Undersea Optical Communications

Presented at Quantum Communication Workshop: Secure Information Transmission in the Maritime Environment

Dr. Greg Mooradian QinetiQ North America Technology Solutions Group

> 7545 Metropolitan Drive San Diego, CA 92108 619-725-3700 (voice)

greg.mooradian@QinetiQ-NA.com

30 August 2012

Technology Solutions Group

What Are You Going to Hear?

- The Navy's view of connecting the C4ISR network
- Possible underwater Optical Laser Communications (OLC) architectures supporting a wide range of critical Naval missions
- An overview of the fundamental physics of the allunderwater and underwater/above-water propagation channel and the impact on communications performance
- The state of the art in OLC performance modeling and environmental characterization
- An example of the relationship of OLC architecture and laser and narrowband optical filter selection

Connecting the C4ISR Network: Both Above-Water and Undersea Nodes

GOAL: Communicate with underwater assets at operationally useful depths/ranges at operationally useful data rates

QinetiQ North America

Technology Solutions Group

OLC Platform Options and Architectures In Support of Naval Undersea Dominance

Architecture, Depth and Data Rate Requirements Define the OLC Geometry

- Two OLC comm modes: (1) **all-underwater** (terminal-to-terminal), and (2) **through the air-water interface** (UW terminal comm with an above-water terminal)
- *All-underwater* OLC propagation phenomenology and OLC technology can be significantly different than the *through-the air/water-interface* link
 - Solar background is generally not a dominating noise source
 - > Data rate capability and/or requirements can be substantially larger
 - SWaP terminal requirements are generally much more demanding
- Communications *through the air-water interface* propagation channel is *much more complicated* and *much more dependent* on geometry and the environment
 - Requirement for daytime operation drives many of the technology and architecture options (e.g., narrowband optical filters and high peak-power lasers)
 - Senerally demands much more SWaP and complicated technology (e.g., SLC)
 - To be efficient (especially daytime), requires collection of multiple scattered signal (placing heavy demands on high peak power lasers and wide FOV filters)
 - Real-time adapting of system parameters is required to optimize performance in real-world conditions (e.g., anamorphic zoom, adaptive-data-rate-comm)

Initial signal acquisition for 2-way comm links (or SpotCast OPAREA scan) is generally the most complicated operation & defines CONOPS

All-Underwater Optical Propagation: The Basics

532 nm (Green) Jerlov Water Parameter	Jerlov IB <u>(m-1)</u>	Jerlov II <u>(m-1)</u>	Jerlov III <u>(m-1)</u>
a (absorption)	0.060	0.076	0.104
b (scattering)	0.084	0.227	0.452
c (beam attenuation)	0.144	0.303	0.556
ω_0 (albedo)	0.58	0.75	0.81
K (diffuse attenuation)	0.064	0.083	0.114
c / K ratio	2.3	3.7	4.9
O _{RMS} scatter angle (°)	5.6	5.6	5.6

Three Distinct Propagation Regimes

- 1. Fully Diffuse, Multiple Scattered Beam (b * Z > ~ 20)
 - Radiance is weak and diffuse (subtends 10's of degrees) & very large spatial spreading (reduces amount of photons collected by a small receiver aperture)
 - ✓ Requires large FOV to capture the diffuse, multiple scattered radiance
 - ✓ Low attenuation rate approaching e-aZ, but very large pulse spreading
- 2. Multiple Forward Scattered (MFS) Beam (~ 6 < b*Z < ~ 20)
 - Radiance peaked in forward direction (increases as (b*Z)^{1/2}) with moderate spatial spreading (increases approximately as (b*Z)^{3/2}
 - ✓ Requires medium FOV to capture the MFS radiance (i.e., ~ 6 20°)
 - ✓ Low loss rate of e^{-KD} and moderate pulse spreading (e.g., < 4 ns at b*Z = 10)
- 3. Direct, Unscattered Beam (b*Z <~ 6)
 - Very low radiance << 0.1° (transmitter aperture limited)</p>
 - **V** Requires narrow FOV to reject scattered light (i,e., *eliminates* pulse spreading)
 - ✓ High loss rate of e-c^Z ("c" is ~ 2 -5 X larger than K), but NO pulse spreading

All-underwater propagation regimes depends on range, transmitter beam divergence, receiver FOV and both optical scatter/absorption parameters of the ocean path

netiQ-NA.com

QinetiQ

Propagation Channel Characteristics of a Through the Air-Water Interface OLC Channel

- Uplink & downlink are NOT reciprocal: <u>daytime downlink</u> SNR scales as e ^{-KD} while uplink SNR scales as: e ^{-2KD} / R⁴
- Basically, everything works great at night or clear
- Uplink comm performance is reduced approx *linearly with the range* (i.e., increasing scan angle and/or higher altitude)
- Downlink data rate is nominally limited by
 - Day (cloudy or clear) is SNR limited (i.e., laser energy-per-pulse/ background); Night (cloudy) is cloud pulse-stretching limited
 - With Tx zoom, data rate is *nearly independent* of altitude/range
 - Because of water absorption (vs. scattering), downwelling radiance moves towards nadir vs. depth & limits to \pm 19 $^\circ$
- Anamorphic Tx zoom and Rx FOV correction vs. nadir angle can increase performance substantially for large angles
- Spatial spreading in clouds reduces received energy/pulse, increases required A/C Rx FOV and complicates scan strategy
- Water turbidity rapidly degrades SNR (i.e., depth & data rate)
 - "Green" littoral water is more turbid than open-ocean "blue" water and generally gets clearer (i.e., "bluer") with depth
 - Sea state is very much a second order effect and may help at large nadir angles (clear)
 - Multiple scattering in sea water (K & D) defines sub Rx FOV

UW OLC Performance Modeling Is Well Understood & Experimentally Verified

QinetiQ

Technology Solutions Group

- The model has evolved from > 30 years of development by the Navy (e.g., SLC, λSat)
- Water and cloud data bases were developed using both satellite and ocean cruise/sub data
- Extensive aircraft to sub lasercomm experiments in the 70's and 80's validated the models
 - Sub depths varied over a <u>very</u> large range
 - From clear to turbid ocean water; from clear to thick cloud conditions
- Comms to USAF aircraft lasercomm receiver though 30,000 ft of Cumulonimbus clouds
- SpotCast CSD demos in several airborne experiments and in RIMPAC '86 FLEETEX
- 2-way BeamCast comm demo between above water and UW terminals to Mbps
- The all-underwater HDR lasercomm tests conducted over a wide variety of water clarities and ranges (including fully-autonomous signal acquisition and reciprocal tracking at sea). Realworld tests at SCI agree within ± ~ 1.5 dB

Model predictions and measured results from sea-tests agree to better than ± 2 dB over a wide range of operating depths and environments

2004 SEADEEP Experiment Demonstrated Feasibility of Two-Way High Data Rate OLC

- Two-way laser comm experiment at San Clemente Island (SCI) in 2004 demonstrated the last remaining SLC physics issue: feasibility of high bandwidth (Mbps) BeamCast comms through air/water interface to depth in a real ocean environment (both up and down)
 - ✓ Due to limited funding, blue downlink laser and green uplink receiver mounted in van at SCI and green uplink fiber-coupled laser from ship to UW terminal with blue downlink receiver canister
 - ✓ Small COTS lasers (0.15 W down, 0.8 W up) at representative airborne SLC geometry (60° nadir angle, 3,000 ft range) and turbid ocean water (K~ 0.11 m⁻¹, Jerlov III)
- Max data rate "demonstrated" (NOT max data rate *achievable*): 2 *Mbps DOWN; 500 Kbps UP* to approximately 110 ft depth
- Excellent Low Probability of Detection (LPD): only a faint uplink spot visible (approximately as detectible as glow from radar display leaking out of the window of the surface support ship)

The Selection of a Laser and Narrowband Optical Filter On a Notional OLC Architecture

A Notional OLC Architecture Exploiting the Fraunhofer Line "Filter-Advantage"

- Exploits fundamental characteristics of the UW OLC channel
 - "n" dB advantage (day) using the 518 nm Fraunhofer "dip"
 - 518 nm is a good compromise of color for ocean waters and better in the stressing littoral waters ("green" water)
- Can be matched to X2, Ytterbium fiber lasers (efficient, compact, reliable technology easily scaled to higher power)
- Conventional Lyot filters can match the Fraunhofer band
 - > Compact, robust, field-tested Lyot filters (e.g., makes optimum use of available canister area & filter $\Delta \lambda_{ENBW} = \Delta \lambda_{sig}$)
 - Modest operating temperature (e.g., ~ 40°C)

QinetiQ

> High altitude airborne filters can reduce receiver FOV for much better bandwidth performance $(\Delta \lambda_{sig} \approx FOV^{-2})$

Technology Solutions Group

Examples of Laser Options and Their Impact on Both Operational and Fiscal Viability

Frequency-Tripled/ OPO Nd:YAG Laser

> This goes into that!

Frequency-Doubled Yb Fiber APLA Laser *

* Adaptive Pulsewidth Laser Architecture (APLA) dynamically matches laser PRF and PPM pulsewidth to instantaneous channel characteristics

Yb APLA Fiber Laser Advantage

- > 4 dB SNR (day) operating at the 518 nm Fraunhofer "dip"
- Approximately 20 X wall plug efficiency and less than 1/20th cost
- ~ 160 X more compact (W/ft³) & ~ 60 X more output-power/pound (W/lb)
- Laser PRF variable from KHz to MHz (e.g., 1,000 X max data rate)
- Qualifiable in "relevant environments"

The OLC Bottom Line

- ISR is critical to the Navy's mission
 - The collection of offboard ISR is only of use to the warfighter if it can be transferred with high fidelity and low latency(i.e., high bandwidth)
 - The "Unmanned-Imperative" (e.g., UAVs, UUVs), which is so critical to affordability, makes information transfer even more difficult
 - Minimizing platform operational limitations (e.g., speed, depth, tethers and cables) is key to operational utility
- Fundamental "physics" defines underwater comm range/data-rate performance
- Legacy systems (RF or acoustics) do not meet the requirements to connect the undersea environment either due to physics, lack of stealth, insufficient bandwidth and/or the ability to be jammed or otherwise denied
- Most importantly, only OLC can transfer tactically-significant information through the air-water interface
- While Comms at Speed and Depth (CSD) has been a persistent objective for the Submarine Fleet since the 1970's, CSD (e.g., SLC) has not become an operational capability for the Fleet (mostly due to both real and perceived cost)

Questions?

