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- Information-theoretic security proven (even assuming imperfect devices)
- Impressive experimental progress since 1989

- more than 100 km distance (fiber and free-space)

- trusted-node networks (BBN-DARPA, SECOQC, Tokio, Swiss)

- commercial devices (1dQuantique, MagiQ)
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- Information-theoretic security proven (even assuming imperfect devices)
- Impressive experimental progress since 1989
- more than 100 km distance (fiber and free-space)

- trusted-node networks (BBN-DARPA, SECOQC, Tokio, ...)

- commercial devices (1dQuantique, MagiQ)
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- Side-channel attacks
- Measurement-device independent (MDI) QKD
- the protocol

- proof-of-principle demonstration

- Conclusion
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- Photon number splitting [ O \ T
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Counter measure: decoy state protocol
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- Trojan Horse attacks

L ]
Counter measure: optical isolator [ - \ =]
"
- Remote controlling detectors
Counter measure: robust detectors = >D
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Can we devise (& implement) a protocol that is robust wrt to any side-channel

attack (known or yet-to-be discovered)??

Brassard et al, PRL 85, 1330 (2002); Gisin et al, PRA 73, 022320 (2006), Lydersen, Nature Phot. 4, 686 (2010)
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- requires generation of entangled photons, and projections onto qubit states
- sifting, error correction and privacy amplification allows distributing secret keys

- currently infeasible (detection loophole needs to be closed)

Acin, Scarani, Pironio, Gisin, Massar, Brunner...
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Can we devise (& implement) a protocol that is robust wrt to any detector attacks?

v

known or yet-to-be discovered)??

Brassard et al, PRL 85, 1330 (2002); Gisin et al, PRA 73, 022320 (2006), Lydersen, Nature Phot. 4, 686 (2010)
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- requires generation of qubit states, and projection onto entangled states

- sifting (x-key, z-key), bit flip at Bob’s, EC and PA allows distributing secret keys
- de-correlates detection pattern from key bit -> immune to any detector attack

- currently difficult to implement (single photon sources)

H. Inamori, Algorithmica 34, 340-365 (2002)
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- requires generation of qubit (signhal&decoy) states and proj. onto entangled states

- sifting (x-key, z-key), bit flip at Bob’s, EC and PA allows distributing secret keys
- de-correlates detection pattern from key bit -> immune to any detector attack

- should be feasible with existing technology

Lo et al. PRL 108, 130503 (2012) (see also Braunstein et al, PRL 108, 130502 (2012)). QC2 Lab
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- allows overcoming threat of PNS attacks

- random variation between 3 different mean numbers of photons per qubit

carrier allows assessing Q*,,, Q%;4, €44, and €%, ( p=2P(n)|n><n]| )

- secret key is distilled from z-key (using x-key to assess I(A;E))

Q7,:=Q?
R= Qtyy {Lholex,)} - @, Fhole?,) -

X.-B. Wang, arXiv:1207.0392
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- requires indistinguishable photons
- spatial mode
- temporal mode
- spectrum
- polarization
- needed for MDI-QKD, quantum repeater, quantum networks, LOQC

note: as difficult for attenuated laser pulses as for photons from photon pairs

QC2 Lab



and measurements in the lab with fibre on spools

QC2 Lab
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plus frequency drift of Alice’s with respect to Bob’s laser of up to 20 MHz/hour
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- measuring arrival time of
photons at Charlie’s, and
varying delays at Alice’s and
Bob’s allows keeping

Function | Clock (g D .
cenerator — difference < 50 ps
T LATELEs erlm Hem [Poc] LQink m - tracking and compensation
Temperature : 124 km
\AL|CE Controlled Box Trigger cvery 30s

QC2 Lab



. '@{CHARLIE h
5 =
SPD
_%PD
M A ),

Function | Clock
Generator d
— (AT Fs F—{ M HPm [Poc] @ J
B ! Link A
Temperature Trigger 12.4 km
\AL'CE Controlled Box

- laser at Charlie’s 1s used to
measure polarization trans-
formation in fibre-channel

- POC ensuring that h and v-
pol. light is not transformed
during transmission

- automatic tracking every 10s

QC2 Lab
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-establish frequency
difference through beating

- shift Alice’s frequency using
linear phase chirps

- frequency difference was
kept < 10 MHz (feedback in
worst case every 30 min)

QC2 Lab
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Indistinguishability assessed via HOM dip:
Vion=47£1% (V,.,.=50%)

max

(measurement with classical light is sufficient!)




- Generate all 8 combinations of states with Alice and Bob using
the same basis (x or z)

- u € [0.1, 0.25, 0.5]; wy=tig

- various distances (loss), inside and outside lab; /,=/;

- measure error rates and gains £, [km] | 1, [dB] | £ [km] | I [dB] | total loss ! [dB]
3098 @ 68 | 1175 | 6.8 13.6
4080 = 9.1 | 4077 | 9.1 18.2
51.43 | 11.3 | 3219 | 11.3 22.7
61.15 | 13.7 | 4280 | 136 27.2
12.4 4.5 b.2 4.2 9.
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c) Distance (km)
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- model allows estimating R= Q?y; {1-h,(e*;)} - Q% h,(e?))
- but decoy state method needed for actual key distribution

- QKD up to ~125 km assuming efficient decoy state method

A. Rubenok, P. Chan, I. Lucio, J.A. Slater, and WT, quant-ph/1204.0738




- 3-value decoy state method has recently been proposed

- requires measuring 7 combinations of different mean photon numbers

- tests over 2x30 km fibre spools yield first results
- discrepancy between simulated and measured e*,; currently large

- Uy, U, Nt yet optimized to yield good (upper) bound on e*,,

18
- state generation currently not perfect y
- work in progress
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X.-B. Wang, arXiv:1207.0392, similar work by T. Ferreira da Silva et al., arXiv:1207.6345 QQ2 La b



- MDI-QKD protocol removes detector side-channels

- technology is sufficiently mature to implement protocol
- more (straightforward) work require to build complete system
- efficiency of decoy-state protocol can probably be improved

- two-photon interference over real-world optical fibers also removes

obstacle for quantum repeaters
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