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- Information-theoretic security proven (even assuming imperfect devices) 

- Impressive experimental progress since 1989 

 - more than 100 km distance (fiber and free-space) 

 - trusted-node networks (BBN-DARPA, SECOQC, Tokio, Swiss) 

 - commercial devices (idQuantique, MagiQ) 
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- Side-channel attacks 

-  Measurement-device independent (MDI) QKD 

-  the protocol 

-  proof-of-principle demonstration 

-  Conclusion 
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Side-channel attacks 

Can we devise (& implement) a protocol that is robust wrt to any side-channel 

attack (known or yet-to-be discovered)?? 

illumination 

Brassard et al, PRL 85, 1330 (2002); Gisin et al, PRA 73, 022320 (2006), Lydersen, Nature Phot. 4, 686 (2010)  
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-  Photon number splitting 

  Counter measure: decoy state protocol 

-  Trojan Horse attacks 

  Counter measure: optical isolator 

-  Remote controlling detectors  

  Counter measure: robust detectors 
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Device independent QKD 

-  requires generation of entangled photons, and projections onto qubit states 

-  sifting, error correction and privacy amplification allows distributing secret keys 

-  currently infeasible (detection loophole needs to be closed) 

Acin, Scarani, Pironio, Gisin, Massar, Brunner… 
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Side-channel attacks 

Can we devise (& implement) a protocol that is robust wrt to any detector attacks? 

(known or yet-to-be discovered)?? 

-  Photon number splitting 

  Counter measure: decoy state protocol 

-  Trojan Horse attacks 

  Counter measure: optical isolator 

-  remote controlling detectors  

  Counter measure: robust detectors 
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Brassard et al, PRL 85, 1330 (2002); Gisin et al, PRA 73, 022320 (2006), Lydersen, Nature Phot. 4, 686 (2010)  
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QKD using time-reversed entanglement 

-  requires generation of qubit states, and projection onto entangled states 

-  sifting (x-key, z-key), bit flip at Bob’s, EC and PA allows distributing secret keys   

-  de-correlates detection pattern from key bit -> immune to any detector attack 

-  currently difficult to implement (single photon sources) 
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H. Inamori, Algorithmica 34, 340-365 (2002) 
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Measurement Device Independent - QKD 

-  requires generation of qubit (signal&decoy) states and proj. onto entangled states 

-  sifting (x-key, z-key), bit flip at Bob’s, EC and PA allows distributing secret keys   

-  de-correlates detection pattern from key bit -> immune to any detector attack 

-  should be feasible with existing technology 
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Lo et al. PRL 108, 130503 (2012) (see also Braunstein et al, PRL 108, 130502 (2012)).  
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Decoy states in MDI-QKD 

-  allows overcoming threat of PNS attacks  

-  random variation between 3 different mean numbers of photons per qubit  

carrier allows assessing Qx
11, Qz

11, ex
11, and ez

11 ( ρ=ΣP(n)|n><n| ) 

-  secret key is distilled from z-key (using x-key to assess I(A;E)) 
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R= Qz
11 {1-h2(ex

11)} – Qz
µ f h2(ez

µ) 

X.-B. Wang, arXiv:1207.0392 

Qz
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Bell-state measurement 

-  requires indistinguishable photons  
-  spatial mode 
-  temporal mode 
-  spectrum 
-  polarization 

-  needed for MDI-QKD, quantum repeater, quantum networks, LOQC 

note: as difficult for attenuated laser pulses as for photons from photon pairs 
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Generic setup 

PM IM 

ATT 

and measurements in the lab with fibre on spools 

PM IM 

ATT 

- 1550 nm wavelength 

-  time-bin qubits 

-  time-bin separation: 1.4 ns 

-  wavepacket duration: 500 ps 
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Environment-induced fluctuations 

plus frequency drift  of Alice’s with respect to Bob’s laser of up to 20 MHz/hour 
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Feedback systems – arrival time 
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-  measuring arrival time of 
photons at Charlie’s, and 
varying delays at Alice’s and 
Bob’s allows keeping 
difference < 50 ps 

-  tracking and compensation 
every 30s  



Q  2 Lab C 

Feedback systems – polarization 
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-  laser at Charlie’s is used to 
measure polarization trans-
formation in fibre-channel  

-  POC ensuring that h and v-
pol. light is not transformed 
during transmission 

-  automatic tracking every 10s  
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Feedback systems – frequency (spectrum) 
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- establish frequency 
difference through beating 

-  shift Alice’s frequency using 
linear phase chirps 

-  frequency difference was 
kept < 10 MHz (feedback in 
worst case every 30 min)  
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Feedback systems - performance 

Indistinguishability assessed via HOM dip: 

 VHOM=47±1% (Vmax=50%) 

(measurement with classical light is sufficient!) 
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Measurements 

-  Generate all 8 combinations of states with Alice and Bob using 
the same basis (x or z) 

-   µ ∈ [0.1, 0.25, 0.5]; µA=µB 

-  various distances (loss), inside and outside lab; lA=lB 

-  measure error rates and gains 

Real-world measurements 
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Results 

Simulations using independently established parameters and assuming ≤ 2 photons 
behind BS describe observed error rates and gains over >3 orders of magnitude, 
and in and out-of lab 

-> we understand the imperfections (state preparation, detector noise) that affect 
the measurable quantities 
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Results 

-  model allows estimating R= Qz
11 {1-h2(ex

11)} – Qz
µ h2(ez

µ) 

-  but decoy state method needed for actual key distribution 

-  QKD up to ~125 km assuming efficient decoy state method 

-   
A. Rubenok, P. Chan, I. Lucio, J.A. Slater, and WT, quant-ph/1204.0738  
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More recent results 

-  3-value decoy state method has recently been proposed 

-  requires measuring 7 combinations of different mean photon numbers 

-  tests over 2x30 km fibre spools yield first results 

-  discrepancy between simulated and measured ex
11 currently large 

-  µd, µs not yet optimized to yield good (upper) bound on ex
11 

-  state generation currently not perfect 

-  work in progress 

X.-B. Wang, arXiv:1207.0392, similar work by T. Ferreira da Silva et al., arXiv:1207.6345 
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-  MDI-QKD protocol removes detector side-channels 

-  technology is sufficiently mature to implement protocol 

-  more (straightforward) work require to build complete system 

-  efficiency of decoy-state protocol can probably be improved 

-  two-photon interference over real-world optical fibers also removes 

obstacle for quantum repeaters 

Conclusion 
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Thank you 

PhD and PDF positions available (email to wtittel@ucalgary.ca) 


