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QKD — based on the impossibility of perfectly measuring non-orthogonal quantum states

two strategies:
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states of Bob's measurement operator
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(ﬁ) = no eigenstate = not perfect
(V) = unrealistic — only if squeezing is infinite
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Alice prepares non-orthogonal states and
Bob uses quantum state estimation
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*Norbert's comment yesterday
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Quantum state estimation

a single photon in either of two the continuous quantum variable
non-orthogonal polarizations case
measure B
2 non-orthogonal X ax Prepared by Alice

states l

measure A .
Ch. Silberhorn, T.C. Ralph, N. Lutkenhaus,

and G. L., PRL 89, 167901 (2002)
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Quantum state estimation

ok ending
0 JANUARY 2

P heren uchs'
<on of CO . 12 gnd Gerd L2 _Nirnberg.
ymental Demo“S“a“o ! Radim FIlP- Universitd! Erlangen-
wynerime 1 % adtatin Sab““‘:“' ~ __tmoseluppe . - -
week ending
PRL 101, 210501 (2008) PHYSICAL REVIEW LETTERS 21 NOVEMBER 2008

Demonstration of Near-Optimal Discrimination of Optical Coherent States
by: spp

" US Englisp .
h e w J 2 0ta ® Katidscia N. Cassemiro,* Masahide SURISEE7 on 2 5y o0
ou

|oc|2 <0.75
100kHz

29 August 2012 QUANT2012 IPAM 5



Advantage of homo-/heterodyning in free space
=» measuring single mode

number of photons per mode in direct sun light:
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=» direct sun light : 0.05 coherent photons @ 800 nm
=» indirect sun light: even lower

propagation in turbulent medium = beam distortion
- small homo-/heterodyne efficiency
the cure: polarisation variables
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our approach

fiber/free space



Our approach

e CV QKD with discrete modulation

e ,prototype” experiments:
Lorenz et al., Appl. Phys. B 79, 273 (2004) &
Lorenz et al., PRA, 74 (4), 042326 (2006)

e polarization encoding
 heterodyne detection of conjugate Stokes variables
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Quantum Stokes operators and measurement

So = TN S &;&y (total intensity)
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Polarization encoding

start with circularly polarized LO

signal modulation in S,-S,-darkplane
using two commercial electro-optical
modulators (EOMs)

homodyne detection:
weak signal detectable
with help of bright LO (S;)

signal and LO travelling
in one spatial mode
—> further advantages:

- excellent spatial interference

- no additional spatial filtering

- LO as spectral filter

— precise adjustment of detection bandwidth
- daylight operation

- easy monitoring of atmospheric effects
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Detection and Postselection

POSt SE|EC'L'I0n. I(A,B) increased
Silberhorn et al., >
PRL 89, 167901 (2002) I(A,E) unchanged
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Witnessing effective entanglement
over a 2km fiber channel

Christoffer Wittmann!>', Josef Fiirst!>", Carlos Wiechers!>>,
Dominique Elser!?, Hauke Hiseler’*,
Norbert Liitkenhaus!>*, and Gerd Leuchs'?

Optics Express 18, 4499 (2010)

Abstract: ~ We present a fiber-based continuous-variable quantum key
distribution system. In the scheme, a quantum signal of two non-orthogonal
weak optical coherent states is sent through a fiber-based quantum chan-
nel. The receiver simultaneously measures conjugate quadratures of the
light using two homodyne detectors. From the measured Q-function of

losses equivalent to > 15 km
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free space
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1.6 km free space link —
from MPL's roof to university tower
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Receiver setup

15 cm achromatic lens
at the receiver
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Beam Stabilization system

¢ software-based PID-controller

e beam tap-of at Bob and measurement by a

position sensitive detector (PSD)

e movement of Alice ‘s small telescope lens

according to PSD feedback signal

—> compensation of beam wandering
e + 20 cm beam displacement at Bob’s side

with an accuracy in the mm range

¢ additional movement of the whole breadboard

by stepper motors

x-position at Bob with and without beam stabilization
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beam position at Bob
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Beam profiles and polarization noise

Spatial beam profiles after transmission

| — 2mW in front of Alice's/Bob's detector

it

50 100 150 200 250 300
frequency in kHz

linear polarization excess noise
in dB above shot noise
=
T —a

Less ...and more
turbulent atmosphere

29 August 2012 QUANT2012 IPAM 17 17



continuous variable quantum key distribution
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Matthias Heid & Norbert Litkenhaus
PHYSICAL REVIEW A 76, 022313 (2007)
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FIG. 5. Secret key rates G for post-selected protocols using the
two-way error correction scheme CASCADE (solid lines). For
comparison, key rates for the PS-RR protocol with one-way codes,
that are as efficient as CASCADE are also shown (dashed lines).
The excess noise & varies between O and 0.1 as in Fig. 2.
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SUMMARY

continuous quantum variables

sources : coherent light, change of wavelength straight forward
transmission : loss sensitivity > than for 1 photon technology

detectors : direct detection, shot noise sensitivity required

rates : high (no time filtering)

Higher order modes & multi level encoding = rate even higher

- 2> link to airplane
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