¢t > 0, 9/ is a rough path (in z)
controlled by (W;, ¥;) with “derivative process” 6,.

Leads to concept of mild solution as before.
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Well-posedness
Idea: Combine Itd calculus (in time) with rough path analysis (in
space).
“Inner loop”: For a fixed rough-path valued process (®, ®), solve
ow® = 020® 4 g(® 4+ v*)0,0® + g(p +v*)0, ,
in the same sense as before.
“Outer loop": Solve the fixed point equation
u=0"" 4 o

Make judicious use of cut-offs to get contraction for short times,
then concatenate solutions.
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Outlook

What about numerical schemes for state-dependent noise?
One can guess answer and we “almost” have a proof.

Higher space dimensions? (What is the “right” class of
equations in this case?)

What about starting from SDEs with multiplicative noise?

What about KPZ equation in 1D? Seems quite far off (one
derivative), but one can exploit bilinear structure to gain
something.

Other KPZ-related dynamics. For example: motion of a
random string constrained on a manifold.



