Continuous polarization variable QKD

Bettina Heim, Nitin Jain, Imran Khan, Gerd Leuchs, Christoph Marquardt, Christian Peuntinger, Christoffer Wittmann

> Max Planck Institute for the Science of Light, Erlangen & Department of Physics, University Erlangen-Nürnberg

> > Nathan Killoran, Norbert Lütkenhaus

Institute for Quantum Computing, Waterloo

discrete vs. continuous

QKD – based on the impossibility of perfectly measuring non-orthogonal quantum states

two strategies:

BB84

Alice prepares states which are eigenstates of Bob's measurement operator - need to switch between different bases

B92

Alice prepares non-orthogonal states and Bob uses quantum state estimation

Bob's det. Alice's state	click detector	PNR detector	homo- dyne detector	Bob's det. Alice's state	click detector	PNR detector	homo- dyne detector
n=1, pol base	1	1	?	n=1, diff pol	1	1	?
n>1, pol base	-	1	?	n>1, diff pol	-	1	?
coherent pol base	(22)	(🖌) *	(\$)	coherent two phases	1	1	1
squeezed st.	-	-	(✓)	squeezed st.	-	-	1

*Norbert's comment yesterday

? D. Bozyigit et al. Nat. Phys. 7,154 (2011)

 (\checkmark) = no eigenstate \rightarrow not perfect (\checkmark) = unrealistic – only if squeezing is infinite

29 August 2012

QUANT2012 IPAM

Quantum state estimation

Quantum state estimation

 $\left|\alpha\right|^2 \le 0.75$ 100kHz

Advantage of homo-/heterodyning in free space

➔ measuring single mode

number of photons per mode in direct sun light:

$$N = 8\pi \frac{v^2}{c^3} \Delta v \frac{hv}{e^{\frac{hv}{kT}} - 1} \frac{c}{6} \cdot \left(\frac{D_{sun}}{R_{S-E}}\right)^2 \frac{1}{2\pi \cdot \Delta v} \frac{\pi \lambda^2}{4\left(\frac{D_{sun}}{R_{S-E}}\right)^2} \frac{1}{hv}$$
$$\approx \left(e^{\frac{hv}{kT}} - 1\right)^{-1}$$

direct sun light : 0.05 coherent photons @ 800 nm
 indirect sun light: even lower

our approach

29 August 2012

Our approach

- CV QKD with discrete modulation
- "prototype" experiments: Lorenz et al., Appl. Phys. B **79**, 273 (2004) & Lorenz et al., PRA, **74** (4), 042326 (2006)
- polarization encoding
- heterodyne detection of conjugate Stokes variables

Quantum Stokes operators and measurement

 $V_2V_3 \geq |\langle x \rangle|$

Polarization encoding

- start with circularly polarized LO
- signal modulation in S₁-S₂-darkplane using two commercial electro-optical modulators (EOMs)
- homodyne detection: weak signal detectable with help of bright LO (S₃)
- signal and LO travelling
 in one spatial mode
 → further advantages:
- excellent spatial interference
- no additional spatial filtering
- LO as spectral filter
- \rightarrow precise adjustment of detection bandwidth
- daylight operation
- easy monitoring of atmospheric effects

Detection and Postselection

Witnessing effective entanglement over a 2km fiber channel

Christoffer Wittmann^{1,2,†}, Josef Fürst^{1,2,†}, Carlos Wiechers^{1,2,3}, Dominique Elser^{1,2}, Hauke Häseler^{2,4}, Norbert Lütkenhaus^{1,2,4}, and Gerd Leuchs^{1,2}

Optics Express 18, 4499 (2010)

Abstract: We present a fiber-based continuous-variable quantum key distribution system. In the scheme, a quantum signal of two non-orthogonal weak optical coherent states is sent through a fiber-based quantum channel. The receiver simultaneously measures conjugate quadratures of the light using two homodyne detectors. From the measured Q-function of

losses equivalent to > 15 km

free space

1.6 km free space link – from MPL's roof to university tower

Receiver setup

Beam Stabilization system

- software-based PID-controller
- beam tap-of at Bob and measurement by a position sensitive detector (PSD)
- movement of Alice 's small telescope lens according to PSD feedback signal
 - \rightarrow compensation of beam wandering
- ± 20 cm beam displacement at Bob's side with an accuracy in the mm range
- additional movement of the whole breadboard by stepper motors

QUANT2012 IPAM

Beam profiles and polarization noise

Spatial beam profiles after transmission

Less ...and more turbulent atmosphere

FIG. 5. Secret key rates *G* for post-selected protocols using the two-way error correction scheme CASCADE (solid lines). For comparison, key rates for the PS-RR protocol with one-way codes, that are as efficient as CASCADE are also shown (dashed lines). The excess noise δ varies between 0 and 0.1 as in Fig. 2.

QUANT2012 IPAM

continuous quantum variables

sources : coherent light , change of wavelength straight forward transmission : loss sensitivity > than for 1 photon technology

detectors : direct detection , shot noise sensitivity required

rates : high (no time filtering)

Higher order modes & multi level encoding \rightarrow rate even higher

 $\rightarrow \rightarrow \rightarrow$ link to airplane