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Imaging in heavy clutter

Problem: Image compactly supported reflectors buried in
heterogeneous, strongly backscattering media,
using an array of sensors.

Difficulty: The echoes from the reflector are overwhelmed
by the backscattered field from the background
medium.

Idea: Filter the data prior to imaging so as to remove
the unwanted backscattered field.
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Imaging in heavy clutter

P (~xr, ~xs, t)

scatterers

receiver
~xr
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ra
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f(t)

unknown medium

Propagation medium: heterogeneous, strongly
backscattering medium

Data: Acoustic pressure P (~xr, ~xs, t) for (~xs, ~xr) a set of
source and receiver locations on the array.

Reflector: scatterer with compact support
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Imaging in heavy clutter

P (~xr, ~xs, t)

scatterers
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unknown medium

Model: P satisfies the acoustic wave eq. with velocity v(~x)
1

v2(~x)
=

1

c2(~x)

[
1 + σµ

(
x

ℓx

,
z

ℓz

)
+ ν(~x)

]
,

we know or can determine the smooth c(~x) and we model the
fluctuations with mean zero random, stationary process µ

ℓx, ℓz: correlation lengths and σ gives strength of fluctuations.
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Imaging in heavy clutter
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1
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[
1 + σµ
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+ ν(~x)

]
,

ν(~x) is the reflectivity of the scatterer to be imaged.
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Velocity profile in the earth

background velocity consists of a smooth part c(~x)

(assumed known), and of the fluctuations, which
cannot be estimated.

Velocity profile in a well log
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Synthetic realization of random media

isotropic layered
array
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in both cases c(~x) = c0 = 1.5km/s

isotropic ℓx = ℓz = ℓ = λ0/4, σ = 0.12

layered ℓx = ∞, ℓz = λ0/50, σ = 0.08
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Correlation function (isotropic)

E{µi(~x1)µi(~x2)} = R(~x1, ~x2) =

(
1 +

|~x1 − ~x2|

ℓ

)
e−

|~x1−~x2|
ℓ
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Synthetic realization of random media
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Correlation function (layered)

E{µl(z1)µl(z2)} =

(
1 +

|z1 − z2|

ℓz

)
e−

|z1−z2|
ℓz
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The imaging problem

recover the support of ν(~x) from P (~xr, ~xs, t)

P (~xr, ~xs, t)
Fourier
−→ P̂ (~xr, ~xs, ω) in some frequency range

ω ∈ [ω0 − B/2, ω0 + B/2].

The solution of the linearized least squares problem:

J(ν) =

∫
dω

∑

~xr,~xs

|P̂ (~xr, ~xs, ω) − Q̂L(~xr, ~xs, ω; ν)|2

with (linearized model) QL(~xr, ~xs, ω; ν) = A ν

Q̂L(~xr, ~xs, ω; ν) = −k2f̂(ω)

∫
ν(~z)ĜBG(~xs,~z, ω)ĜBG(~z, ~xr, ω)d~z

is given by νLSQ = (AHA)−1AHP̂ (~xr, ~xs, ω).
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The imaging problem

recover the support of ν(~x) from P (~xr, ~xs, t)

P (~xr, ~xs, t)
Fourier
−→ P̂ (~xr, ~xs, ω) in some frequency range

ω ∈ [ω0 − B/2, ω0 + B/2].

Approximating AHA by the identity operator gives

νIM(~z) = AHP̂ (~xr, ~xs, ω)

=

∫
dωk2f̂(ω)

∑

~xs,~xr

P̂ (~xr, ~xs, ω)ĜBG(~z, ~xr, ω)ĜBG(~xs,~z, ω)
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The imaging problem

recover the support of ν(~x) from P (~xr, ~xs, t)

P (~xr, ~xs, t)
Fourier
−→ P̂ (~xr, ~xs, ω) in some frequency range

ω ∈ [ω0 − B/2, ω0 + B/2].

Migration method (ideally)

I(~ys) =

∫
dωk2f̂(ω)

∑

~xs,~xr

P̂ (~xr, ~xs, ω)ĜBG(~xs, ~ys, ω)ĜBG(~xr, ~ys, ω)

Backpropagating only in the known smooth c(~x)

ĜBG  Ĝc(~x, ~y, ω) =
eiωτ(~x,~y)

4π |~x − ~y|
∼ eiωτ(~x,~y)

and neglecting amplitudes we get Kirchhoff migration
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Kirchhoff migration

J KM(~ys) =
∑

~xs,~xr

∫
dωP̂ (~xr, ~xs, ω)e−iω(τ(~xs,~ys)+τ(~ys,~xr))

τ(~x, ~y) is the travel time

τ(~x, ~y) = min

∫
1

c(X(s))
ds

where the minimum is over all paths X that start at ~x

and end at ~y. For c = c0 =cste,

τ(~x, ~y) =
|~x − ~y|

c0
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Kirchhoff migration resolution

when the array size a and the bandwidth B → ∞ ⇒

IKM(~ys) ≈

∫

D

δ(~y − ~ys)ν(~y)d~y

for finite a and B ⇒

range resolution (direction of propagation): σr =
c0

B
cross-range resolution: σcr = λ0L

a

references:
N. Bleistein, J.K. Cohen, and J.W. Stockwell Jr., Mathematics of multidimensional

seismic imaging, migration, and inversion. Springer, New York, 2001.

W. Symes. Lecture notes in seismic imaging. Mathematical Geophysics Summer
School, Stanford, available at www.trip.caam.rice.edu, 1998.
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Modeling the data

λ 0

λ 0λ 0

λ 0

100

100

absorbing medium
ar

ra
y

L=90

d=6

d
a

̺
∂v

∂t
+ ∇P = 0

1

̺v2(~x)

∂P

∂t
+ divv = f(t)δ(~x− ~xs)

solve the 2d wave equation in a medium with velocity
v(~x) and cste density ̺.

unbounded domains are handled with the PML model.
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Imaging results

The data The image JKM(~ys)

J KM(~ys) =
∑

~xs,~xr

∫
dωP̂ (~xr, ~xs, ω)e−iω(τ(~xs,~ys)+τ(~ys,~xr))

For c(~x) = c0 cst, τ(~y, ~x) = |~x−~y|
c0

Note: we consider here a single source, the array center
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What happens in clutter?
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What happens in clutter?
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the clutter impedes the imaging process as the
significant multipathing of the waves by the
inhomogeneities results to noisy data traces (the noise
is not simply additive)
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Migration in clutter

Classic migration is statisticaly unstable
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Coherent interferometry (CINT)

we cross-correlate the traces locally in space and
frequency:

cross-correlation in space is limitted by the
decoherence length Xd(ω)

Xd(ω) = c0
ωκd

cross-correlation in frequency is limitted by the
decoherence frequency Ωd

CINT consists in migrating these cross-correlations to
the search point ~ys using Gc(~xs, ~y

s, ω)

links with time reversal in RM (Bal, Ryzhik, Solna,
Garnier, Papanicolaou)
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CINT imaging functional

ICINT(~ys; Ωd, κd) =

∫ ∫

|ω−ω′|≤Ωd

dωdω′
Nr∑

r, r′ = 1

|~xr − ~xr′ | ≤ Xd

(
ω+ω′

2

)

P̂ (~xr, ~xs, ω)P̂ (~xr′ , ~xs, ω′)

exp{−i(ω(τ(~xr, ~y
s) + τ(~xs, ~y

s)) − ω′(τ(~xr′ , ~y
s) + τ(~xs, ~y

s))}

when Ωd = B and Xd(ω) = a (no smoothing) we obtain

ICINT(~ys; Ωd, κd) =
[
J KM(~ys)

]2

CINT is a statistically stable smoothed migration method !

Smoothing affects both range resolution c0/Ωd and cross
range resolution Lκd ≈ λ0L/Xd(ω0).
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Adaptive CINT

The parameters Ωd and κd are estimated adaptively so as to achieve an optimal
balance between statistical smoothing and resolution.

Xd = a, Ωd = B Xd = X∗
d

, Ωd = Ω∗
d Xd < X∗

d
, Ωd < Ω∗
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What happens in heavy clutter?

Computational domain and v(z)

Distance is scaled by λ0. We have f0 = 10Hz,
co = 1Km/s, λ0 = 100m, B = [0, 25]Hz.

For the array a = 40λ0, N = 79 transducers.

For the rapid fluctuations l = 0.02λ0, σ = 0.08.

The scatterer is a disk of diameter λ0 at depth 75λ0 and
cross-range 15λ0.
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What happens in heavy clutter?

Computational domain and v(z)

The data is the N × N response matrix P(t), with
t ∈ [0, T ] sampled on Nt = 2m points.
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Imaging results

The data P (t, ~xr, ~xs) The image JKM(~ys)
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J KM(~ys) =
∑

~xs,~xr

∫
dωP̂ (~xr, ~xs, ω)e−iω(τ(~xs,~ys)+τ(~ys,~xr))

For c(~x) = c0 cst, τ(~y, ~x) = |~x−~y|
c0

Note: we use here all sources on the array
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Imaging results

The data P (t, ~xr, ~xs) The image ICINT(~ys; Ωd, κd)
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The idea

Decompose the data in local time frequency windows
and look at the behaviour of the singular values of
these local matrices:

the singular values correponding to pure clutter behave
differently compared to the ones that correspond to
coherent echoes

⊲ build an algorithm for selecting the “part” in the data
which corresponds to the coherend field scattered by
the object we wish to image.
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The algorithm I (LC in time)

The Local Cosine (LC) transform of the data on a
binary tree decomposes each trace Prs(t) to an
orthonormal basis given by smooth windows χ

modulated by cosine functions.

∀ level l in a binary tree, 0 ≤ l ≤ D, define the
segmentation: tlj = j∆tl = jT

2l , j = 0, 1, . . . , 2l − 1,
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The algorithm I (LC in time)

The Local Cosine (LC) transform of the data on a
binary tree decomposes each trace Prs(t) to an
orthonormal basis given by smooth windows χ

modulated by cosine functions.

∀ level l in a binary tree, 0 ≤ l ≤ D, define the
segmentation: tlj = j∆tl = jT

2l , j = 0, 1, . . . , 2l − 1,

Level l = 0, 20 time window
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The algorithm I (LC in time)

The Local Cosine (LC) transform of the data on a
binary tree decomposes each trace Prs(t) to an
orthonormal basis given by smooth windows χ

modulated by cosine functions.

∀ level l in a binary tree, 0 ≤ l ≤ D, define the
segmentation: tlj = j∆tl = jT

2l , j = 0, 1, . . . , 2l − 1,

Level l = 1, 21 time windows [0, T
2
] and [T

2
, T ]
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The algorithm I (LC in time)

The Local Cosine (LC) transform of the data on a
binary tree decomposes each trace Prs(t) to an
orthonormal basis given by smooth windows χ

modulated by cosine functions.

∀ level l in a binary tree, 0 ≤ l ≤ D, define the
segmentation: tlj = j∆tl = jT

2l , j = 0, 1, . . . , 2l − 1,

Level l = 2, 22 windows [0, T
4
], [T

4
, T

2
], [T

2
, 3T

4
] and [3T

4
, T ]
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The algorithm I (LC in time)

The Local Cosine (LC) transform of the data on a
binary tree decomposes each trace Prs(t) to an
orthonormal basis given by smooth windows χ

modulated by cosine functions.

∀ level l in a binary tree, 0 ≤ l ≤ D, define the
segmentation: tlj = j∆tl = jT

2l , j = 0, 1, . . . , 2l − 1,

Level l = 3, 23 windows ....
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The algorithm I (LC in time)

l = 1

j = 0 j = 1 j = 2 j = 2 −1l

j = 0 j = 1

j = 0

l = 2
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The algorithm I (LC in time)

Each position j at level l is associated to the space :

F l
j =

{√
2

∆tl
χ(

t − tlj
∆tl

) cos[ωl
n(t − tlj)]

}

n∈N

with ωl
n = π(n+1/2)

∆tl
the associated frequencies

The union F l
j over j = 0, 1, . . . , 2l − 1 gives an

orthonormal basis of L2[0, T ].

The frequencies ωl
n sample the same bandwidth

(0, πNt/T ) , in steps π/∆tl that increase with l.

at each node j at level l we have

P̂
l(tlj, ω

l
n) =

{
P̂ l(tlj, ω

l
n, ~xr, ~xs)

}

r,s=1,...,N
.
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The algorithm II (SVD)

For each l and time window j = 0, 1, . . . 2l − 1 do the
SVD of P̂

l(tlj, ω
l
n), frequency by frequency. Denote by

σl,j
q (ωl

n) the singular values, for q = 1, . . . N .
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Normalized singular values σ̃0,0
q (ω0

n) vs frequency. We plot the first 10 of them.
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The algorithm II (SVD)
j = 0 j = 1 j = 2 j = 3
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Normalized singular values σ̃3,j
q (ω3

n) vs. frequency. We plot the first 10 of them.

C. Tsogka Adaptive time-frequency detection and filtering for imaging in strongly heterogeneous background media – p.22



Good vs bad windows

l = 3, j = 5 l = 4, j = 11 l = 5, j = 23 l = 6, j = 47
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l = 3, j = 2 l = 4, j = 5 l = 5, j = 11 l = 6, j = 23
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Top: The top 10 normalized singular values in the windows that contain the coherent
echoes. Bottom: The top singular values in windows that contain pure clutter echoes.
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The algorithm III (selection)

Choose the frequency band B ⊆ (0, πNt/T ) and the
number Q of top singular values, to be used in the
selection of the time windows, and the data filtering
process.

Form the matrices S
l,j of normalized singular values

S
l,j =

{
σ̃l,j

q (ωl
n)

}
1≤q≤Q, n∈N l , σ̃l,j

q (ωl
n) =

σl,j
q (ωl

n)

max
n′

σl,j
q (ωn′

l
)

over the badwidth B and select the widow of interest
with a criterium based on the SVD of S

l,j.
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The algorithm III (selection)

in the windows that contain pure clutter echoes the
top singular values are clustered together: S

l,j are
almost rank one.

we expect a break in the pattern of the singular
values in the windows that contain detectable
coherent echoes: S

l,j has a significant second
direction and the second singular value of S

l,j is
large.
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The algorithm III (selection)

Let γl,j
q , for 1 ≤ q ≤ min{Q, |N l|}, be the singular

values of S
l,j. Our selection criterium at level l selects

the window jl
⋆ at which

λl,j = γl,j
2 /γl,j

1 ,

is maximal.
At the next level l + 1 we seek the maximum locally at
the children of jl

⋆, if a clear maximum does not exist we
stop at level l.
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Results :the selection criterium

l = 3, j3
⋆ = 5 l = 4, j4

⋆ = 11

l = 5, j5
⋆ = 23 l = 6, j6

⋆ = 47

λl,j as a function of the window index j = 0, . . . , 2l − 1. Q = 10 and B = [0, 5]Hz.
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The algorithm IV (filtering)

In the selected time window, define the filter F jl
⋆ which

sets to zero the LC coefficients in the windows that
have not been selected, at level l,
F jl

⋆P̂
l(tlj, ω

l
n) = 0 for j = 0, 1, . . . , 2l − 1, j 6=

jl
⋆ and n = 0, 1, . . . Nt/2

l − 1.

Additional filtering is done by projecting P̂
l(tjl

⋆
, ωl

n) on
the space of low rank matrices with singular vectors
corresponding to the “anomalous” top singular values
for frequencies in B.
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Results

Central source. Left: initial traces. Right: final traces produced by the algorithm.
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Results

Central source. Left: initial traces. Right: final traces produced by the algorithm.
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Results

l = 3, j3
⋆ = 5 l = 4, j4

⋆ = 11 l = 5, j5
⋆ = 23 l = 6, j6

⋆ = 47

x

z

0 5 10 15 20 25 30 35 40

50

55

60

65

70

75

80

x

z

0 5 10 15 20 25 30 35 40

50

55

60

65

70

75

80

x

z

0 5 10 15 20 25 30 35 40

50

55

60

65

70

75

80

x

z

0 5 10 15 20 25 30 35 40

50

55

60

65

70

75

80

x

z

0 5 10 15 20 25 30 35 40

50

55

60

65

70

75

80

x

z

0 5 10 15 20 25 30 35 40

50

55

60

65

70

75

80

x
z

0 5 10 15 20 25 30 35 40

50

55

60

65

70

75

80

x

z

0 5 10 15 20 25 30 35 40

50

55

60

65

70

75

80

Top: no projection, Bottom: with projection. The scatterer is indicated with a black circle.
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Results (combined)

Central source. Left: initial traces. Right: final traces produced by the algorithm.
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Results (combined)

Central source. Left: initial traces. Right: final traces produced by the algorithm.
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Results (combined)

Central source. Left: initial traces. Right: final traces produced by the algorithm.
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Results (comparison)

combined SNR= −10dB
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Results (comparison)

combined SNR= −10dB
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Conclusions

The proposed filtering approach is general and does
not use any a priori information on the clutter.

We have analyzed theoretically the algorithm in the
layered case and explained the behavior of the data:
clustering of the singular values for the clutter, detectability of

coherent echoes only at lower frequencies.

needs to be tested for more general target
configurations (multiple targets)

when coherent imaging does not work → consider
incoherent imaging methodologies that exploit some
model to describe wave propagation in RM (cf. Bal &
Pinaud, Borcea’s talk)

C. Tsogka Adaptive time-frequency detection and filtering for imaging in strongly heterogeneous background media – p.30


	
	Imaging in heavy clutter
	Imaging in heavy clutter
	Velocity profile in the earth
	hspace *{-1cm} Synthetic realization of random media
	The imaging problem
	Kirchhoff migration
	Kirchhoff migration resolution
	Modeling the data
	Imaging results
	What happens in clutter?
	Migration in clutter
	Coherent interferometry (CINT)
	CINT imaging functional
	Adaptive CINT
	References
	What happens in heavy clutter?
	Imaging results
	The idea
	The algorithm I (LC in time)
	The algorithm I (LC in time)
	The algorithm II (SVD)
	Good vs bad windows
	The algorithm III (selection)
	Results :the selection criterium
	The algorithm IV (filtering)
	Results
	Results (combined)
	Results (comparison)
	Conclusions

