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Description of the Problem

Prognosis

Anticipate damage from measured data :
determine requisite information,
number, type and location of sensors.

Challenge

Damage initiates at a very small scale.

Measured data is at a coarse scale.

The details of the microscale for the
specimen being measured are not
known.
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Challenges -Solution

Microscale Simulation
microstructure unknown - can be characterized statistically in the lab.

to determine location of sensors we need to formulate an optimization problem.

mechanistic analysis of an ensemble of microstructures is very expensive.

Solution
Develop a new stochastic mechanistic model with :

State of the model at same scale as experimental observables (scale 1).

Model behavior sensitive to occurences at the scale of damage initiation (scale 2).

Scatter in predictions from model consistent with observed scatter.

Behavior of model honors known accepted conservation laws.
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Part I
Simulation of random polycrystalline microstructure from experimental

data

Experimental database

Simulation of random geometry

Simulation of random material properties
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I. Simulation of random polycrystals based on experimental data

Experimental data

EBSD map of 10X5 [mm] Al-2024

9 pictures (≈ 400 grains)

Grain size, shape and crystallographic orientation Φ = [φ1, φ, φ2]
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I. Simulation of random polycrystals based on experimental data
Statistics of grain geometry and crystallographic orientation obtained from EBSD
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I. Simulation of random polycrystals based on experimental data

(A) Simulation of random geometry

2-D Voronoi-Polycrystal

Poisson-Voronoi tessellation
Parameterized by the intensity of underlying Poisson point process controlling the
average grain size
The usual tessellation is defined with respect to Euclidean distance
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I. Simulation of random polycrystals based on experimental data
(A) Simulation of random geometry
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Classical Voronoi tessellation not capable of generating elongated grains !

Voronoi-G tessellation (T.H. Sheike, 1994)
Extension of classical Voronoi-tessellating by using the following distance

V(x(i)
tes)

def
= {x ∈ Ω | dG(x(i)

tes, x) ≤ dG(x(i)
tes, x

(j)
tes)}, (1)

dG(x, y)
def
=
q

(x, y)T [G] (x, y)

[G] =

»
(1/gx )2 0

0 (1/gy )2

–
gx (resp. gy ) : Rate of growth of tessellation in x (resp. y) direction.
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I. Simulation of random polycrystals based on experimental data

(A) Simulation of random geometry

Let [G] be defined as,

[G] =

»
(1/s)2 0

0 1

–

Algorithm for generating Voronoi-G tessellation
1 Let [Q]← [G] = [Q]T [Q]

2 Generate homogenous Poisson point process x(i)
tes with the desired intensity

3 Modify the coordinate of the points applying the transformation x̃(i)
tes ← [Q]x(i)

tes

4 Generate the classical Poisson Voronoi tessellation V(x̃(i)
tes)

5 Modify the coordinate of all the points y ∈ V(x̃(i)
tes) applying the transformation

˜̃y← [Q]−1y
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I. Simulation of random polycrystals based on experimental data
(A) Simulation of random geometry
Maximum likelihood estimation of the parameter s

ŝ = arg max
b∈R+

L(ω
(1)
exp, . . . , ω

(394)
exp , b),

where L represents the Log-Likelihood function defined as :

L(ω
(1)
exp, . . . , ω

(394)
exp , b) =

394X
i=1

log(pω(ωi
exp, b))
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I. Simulation of random polycrystals based on experimental data
(A) Simulation of random geometry
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(B) Simulation of random properties
Material properties are defined by

The set of Euler angles characterizing the crystallographic orientation of the grains
The elastic parameters of the single crystal

C(cub) =

0BBBBB@
C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

1CCCCCA .
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I. Simulation of random polycrystals based on experimental data

(B) Simulation of random properties
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Sampling from the joint distribution of φ1, φ and φ2 by prescribing :
Marginal cumulative distribution functions

Spearman’s rank correlation matrix

Computing the global elasticity tensor by applying the tensorial transformation :

Ci′ j′k′ l′ = Ri′ iRj′ jRk′k Rl′ lC(cub)
ijkl , R = R(φ1, φ, φ2)
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Part II
Nonparametric probabilistic modeling for upscaling uncertainty

Overview of model construction

Verification and validation

Prognosis using wave propagation
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II. Nonparametric probabilistic modeling for upscaling uncertainty

Definition of scales

Microstructure

Macroscale (RVE) Mesoscale (SVE)
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II. Nonparametric probabilistic modeling for upscaling uncertainty

Objective

Mesoscale material description that (i) captures the effect of subscale heterogeneities
and (ii) could be used in a coarse-scale modeling.

Demonstrate the suitability of the resulting representation at detecting signatures of
subscale damage.

Approach : Nonparametric probabilistic modeling

Constructing a probability distribution on the set of elasticity matrices.

Constrain random matrices to specified physics-based bounds.

Calibrate the random matrices from all the available information.
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II. Nonparametric probabilistic modeling for upscaling uncertainty

Overview of model construction
Let :

N = (C− Cl )
−1 − (Cu − Cl )

−1 > 0,

Maximize : Z
M+

n (R)

ln(p)pN(N) dN

subject to : Z
M+

n (R)

pN(N) dN = 1,

Z
M+

n (R)

N p[N](N) dN = N ∈ M+
n (R),

Z
C

ln(det(N)) pN(N)dN = cN , |cN | < +∞.

pN(N) = IM+
n (R)(N)ĉ0 det(N)λ−1etr{−ΛN N}

ΛN and λ are Lagrange multipliers.

R. Ghanem (USC) IPAM-Jan. 2011 16 / 48



II. Nonparametric probabilistic modeling for upscaling uncertainty
Calibration

Computing the realizations of the bounds for apparent elasticity matrix (Huet’s
partitioning technique)

Computing the realizations of the apparent elasticity matrix

Apparent properties

min ‖〈σ〉BC − [C]〈ε〉BC‖
subject to meaningful constraints

ff
⇒ [Capp]

BCs :

SUBC : t(x) = σ0n(x) ⇒ Lower bound [Capp
σ ]

KUBC : u(x) = ε0x ⇒ Upper bound [Capp
ε ]

MBC (Tension test, e.g.)⇒ Samples of apparent elasticity tensor [Capp]
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II. Nonparametric probabilistic modeling for upscaling uncertainty
Calibration
Huet’s partitioning technique to obtain the realizations of the bounds :

For the volume element smaller that RVE :
[bCapp
σ ] ≤ [Capp

σ ] ≤ [Capp
ε ] ≤ [bCapp

ε ],

....
....

....

....
^

^

Realization of 
lower and upper 

bounds
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II. Nonparametric probabilistic modeling for upscaling uncertainty
Calibration

Step 1 : Compute the deterministic bounds

[Cl ] = arg
[C]∈Cl

min
NsimX
k=1

‖Capp
σ (ωk )− [C]‖F , [Cu ] = arg

[C]∈Cu

min
NsimX
k=1

‖[C]− Capp
ε (ωk )‖F

Step 2 : Compute the realization of apparent elasticity matrix (Tension test)

[Capp] = arg
[Cl ]<[C]<[Cu ]

min ‖〈σ〉MBC − [C]〈ε〉MBC‖

Step 3 : Compute the statistical estimates of parameters for Nsim = 100 and Ω = 0.3× 0.3 [mm]

eδN =

8<: 1

Nsim‖[eN]‖2
F

NsimX
k=1

‖[N(ωk )]− [eN]‖2
F

9=;
1/2

= 0.66

[eN] =
1

Nsim

NsimX
k=1

[N(ωk )] = 10−3

24 0.2667 0.0879 −0.0189
0.0879 0.2214 0.0277
−0.0189 0.0277 0.2366

35

R. Ghanem (USC) IPAM-Jan. 2011 19 / 48



II. Nonparametric probabilistic modeling for upscaling uncertainty
Calibration

Step 1 : Compute the deterministic bounds

[Cl ] = arg
[C]∈Cl

min
NsimX
k=1

‖Capp
σ (ωk )− [C]‖F , [Cu ] = arg

[C]∈Cu

min
NsimX
k=1

‖[C]− Capp
ε (ωk )‖F

Step 2 : Compute the realization of apparent elasticity matrix (Tension test)

[Capp] = arg
[Cl ]<[C]<[Cu ]

min ‖〈σ〉MBC − [C]〈ε〉MBC‖

Step 3 : Compute the statistical estimates of parameters for Nsim = 100 and Ω = 0.3× 0.3 [mm]

eδN =

8<: 1

Nsim‖[eN]‖2
F

NsimX
k=1

‖[N(ωk )]− [eN]‖2
F

9=;
1/2

= 0.66

[eN] =
1

Nsim

NsimX
k=1

[N(ωk )] = 10−3

24 0.2667 0.0879 −0.0189
0.0879 0.2214 0.0277
−0.0189 0.0277 0.2366

35

R. Ghanem (USC) IPAM-Jan. 2011 19 / 48



II. Nonparametric probabilistic modeling for upscaling uncertainty
Calibration

Step 1 : Compute the deterministic bounds

[Cl ] = arg
[C]∈Cl

min
NsimX
k=1

‖Capp
σ (ωk )− [C]‖F , [Cu ] = arg

[C]∈Cu

min
NsimX
k=1

‖[C]− Capp
ε (ωk )‖F

Step 2 : Compute the realization of apparent elasticity matrix (Tension test)

[Capp] = arg
[Cl ]<[C]<[Cu ]

min ‖〈σ〉MBC − [C]〈ε〉MBC‖

Step 3 : Compute the statistical estimates of parameters for Nsim = 100 and Ω = 0.3× 0.3 [mm]

eδN =

8<: 1

Nsim‖[eN]‖2
F

NsimX
k=1

‖[N(ωk )]− [eN]‖2
F

9=;
1/2

= 0.66

[eN] =
1

Nsim

NsimX
k=1

[N(ωk )] = 10−3

24 0.2667 0.0879 −0.0189
0.0879 0.2214 0.0277
−0.0189 0.0277 0.2366

35

R. Ghanem (USC) IPAM-Jan. 2011 19 / 48



II. Nonparametric probabilistic modeling for upscaling uncertainty

Verification
Whether or not the model implementation accurately represent the intended
conceptual description of the model and the solution to the model
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II. Nonparametric probabilistic modeling for upscaling uncertainty
Validation

0.33 mm

0.33 mm
Microstructure SVE ( Random Matrix)
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II. Nonparametric probabilistic modeling for upscaling uncertainty

Validation
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II. Nonparametric probabilistic modeling for upscaling uncertainty
Damage detection
The FE model and applied excitation :

Random 
Matrix Model
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II. Nonparametric probabilistic modeling for upscaling uncertainty
Characterization of the scattered waves due to heterogeneity

Elastodynamic response of linear elastic material :

{δjkρ(x)
∂2

∂t2 +
∂

∂xi
Cijkl (x)

∂

∂xl
}Gkα(x, x′; t) = δjαδ

3(x− x′)δ(t).

Let ui (t) = 〈u(t)〉i + u′ i (t).
Each particular realization of the scattered waveform has different pattern of
fluctuations around the mean response.

The random fluctuations contain information on sub-scale heterogeneities.

The energy of the wave is characterized by the intensity defined as :

Iui
k (t) =

Z
T

(u i
k (t))2dt .

A scalar-valued random variable ηi is defined to characterize the fluctuation :

ηi =
Iu′ i

k (t)

I〈ui
k (t)〉

.

ηi is a measure of deviation of the observed waveform from the mean response.
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II. Nonparametric probabilistic modeling for upscaling uncertainty
Snapshots of the mean displacement field and a typical fluctuation

mean field 〈u(t)〉 - healthy mean field 〈u(t)〉 - damaged

a realization of u′(t) - healthy a realization of u′(t) - damaged
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II. Nonparametric probabilistic modeling for upscaling uncertainty

Probability density function of η at different receivers
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II. Nonparametric probabilistic modeling for upscaling uncertainty

Probability density function of η at different receivers
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Validation of Random Matrix Model
Attenuation coefficient α :

The energy of the wave is characterized by the intensity defined as :

I(y) =

Z
T

(u(y , t))2dt .

Attenuation coefficient α is defined as the rate of exponential decay in the intensity
of the waves :

I(y) = I0e−2αy ,

where I0 is the intensity of the excitation.
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Validation of Random Matrix Model
pdf of attenuation coefficient

Central frequency fc = 10MHz

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

5

10

15

20

25

30

35

40

45

50

α

p
d

f

 

 

RM−Healthy

RM−Damaged

microstructure−Damage

R. Ghanem (USC) IPAM-Jan. 2011 29 / 48



Validation of Random Matrix Model
pdf of attenuation coefficient

Central frequency fc = 2MHz
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Part III
Wave propagation in random polycrystals

Influence of inherent heterogeneity

Influence of intergranular micro-cavities
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III. Wave propagation in random polycrystals
Motivation

Review

Ultrasonic measurements are used for material characterization, detection of anomaly, etc.

Wave Scattering is usually characterized by attenuation and dispersion.

Scattering models are often oversimplified.

Not accurate enough in complex microstructure and for high-frequency regime.

Objective

Present a fine scale numerical model for wave propagation in random polycrystals.

Study the effect of random heterogeneity in ultrasonic waves.

Application

Validate theoretical scattering model in well-controlled microstructure.

Circumvent limitation of experimental measurement.

Facilitate interpretation of ultrasonic measurements.
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III. Wave propagation in random polycrystals

Numerical model

6× 6 [mm] 2-D models of random Voronoi-G polycrystals are generated

Each model consists of, roughly, 800 grains

The models are discretized into the finite plane-strain triangular elements

The time integration scheme based on Newark-β method is implemented in Trilinos for
simulation of wave propagation

The waveforms are obtained in an array of receivers due to the applied Ricker pulse in the
the center
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III. Wave propagation in random polycrystals
Stability of solution with respect to the FE discretization

maximum element size=0.1λc maximum element size=0.05λc

λc : wavelength corresponding to the central frequency of excitation

Element size Number of nodes Num. of processors Processor type Comp. time
0.1λc 71737 36 2GB 3.2GHz 3 min.

0.05λc 271900 36 2GB 3.2GHz 16 min.
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III. Wave propagation in random polycrystals
Influence of inherent heterogeneity

The single crystal for both Al and Copper present a cubic material symmetry
The anisotropy elasticity matrix has 9 plane of symmetry and depends on 3
parameters

C(cub) =

0BBBB@
C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

1CCCCA
The level of anisotropy is characterized by Zener index : A = 2C44/(C11 − C12).
AAl = 1.2⇒ roughly isotropic

Slowness surface for Al :

Acop = 3.2⇒ highly anisotropic

Slowness surface for copper :
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III. Wave propagation in random polycrystals

Snapshots of displacement fields in Al and Copper

t=0.07 µs t=0.09 µst=0.03 µs t=0.05 µs

t=0.03 µs t=0.05 µs t=0.07 µs t=0.09 µs
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III. Wave propagation in random polycrystals
Mean waveform and the fluctuation in one realization for Al and Copper
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III. Wave propagation in random polycrystals

Histograms of η at y=0.3 mm for Al. and Copper :
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Histograms of η at y=0.9 mm for Al. and Copper :
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III. Wave propagation in random polycrystals

Histograms of η at y=1.5 mm for Al. and Copper :
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Histograms of η at y=2.1 mm for Al. and Copper :
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III. Wave propagation in random polycrystals
Influence of Intergranular micro-cavities

Damage is introduced as ellipsoidal micro-cavities randomly inserted along the
grain boundaries
Void ratio of micro-cavities ' 0.1%
Aspect ratio of random ellipsoidal cavities : 0.2
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III. Wave propagation in random polycrystals
Mean waveform and a realization of fluctuation for Aluminum
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III. Wave propagation in random polycrystals
Mean waveform and a realization of fluctuation for Aluminum
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III. Wave propagation in random polycrystals
Mean waveform and a realization of fluctuation for Copper
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III. Wave propagation in random polycrystals
Mean waveform and a realization of fluctuation for Copper
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III. Wave propagation in random polycrystals
Histograms of η at y=0.3 mm for healthy and damaged Aluminum :

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

η

h
is

to
g

ra
m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

η

h
is

to
g

ra
m

Histograms of η at y=0.9 mm for healthy and damaged Aluminum :
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III. Wave propagation in random polycrystals
Histograms of η at y=1.5 mm for healthy and damaged Aluminum :
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Histograms of η at y=2.1 mm for healthy and damaged Aluminum :
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III. Wave propagation in random polycrystals
Histograms of η at y=0.3 mm for healthy and damaged Copper :
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Histograms of η at y=0.9 mm for healthy and damaged Copper :
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III. Wave propagation in random polycrystals
Histograms of η at y=1.5 mm for healthy and damaged Copper :
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Histograms of η at y=2.1 mm for healthy and damaged Copper :
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