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Motivation (Path Sampling)

Take µ0 Brownian bridge measure and µ the law of

du = b(u) dt+ dB(t) .

By Girsanov’s formula, one has

µ(du) = exp
(∫

b(u) du(t)− 1

2

∫
|b(u)|2 dt

)
µ0(du) ,

with Φ(u) = |b(u)|2 − div b(u). Thus, formally, µ is invariant for

du = ∂2
t u dτ −

1

2
∇Φ(u) dτ −

(
Db(u)−Db(u)T

)
∂tu dτ +

√
2 dW .

(Work with A. Stuart and J. Voss in the case b = ∇V . See also
Zabczyk, Vanden Eijnden, Reznikoff & Maths Physics literature)
Problem: What does this actually mean if b is not a gradient?
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Object of interest

Stochastic “Burgers-type” equations of the form

∂tu = ∂2
xu+ f(u) + g(u) ∂xu+ ξ , x ∈ S1 ,

with ξ space-time white noise, Eξ(x, t)ξ(y, s) = δ(t− s)δ(x− y).

Important: x is one-dimensional, but u(x, t) ∈ Rn. We do not
assume that there exists G such that g(u)∂xu = ∂xG(u)!

Questions: Are there solutions, what do they look like, and what
does it even mean to be a solution?
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What is the problem?

Consider the linearised equation

∂tψ = ∂2
xψ + ξ .

Law at any t > 0 equivalent to Wiener measure.

Consequence: Cannot give classical meaning to∫
ϕ(x)g(u(x)) ∂xu dx ,

even for smooth ϕ. No good notion of weak solution!

Expected behaviour: Solution might depend on
space-discretisation, even in the simple cases where
g(u)∂xu = ∂xG(u)! Just like Itô integral 6= Stratonovich integral.
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g(u)∂xu = ∂xG(u)! Just like Itô integral 6= Stratonovich integral.



What is the problem?

Consider the linearised equation

∂tψ = ∂2
xψ + ξ .

Law at any t > 0 equivalent to Wiener measure.

Consequence: Cannot give classical meaning to∫
ϕ(x)g(u(x)) ∂xu dx ,

even for smooth ϕ. No good notion of weak solution!

Expected behaviour: Solution might depend on
space-discretisation, even in the simple cases where
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Numerical Evidence (With J. Voß)

Numerical solution of stochastic Burgers at time 1 with three
discretisations for the nonlinear term u ∂xu. The centred
discretisation converges to the “correct” solution.



Theoretical result (With J. Maas)

Take u ∈ R (say) and consider approximations of the form

∂tuε = f(−ε2∂2
x)∂2

xuε + g(uε)Dεuε + σ(−ε2∂2
x)ξ , (?)

where f(0) = 1, σ(0) = 1, and Dεu(x) = 1
ε

∫
u(x+ εy)µ(dy) with∫

dµ = 0 and
∫
x dµ = 1. (µ signed measure of finite variance.)

Theorem: Let K be the constant given by

K =
1

2π

∫ ∞
0

σ2(t2)

t2f(t2)

∫
R

(
1− cos(yt)

)
dµ(y) dt .

Then solutions to (?) converge as ε→ 0 to solutions to

∂tu = ∂2
xu+ g(u)∂xu−Kg′(u) + ξ ,
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Numerical Evidence 4

Fifth order fit for correction term in the case g′(u) = sinu.



A standard trick

Write u = ψ + v with ψ solution to linearised equation. New form
of equation:

∂tv = ∂2
xv + g(ψ + v)∂xv + g(ψ + v)∂xψ .

Problem: Last term still just as badly behaved...

Advantage: The ‘worst’ part is ∂xψ, which is considered given.
Solution v is expected to be more regular.
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Possible approach

Could try to define concept of weak solution be interpreting the
nonlinearity as ∫

ϕ(x)g(ut(x)) ◦ dψt(x) . (?)

Problems:

1. Integrand not adapted to filtration generated by ψt.

2. Complicated dependency of ut on ψt and additional
randomness ⇒ not easy to control Malliavin derivatives.

3. How to stitch together bounds for different values of t?

Solution: Use Lyon’s rough path theory to interpret (?).
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Crash course in rough paths I

Aim: Give meaning to
∫
Y dX for X,Y rougher than just Cα with

α > 1
2 . Additional ingredient: Assume that we know a priori how

to define
∫
X dX:∫ y

x
δXx,z ⊗ dXz := Xx,y , Xx,y + Xy,z = Xx,z − δXx,y ⊗ δXy,z .

A rough path (X,X) consists of both. If α < 1
2 , X is never

determined by X! We say (X,X) ∈ Dα if

‖X‖α := sup
x 6=y

|δXx,y|
|x− y|α

<∞ , ‖X‖2α := sup
x 6=y

|Xx,y|
|x− y|2α

<∞ .
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Crash course in rough paths II

Idea (Lyons, Gubinelli): We can give meaning to
∫
Y dX if

Y ≈ X at small scales. Say Y ∈ CαX if there is Y ′ such that

δYx,y = Y ′x δXx,y +Rx,y ,

with
‖Y ′‖α <∞ , ‖R‖2α <∞ .

Given (X,X) and (Y, Y ′), define
∫
Y dX by∫ 1

0
Y dX = lim

|P|→0

∑
[x,y]∈P

(
Yx δXx,y + Y ′x Xx,y

)
Fact: Operation continuous for α > 1

3 !
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A concept of solution

Using probabilistic techniques, one can lift ψ canonically to a
continuous Dα-valued process (Ψt,Ψt) for every α < 1

2 (see
Coutin & Qian, Friz & Victoir).

Easy to check that if g ∈ C2 and v ∈ C2α, then

x 7→ ϕ(x)g
(
v(x) + Ψ(x)

)
belongs to CαΨ for every (Ψ,Ψ) ∈ Dα ⇒ concept of weak solutions
for u = ψ + v with v ∈ C2α.
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Uniqueness of solutions?

Picard iteration ⇒ local well-posedness. Global well-posedness if g
and all its derivatives and bounded.

However, solution depends on the choice of Ψt!

Perform Picard iteration with (Ψ, Ψ̃) for

(Ψ̃t)x,y = (Ψt)x,y +

∫ y

x
h(t, z) dz .

Proposition: Solution is same as with (Ψ,Ψ), but with the
nonlinearity replaced by gij(u) ∂xuj + ∂kgij(u)hjk. Explains form
of correction term
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Approximation results

The following equations are classically well-posed:

∂tu = ∂2
xu+ g(u) ∂xu+ ξε ,

∂tu = ∂2
xu− ε2∂4

xu+ g(u) ∂xu+ ξ ,

where ξε is the spatial convolution of ξ with a mollifier.

Theorem: Both sequences converge as ε→ 0 to the same limit,
which is given by the solution to

∂tu = ∂2
xu+ g(u) ∂xu+ ξ ,

interpreted as above.

Work in progress (with J. Maas and H.Weber): Appearance of
correction term for full discretisation.



Approximation results

The following equations are classically well-posed:

∂tu = ∂2
xu+ g(u) ∂xu+ ξε ,

∂tu = ∂2
xu− ε2∂4

xu+ g(u) ∂xu+ ξ ,

where ξε is the spatial convolution of ξ with a mollifier.

Theorem: Both sequences converge as ε→ 0 to the same limit,
which is given by the solution to

∂tu = ∂2
xu+ g(u) ∂xu+ ξ ,

interpreted as above.

Work in progress (with J. Maas and H.Weber): Appearance of
correction term for full discretisation.



Approximation results

The following equations are classically well-posed:

∂tu = ∂2
xu+ g(u) ∂xu+ ξε ,

∂tu = ∂2
xu− ε2∂4

xu+ g(u) ∂xu+ ξ ,

where ξε is the spatial convolution of ξ with a mollifier.

Theorem: Both sequences converge as ε→ 0 to the same limit,
which is given by the solution to

∂tu = ∂2
xu+ g(u) ∂xu+ ξ ,

interpreted as above.

Work in progress (with J. Maas and H.Weber): Appearance of
correction term for full discretisation.



Back to original problem (kind of)

Let µ0 be the Gaussian measure on C(S1,Rn) with covariance
operator (1 + ∂2

x)−1. For C∞b functions F and G, set

dµ

dµ0
(u) = Z−1 exp

(∫ 2π

0
G(ut) ◦ dut +

∫ 2π

0
F (ut) dt

)
.

(Well-defined Stratonovich integral since µ0 locally equivalent to
Wiener measure.)

Theorem: The measure µ is invariant for the equation

∂tu = ∂2
xu+ g(u) ∂xu+ f(u) +

√
2ξ ,

where fi(u) = ∂iF (u)− ui and gij(u) = ∂iGj(u)− ∂jGi(u).

Proof: Show it for µ0 replaced by µε and pass to limit.
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Multiplicative noise (With H. Weber)

What about equations of the form

∂tu = ∂2
xu+ f(u) + g(u) ∂xu+ h(u)ξ ?

Key observation: For θ an adapted process, set

dψt = ∂2
xψt dt+ dW (t) , dψθt = ∂2

xψ
θ
t dt+ θt dW (t) ,

in the Itô sense.

Proposition: Let θ be α-Hölder in space and α
2 -Hölder in time for

some α ∈ (1
3 ,

1
2). Then, for any t > 0, ψθt is a rough path (in x)

controlled by (Ψt,Ψt) with “derivative process” θt.

Leads to concept of mild solution as before.
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Well-posedness

Idea: Combine Itô calculus (in time) with rough path analysis (in
space).

“Inner loop”: For a fixed rough-path valued process (Φ,Φ), solve

∂tv
Φ = ∂2

xv
Φ + g(Φ + vΦ)∂xv

Φ + g(ϕ+ vΦ)∂xΦ ,

in the same sense as before.

“Outer loop”: Solve the fixed point equation

u = vΨh(u)
+ Ψh(u) .

Make judicious use of cut-offs to get contraction for short times,
then concatenate solutions.
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Outlook

• What about numerical schemes for state-dependent noise?
One can guess answer and we “almost” have a proof.

• Higher space dimensions? (What is the “right” class of
equations in this case?)

• What about starting from SDEs with multiplicative noise?

• What about KPZ equation in 1D? Seems quite far off (one
derivative), but one can exploit bilinear structure to gain
something.

• Other KPZ-related dynamics. For example: motion of a
random string constrained on a manifold.
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