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What Are You Going to Hear?

* The Navy’s view of connecting the C4ISR network

* Possible underwater Optical Laser Communications
(OLC) architectures supporting a wide range of critical
Naval missions

* An overview of the fundamental physics of the all-
underwater and underwater/above-water propagation
channel and the impact on communications performance

* The state of the art in OLC performance modeling and
environmental characterization

* An example of the relationship of OLC architecture and
laser and narrowband optical filter selection
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Connecting the C4ISR Network:
Both Above-Water and Undersea Nodes
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GOAL: Commumcate with underwater assets at operationally
useful depths/ranges at operationally useful data rates
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OLC Platform Options and Architectures
In Support of Naval Undersea Dominance
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: F * Inherent stealth, resistance to jamming and

= ‘ substantially reduced platform restrictions
Very HD Al URY * The selection of platform(s) and OLC

dataexchamoey architecture is critical to operational utility
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* The “enabling technology” is available NOW

CONOPS Must Adapt To Today’s Operational
QinetiQ and (Most Importantly) Today’s Fiscal Realities
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Architecture, Depth and Data Rate
Requirements Define the OLC Geometry

* Two OLC comm modes: (1) all-underwater (terminal-to-terminal), and (2) through
the air-water interface (UW terminal comm with an above-water terminal)

* All-underwater OLC propagation phenomenology and OLC technology can be
significantly different than the through-the air/water-interface link
» Solar background is generally not a dominating noise source
» Data rate capability and/or requirements can be substantially larger
» SWaP terminal requirements are generally much more demanding
* Communications through the air-water interface propagation channel 1s much more
complicated and much more dependent on geometry and the environment

» Requirement for daytime operation drives many of the technology and
architecture options (e.g., narrowband optical filters and high peak-power lasers)

Generally demands much more SWaP and complicated technology (e.g., SLC)

>

» To be efficient (especially daytime), requires collection of multiple scattered
signal (placing heavy demands on high peak power lasers and wide FOV filters)

>

Real-time adapting of system parameters is required to optimize performance in
real-world conditions (e.g., anamorphic zoom, adaptive-data-rate-comm)

Initial signal acquisition for 2-way comm links
(or SpotCast OPAREA scan) is generally the
most complicated operation & defines CONOPS
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All-Underwater Optical
Propagation: The Basics Fully diffuse,

View looking

532 nm (Green)  Jerlov IB Jerlov 1T Jerlov 1T A ISR baclc towards
Jerlov Water Parameter (m-1) (m-1) (m-1) laser transmitter
a (absorption) 0.060 0.076 0.104
b (scattering) 0.084 0.227 0452 Multiple forward
¢ (beam attenuation) | 0144 | 0303 | 0556 scattered beam
o (albedo) 0.58 0.75 0.81
K (diffuse attenuation) | 0064 | 008 | 0.114 Direct,
¢ / K ratio 23 37 49 unscattered
8 s scatter angle (°) 5.6 5.6 5.6 beam

Three Distinct Propagation Regimes

I. Fu”y Di[‘fuse’ Multl‘ple Scattered Beam (b * Z >~ 20) w Theoretical Laser Performance in Jerlov lll Water
v Radiance is weak and diffuse (subtends 10’s of degrees) & very large spatial ' I E—— mw, 76 mm, + 06
spreading (reduces amount of photons collected by a small receiver aperture) : 5 : 5 - |=Two 15 W, 100 mm,+ 03’
v Requires large FOV to capture the diffuse, multiple scattered radiance b ¢ N """""" S ©[[ZmmTwo75W, 250 mm, 2 1
v Low attenuation rate approaching e-Z, but very large pulse spreading 0
9 % s 107 Range 2 -3. X for _____________ ]
2. Multiple Forward Scattered (MFS) Beam (~ 6 < b*Z <~ 20) 2 clear Jerlov IB water
v Radiance peaked in forward direction (increases as (b*Z)!? ) with moderate g _ : : :
Spatial spreading (increases apprOXimately as (b*Z)3/2 ‘3 L[ S e e, N o e e e e e e
v Requires medium FOV to capture the MFS radiance (i.e., ~ 6 - 20°) = / : : : : :
v" Low loss rate of e’XP and moderate pulse spreading (e.g., <4 ns at b*Z = 10) 10" perssacrs — i R ecvesas ety o Anim s b
3. Direct, Unscattered Beam (b*Z < ~ 6) \3_\
v Very low radiance << 0.1° (transmitter aperture limited) W e
v Requires narrow FOV to reject scattered light (i,e., eliminates pulse spreading) Range (f)

v" High loss rate of e<Z (“c” is ~ 2 -5 X larger than K), but NO pulse spreading

All-underwater propagation regimes depends on range,
transmitter beam divergence, receiver FOV and both
QinetiQ optical scatter/absorption parameters of the ocean path
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Propagation Channel Characteristics of a
Through the Air-Water Interface OLC Channel DSy Tme solar

background noise

* Uplink & downlink are NOT reciprocal: daytime downlink SNR
scales as e P while uplink SNR scales as: e KD/ R4

* Basically, everything works great at night or clear

* Uplink comm performance is reduced approx linearly with the
range (i.e., increasing scan angle and/or higher altitude)

Cloud: < optical
thickness, T physical
thickness at height H

ﬂot onicloud
: \
el

Cloud pulse
spreading:
100s of ns to

10s of us

* Downlink data rate is nominally limited by

— Day (cloudy or clear) is SNR limited (i.e., laser energy-per-pulse/
background); Night (cloudy) is cloud pulse-stretching limited

— With Tx zoom, data rate is nearly independent of altitude/range

— Because of water absorption (vs. scattering), downwelling
radiance moves towards nadir vs. depth & limits to £ 19 °

* Anamorphic Tx zoom and Rx FOV correction vs. nadir angle
can increase performance substantially for large angles

: * Spatial spreading in clouds reduces received energy/pulse,
C':;g:g?;éa' increases required A/C Rx FOV and complicates scan strategy
Wat |

spreading: - Water turbidity rapidly degrades SNR (i.e., depth & data rate)

d0sofns — “Green’ littoral water is more turbid than open-ocean “blue” water

and generally gets clearer (i.e., “bluer”) with depth

~ (K) generally
gets better
with depth (D)

— — Sea state is very much a second order effect and may help at
large nadir angles (clear)

— Multiple scattering in sea water (K & D) defines sub Rx FOV
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UW OLC Performance Modeling Is Well
Understood & Experimentally Verified

» The model has evolved from > 30 years of
development by the Navy (e.g., SLC, ASat)

i’"\\ Ny > *@f; < > = - Water and cloud data bases were developed
N e ( S using both satellite and ocean cruise/sub data
R —~ . *'.,;, < - Extensive aircraft to sub lasercomm experiments
o \;w ’ Cl\rt e in the 70’s and 80’s validated the models
erlov er Clakxity Map from :
MODIS ectral Imaglng Satellite Sub depths varled. over a very large range
o , . =~ . Frorr]n ﬁle?r tg turbcljd ocean water; from clear
to thick cloud conditions
uo!ﬂal:%.ggmz 020 041 0819 1754 336 6303 « Comms to USAF aircraft lasercomm receiver
Diffuse attenuation coefficient at 490 nm (K490) (m™) though 30,000 ft of Cumulonimbus clouds

« SpotCast CSD demos in several airborne
experiments and in RIMPAC '86 FLEETEX

« 2-way BeamCast comm demo between above
water and UW terminals to Mbps

* The all-underwater HDR lasercomm tests
conducted over a wide variety of water clarities
and ranges (including fully-autonomous signal
acquisition and reciprocal tracking at sea). Real-
world tests at SCI agree within £+ ~ 1.5 dB

— Model predictions and measured
Cloud Oplical Thickness results from sea-tests agree to better

HE 02w
—————— than % 2 dB over a wide range of
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2004 SEADEEP Experiment Demonstrated
Feasibility of Two-Way High Data Rate OLC

Green uplink at 100 ft
depth (15 sec exposure 130 ft surface
and 4X zoom)

Ny

Experiment
I P

support ship at
ge of 3

“Glow” from radar
display on ship’s bridge

* Two-way laser comm experiment at San Clemente Island (SCI) in 2004 demonstrated the last
remaining SLC physics issue: feasibility of high bandwidth (Mbps) BeamCast comms through
air/water interface to depth in a real ocean environment (both up and down)

v" Due to limited funding, blue downlink laser and green uplink receiver mounted in van at SCI and
green uplink fiber-coupled laser from ship to UW terminal with blue downlink receiver canister

v" Small COTS lasers (0.15 W down, 0.8 W up) at representative airborne SLC geometry (60 ° nadir
angle, 3,000 ft range) and turbid ocean water (K~ 0.11 m-1, Jerlov I111)

* Max data rate “demonstrated” (NOT max data rate achievable): 2 Mbps DOWN, 500 Kbps UP
to approximately 110 ft depth

* Excellent Low Probability of Detection (LPD): only a faint uplink spot visible (approximately
as detectible as glow from radar display leaking out of the window of the surface support ship)

2-way data transfer at Mbps and
el BMR® NO Vegas Laser Light Show . . | e
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The Selection of a Laser and
Narrowband Optical Filter
On a Notional OLC Architecture
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A Notional OLC Architecture Exploiting
the Fraunhofer Line “Filter-Advantage

518 nm Fraunhofer Line :
- Fraction of Received Solar
1 Solar Irradiance vs. A 05 Irradiance vs. Filter Bandwid# —
0.9 A P
NEvaray. LY aal
o — P ]
e g
i 1/ o
\ ; 8 o2 /
Y .
0.2 Y4 2
0.1 0.1
Wavelength, Angstroms % 02 04 06 08 1 12 14 1.6 1.8 2
Lyot Filter bandwidth (Angstroms)
Exploits fundamental characteristics of the UW OLC channel i
> “n” dB advantage (day) using the 518 nm Fraunhofer “dip” Redlilc:tignh ol_f‘ Lyot Filier “Effei:fiye”
» 518 nm is a good compromise of color for ocean waters and s andwidth-Due ¢ ofef-Line—
better in the stressing littoral waters (“green” water) . 0.1 nm y t filter at P

Can be matched to X2, Ytterbium fiber lasers (efficient, 518.4 nm Fraunhofer //

0.8

compact, reliable technology easily scaled to higher power) line behaves like a %

06 0.039 nm filter

Conventional Lyot filters can match the Fraunhofer band

N
0.4 \

» Compact, robust, field-tested Lgot filters (e.g., makes optimum

Effective Lyot Filter Bandwidth (Angstrom)

use of available canister area & filter Ahpygy = A, 7
» Modest operating temperature (e.g., ~ 40°C) 02 -
» High altitude airborne filters can reduce receiver FOV for much e
better bandwidth performance (Ah, ~ FOV2) O i bandwidth Aesromg, S
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Examples of Laser Options and Their Impact
on Both Operational and Fiscal Viability

v == Frequency-Tripled/ gf
i OPO Nd:YAG Laser @&

Frequ

* Adaptive Pulsewidth
Laser Architecture
(APLA) dynamically
matches laser PRF and
PPM pulsewidth to
instantaneous channel
characteristics

Yb APLA Fiber Laser Advantage
>4 dB SNR (day) operating at the 518 nm Fraunhofer “dip”
 Approximately 20 X wall plug efficiency and less than 1/20t cost
* ~160 X more compact (W/ft}) & ~ 60 X more output-power/pound (W/Ib)

3 ° Laser PRF variable from KHz to MHz (e.g., 1,000 X max data rate)
Q’n * Qualifiable in “relevant environments”



The OLC Bottom Line

1000II.(IW Comm Performance vs. Technology

- ISR is critical to the Navy’s mission

: - » The collection of offboard ISR is only of use to
ARl the warfighter if it can be transferred with high
fidelity and low latency(i.e., high bandwidth)

> The “Unmanned-Imperative” (e.g., UAVs,
SRR Optical UUVs), which is so critical to affordability,

S (Clear Water) makes information transfer even more difficult
> Minimizing platform operational limitations

_ (e.g., speed, depth, tethers and cables) is key
(Tugll?ot,'ﬁﬁ;ter) to operational utility

0 do0 1o a0 o 10 w0 10w © Fundamental "physics” defines underwater

Ppe fee KOes Kbpe KO ta Rate T o ™ comm range/data-rate performance

- Legacy systems (RF or acoustics) do not meet the requirements to connect the
undersea environment either due to physics, lack of stealth, insufficient
bandwidth and/or the ability to be jammed or otherwise denied

- Most importantly, only OLC can transfer tactically-significant information through
the air-water interface

- While Comms at Speed and Depth (CSD) has been a persistent objective for
the Submarine Fleet since the 1970’s, CSD (e.g., SLC) has not become an
operational capability for the Fleet (mostly due to both real and perceived cost)
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Questions?
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