Random and Deterministic perturbations of dynamical systems

Leonid Koralov

- D. Dolgopyat, L. Koralov "Averaging of incompressible flows on 2-d surfaces".

- D. Dolgopyat, M. Freidlin, L. Koralov "Deterministic and stochastic perturbations of areapreserving flows on a 2-d torus" (to appear in Ergodic Theory and Dynamical Systems). Incompressible flow:

 $\dot{x}(t) = v(x(t)), \quad x(0) = x_0 \in \mathbb{R}^2 \text{ or } x_0 \in M.$

(a) Hamiltonian flows.

2

Perturbation:

$$dX_t^{\varepsilon} = \frac{1}{\varepsilon} v(X_t^{\varepsilon}) dt + \sigma(X_t^{\varkappa,\varepsilon}) dW_t \quad \text{(random)},$$
$$dX_t^{\varepsilon} = \frac{1}{\varepsilon} v(X_t^{\varepsilon}) dt + b(X_t^{\varkappa,\varepsilon}) dt \quad \text{(deterministic)}.$$

The dynamics consists of the fast motion (with speed of order $1/\varepsilon$) along the unperturbed trajectories together with the slow motion (with speed of order 1) in the direction transversal to the unperturbed trajectories. Averaging - consider $h : \mathbb{R}^2 \to \mathbb{G}$. Then $h(X_t^{\varepsilon}) \to Y_t$ as $\varepsilon \downarrow 0$. Locally (away from the vertices of the graph): $\frac{dY_t}{dt} = \frac{\tilde{b}(Y_t)}{T(Y_t)}$, (deterministic), where $T(h) = \int_{\gamma(h)} \frac{dl}{|\nabla H|}$, $\tilde{b}(h) = \int_{\gamma(h)} \frac{\langle b, \nabla H \rangle}{|\nabla H|} dl$,

 $dY_t = \overline{\sigma}(Y_t) dW_t + \overline{b}(Y_t) dt$ (random perturbations).

Behavior at the vertices. Random perturbations - Freidlin and Wentzell. Deterministic perturbations - regularization required. (Brin and Freidlin).

(b) Locally Hamiltonian flows (there are regions where the unperturbed dynamimcs is ergodic). Example: $H = H_0(x_1, x_2) + \alpha x_1 + \beta x_2$, α/β - irrational.

Part 1 - random perturbations

M - manifold with an area form, v - incompressible vector field, X_t^{ε} - process with generator $L^{\varepsilon} = \frac{1}{\varepsilon}L_v + L_D$.

Unperturbed dynamics:

 $U_1, ..., U_m$ - periodic sets $\mathcal{E}_1, ..., \mathcal{E}_n$ - 'ergodic components' Flow on \mathcal{E}_i is isomorphic to a special flow over an interval exchange transformation.

Graph:

- Each edge corresponds to one of U_k
- Three types of vertices:
- (a) Those corresponding to \mathcal{E}_i ,
- (b) Those corresponding to saddle points,

(c) Those corresponding to equilibriums (but not saddles).

The flow is Hamiltonian on U_k with a Hamiltonian H. Denote: h_k - coordinate on I_k .

Theorem 1 The measure on on $C([0,\infty),\mathbb{G})$ induced by the process $Y_t^{\varepsilon} = h(X_t^{\varepsilon})$ converges weakly to the measure induced by the process with the generator \mathcal{L} with the initial distribution $h(X_0^{\varepsilon})$.

The limiting process is described via its generator \mathcal{L} , which is defined as follows. Let $L_k f(h_k) = a_k(h_k) f'' + b_k(h_k) f'$ be the differential operator on the interior of the edge I_k (coefficients are defined below).

For $f \in D(\mathcal{L})$, we define $\mathcal{L}f = L_k f$ in the interior of each edge, and as the limit of $L_k f$ at the endpoints of I_k .

 $D(\mathcal{L})$ consists of $f \in C(\mathbb{G}) \cap C^2(I_k)$ such that (a) $\lim_{h_k \to 0} L_k f(h_k) = q^V$ exist and are the same for all edges entering the same vertex V. (b) At vertices corresponding to \mathcal{E}_i :

$$\sum_{k=1}^{n} p_k^V \lim_{h_k \to 0} f'(h_k) = q^V.$$

(the same with 0 instead of q^V for vertices corresponding to saddles).

Coefficients:

In local coordinates in U_k ($\omega = dxdy$):

$$dX_t^{\varepsilon} = \frac{1}{\varepsilon} v(X_t^{\varepsilon}) dt + u(X_t^{\varepsilon}) dt + \sigma(X_t^{\varepsilon}) dW_t.$$
 Then,

$$a_{k}(h_{k}) = \frac{1}{2}T^{-1}(h_{k})\int_{\gamma_{k}(h_{k})}\frac{\langle\alpha\nabla H,\nabla H\rangle}{|\nabla H|}dl \quad \text{and}$$

$$b_{k}(h_{k}) = \frac{1}{2}T^{-1}(h_{k})\int_{\gamma_{k}(h_{k})}\frac{2\langle u,\nabla H\rangle + \alpha \cdot H''}{|\nabla H|}dl,$$
where $\alpha = \sigma\sigma^{*}$.

$$p_k^V = \pm \frac{1}{2} \int_{\gamma_k} \frac{\langle \alpha \nabla H, \nabla H \rangle}{|\nabla H|} dl.$$

Ingredients of the proof.

(1) Assume (temporarily) that the area measure λ is invariant for the process for each ε .

For the limit Y_t of $Y_t^{\varepsilon} = h(X_t^{\varepsilon})$, we should have

$$\mathbb{E}[f(Y_T) - f(Y_0) - \int_0^T \mathcal{L}f(Y_s)ds] = 0.$$

Need to prove the following lemma. **Lemma1** For each function $f \in D(\mathcal{L})$ and each T > 0 we have

 $\mathbb{E}_x[f(h(X_T^{\varepsilon})) - f(h(X_0^{\varepsilon})) - \int_0^T \mathcal{L}f(h(X_s^{\varepsilon}))ds] \to 0$ uniformly in $x \in \mathbb{T}^2$ as $\varepsilon \to 0$. (2) Localization (can deal with a star-shaped graph with one accessible vertex)

(3) Need:

 $\mathbb{E}_{x}[f(h(X_{T}^{\varepsilon}))-f(h(X_{0}^{\varepsilon}))-\int_{0}^{T}\mathcal{L}f(h(X_{s}^{\varepsilon}))ds]\to 0$

Split [0, T] into intervals: $[0, \sigma_0], [\sigma_0, \tau_1], [\tau_1, \sigma_1], [\sigma_1, \tau_2], ...$

On intervals $[\tau_n, \sigma_n]$ (inside periodic component) - averaging (Freidlin-Wentzell) with small modifications.

On intervals $[\sigma_n, \tau_{n+1}]$ (getting from the ergodic component into the periodic component):

$$\mathbb{E}_{x}[f(h(X_{\tau_{n+1}}^{\varepsilon})) - f(h(X_{\sigma_{n}}^{\varepsilon})) - \int_{\sigma_{n}}^{\tau_{n+1}} \mathcal{L}f(h(X_{s}^{\varepsilon}))ds] \approx$$

 $\mathbb{E}_{\nu}[f(h(X_{\tau}^{\varepsilon})) - f(h(X_{0}^{\varepsilon})) - \int_{0}^{\tau} \mathcal{L}f(h(X_{s}^{\varepsilon}))ds] \approx$

 $f'(0)\varepsilon^{\alpha} - \mathbb{E}_{\nu}\tau \cdot \mathcal{L}f(0).$

- How can we calculate $\mathbb{E}_{\nu}\tau$?

- Why can we assume that we start with the invariant measure ν ?

If λ is invariant: $\frac{\mathbb{E}_{\nu}\tau}{\lambda(\mathcal{E})} \approx \frac{\mathbb{E}_{\mu}\sigma}{\lambda(U)}$, so

$$\mathbb{E}_{\nu}\tau \approx \frac{\lambda(\mathcal{E})}{\lambda(U)} \cdot \mathbb{E}_{\mu}\sigma \approx \text{const} \cdot \varepsilon^{\alpha}.$$

If λ is not invariant: consider

$$d\widetilde{X}_t^{\varepsilon} = \frac{1}{\varepsilon} v(\widetilde{X}_t^{\varepsilon}) dt + \widetilde{u}(\widetilde{X}_t^{\varepsilon}) dt + \sigma(\widetilde{X}_t^{\varepsilon}) dW_t,$$

(replace u by some \tilde{u} so that λ is invariant for the new process).

By the Girsanov Theorem:

 $\widetilde{\nu} \approx \nu, \quad \mathbb{E}_{\widetilde{\nu}} \widetilde{\tau} \approx \mathbb{E}_{\nu} \tau.$

So, $\mathbb{E}_{\nu}\tau \approx \frac{\lambda(\mathcal{E})}{\lambda(U)} \cdot \mathbb{E}_{\tilde{\mu}}\tilde{\sigma}$ (the gluing conditions are the same as for the measure-preserving process).

(4) Why does $\mathbb{E}_x \sigma^k \to 0$ as $\varepsilon \downarrow 0$? (time to reach U^k)

Let $u^{\varepsilon}(t, y)$, $y \in M \setminus U_k$, be the probability that the process starting at y does not reach U_k before time t.

$$\frac{\partial u^{\varepsilon}(t,y)}{\partial t} = \left(L_D + \frac{1}{\varepsilon}L_v\right)u^{\varepsilon}$$

 $u^{\varepsilon}(0,y) = 1, y \in M \setminus U_k, \quad u^{\varepsilon}(t,y) = 0, t > 0.$

(a) **Lemma** (Zlatos): All $H_0^1(M \setminus U_k)$ -eigenvalues for $v\nabla$ are zero on \mathcal{E} implies that the $L^2(\mathcal{E})$ norm (and so $L^1(\mathcal{E})$ -norm) of $u^{\varepsilon}(t, \cdot)$ tends to zero as $\varepsilon \downarrow 0$ for each t > 0.

(b) A uniform bound on fundamental solution doesn't get affected by adding an incompressible drift term.

(a) and (b) imply that $\mathbb{E}_x \sigma \to 0$. With some effort possible to show that $\mathbb{E}_x \sigma^k \to 0$.

Part 2: Averaging of deterministic perturbations

Recall

$$dX_t^{\varkappa,\varepsilon} = \frac{1}{\varepsilon} v(X_t^{\varkappa,\varepsilon}) dt + b(X_t^{\varkappa,\varepsilon}) dt + \sum_{\varkappa u(X_t^{\varkappa,\varepsilon}) dt + \sqrt{\varkappa}\sigma(X_t^{\varkappa,\varepsilon}) dW_t.$$

Let $Y_t^{\varkappa,\varepsilon} = h(X_t^{\varkappa,\varepsilon})$ be the corresponding process on the graph \mathbb{G} . We demonstrated that the distribution of $Y_t^{\varkappa,\varepsilon}$ converges, as $\varepsilon \downarrow 0$, to the distribution of a limiting process, which will be denoted by Z_t^{\varkappa} . Z_t^{\varkappa} , in turn, converges to the distribution of a limiting Markov process on \mathbb{G} when $\varkappa \downarrow 0$.

The limiting process Z_t can be described as follows. It is a Markov process with continuous trajectories which moves deterministically along an edge I_k of the graph with the speed

$$\overline{b}_k(h_k) = \frac{1}{2} (T_k(h_k))^{-1} \int_{\gamma_k(h_k)} \frac{2\langle b, \nabla H \rangle}{|\nabla H|} dl.$$

If the process reaches V corresponding to an ergodic component, then it either remains at V forever or spends exponential time in V and then continues with deterministic motion away from V along a randomly selected edge (with probabilities which can be specified). The same if V corresponds to a saddle point, but no exponential delay.

Theorem 2 The measure on on $C([0,\infty),\mathbb{G})$ induced by the process Z_t^{\varkappa} converges weakly to the measure induced by the process Z_t with the initial distribution $h(X_0^{\varepsilon})$.

The process Z_t is defined by the deterministic system. The stochastic perturbations are used just for regularization purposes.