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Information Theory

• “A Mathematical Theory of 
Communication”, C.E. Shannon, 1948

• Lies at the intersection of Electrical 
Engineering, Mathematics, and Computer 
Science

• Concerns the reliable and efficient storage 
and transmission of information.



  

Information Theory: Some Hits

• Source Coding: 
Cell 
Phones

Lempel-Ziv 
compression 
(gunzip, 
winzip, etc)

Voyager (Reed Solomon codes)

Low density parity check codes



  

Quantum Information Theory

When we include quantum mechanics (which 
was there all along!) things get much more 
interesting!

Secure communication, entanglement enhanced 
communication, sending quantum information,…

Capacity, error correction, compression, entropy..



  

Example: Flipping a biased coin

Let’s say we flip n coins.  
They’re independent and identically distributed (i.i.d):

Pr( Xi = 0 ) = 1-p  Pr( Xi = 1 ) = p

Pr( Xi = xi, Xj = xj ) = Pr( Xi = xi ) Pr( Xj = xj )

x1x2 … xn

Q: How many 1’s am I likely to get?

 



  

Example: Flipping a biased coin

Let’s say we flip n coins.  
They’re independent and identically distributed (i.i.d):

Pr( Xi = 0 ) = 1-p  Pr( Xi = 1 ) = p

Pr( Xi = xi, Xj = xj ) = Pr( Xi = xi ) Pr( Xj = xj )

x1x2 … xn

Q: How many 1’s am I likely to get?

A: Around pn and, with very high probability between (p-δ )n and 
(p+δ)n



  

H(X ) =
P

x ¡ p(x) logp(x)

=n H(p)

Flip n i.i.d. coins, Pr( Xi = 0) =1- p, Pr( Xi = 1) = p
 Outcome: x1…xn.

w.h.p. get approximately pn 1’s, but how many different configurations?

There are     such strings.

Using we get

Where H(p) = -p logp – (1-p)log(1-p)

So, now, if I want to transmit x_1…x_n, I can just check which typical sequence, and report 
that!  Maps n bits to nH(p)

Similar for larger alphabet: 

Shannon Entropy



  

Channel Capacity
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Encoder

Given n uses of a channel, encode 
a message m 2 {1,…,M} to a 
codeword xn = (x1(m),…, xn(m)) 

At the output of the channel, use yn 
= (y1,…,yn) to make a guess, m0.

The rate of the code is (1/n)log M.

The capacity of the channel, C(N), 
is defined as the maximum rate 
you can get with vanishing error 
probability as n ! 1



  

Binary Symmetric Channel

 NX Y

p(0|0) = 1-p p(1|0) = p

p(0|1) = p p(1|1) = 1-p



  

Capacity of Binary Symmetric 
Channel

Input string

xn =(x1,…, xn) 

2n possible outputs



  

Capacity of Binary Symmetric 
Channel

Input string

xn =(x1,…, xn) 

2n possible outputs
2nH(p) typical errors



  

Capacity of Binary Symmetric 
Channel

Input string

x1
n =(x11,…, x1n) 

2n possible outputs
2nH(p) typical errors

x2
n =(x21,…, x2n) 

2nH(p) 



  

Capacity of Binary Symmetric 
Channel

Input string

x1
n =(x11,…, x1n) 

2n possible outputs
2nH(p) typical errors

x2
n =(x21,…, x2n) 

xM
n =(xM1,…, xMn) 

.

.

.

2nH(p) 

2nH(p) 



  

Capacity of Binary Symmetric 
Channel

Input string

x1
n =(x11,…, x1n) 

2n possible outputs
2nH(p) typical errors

x2
n =(x21,…, x2n) 

xM
n =(xM1,…, xMn) 

.

.

.

2nH(p) 

2nH(p) 

Each xm
n gets 

mapped to 2nH(p) 
different outputs.

If these sets 
overlap for different 
inputs, the decoder 
will be confused.

So, we need

M 2nH(p) · 2n, which 
implies

(1/n)log M · 1-H(p)

Upper bound on capacity



  

Direct Coding Theorem:
Achievability of 1-H(p)

• Choose 2nR codewords randomly according to Xn 
(50/50 variable)

• xm
n --> yn. To decode, look at all strings within 2n(H(p)+ δ ) 

bit-flips of yn.  If this set contains exactly one 
codeword, decode to that.  Otherwise, report error.

Decoding sphere is big enough that w.h.p. the correct 
codeword xm

n is in there.

So, the only source of error is if two codewords are in 
there.  What are the chances of that???



  

Direct coding theorem: 
Achievablility of 1-H(p)

2n total 

Random 
codeword

Mapped 
here



  

Direct coding theorem: 
Achievablility of 1-H(p)

2n total 

Size  2n(H(p) + δ )



  

Direct coding theorem: 
Achievablility of 1-H(p)

2n total 

Size  2n(H(p) + δ )
If code is chosen randomly, 
what’s the chance of another 
codeword in this ball?



  

Direct coding theorem: 
Achievablility of 1-H(p)

2n total 

Size  2n(H(p) + δ )
If code is chosen randomly, 
what’s the chance of another 
codeword in this ball?

If I choose one more word, the 
chance is



  

Direct coding theorem: 
Achievablility of 1-H(p)

2n total 

Size  2n(H(p) + δ )
If code is chosen randomly, 
what’s the chance of another 
codeword in this ball?

If I choose one more word, the 
chance is

Choose 2nR more, the chance is 

2
n (H (p)+ R + ±)

2n

If R < 1 – H(p) – d, this approaches 0 
as n goes to infinity

So, the average probability of decoding error (averaged over codebook 
choice and codeword) is small.  

As a result, there must be some codebook with low prob of error 
(averaged over codewords).



  

Shannon's Theorem:  Capacity 
for a general channel

• For any input distribution p(x), given by 
p(y|x), we can approach rate R = I(X;Y).  
By picking the best X, we can achieve 
C(N) = maxXI(X;Y).  This is called the 
“direct” part of the capacity theorem.

• You can’t do any better.  (Converse)

Mutual Information:  I(X;Y)=H(X)+H(Y)-H(X,Y)
                                          =H(X)-H(X|Y)
                                          =H(Y)-H(Y|X)



  

The many capacities of a quantum channel



  

Channel Capacity

    NX Y

p(y|x)

Capacity: bits per channel use in the limit of many channels

   C = maxX I(X;Y)

I(X;Y) is the mutual information



  

Pure Quantum States

• Qubit: |ψi = α |0> + β |1> , α,β  
complex and |α|2 + |β |2 = 1.

• If you measure |ψi in the |0>,|1> 
 basis, you get 0 with prob. |α|2 
and 1 with prob. |β |2 

• You could use some other basis, 
though.  Like      ,     , with 

For a d-level system |ψ> is a unit vector in Cd 

|0>

|1>



  

Mixed Quantum States

• Pure states are the minimum uncertainty 
states in quantum mechanics.

• We can also have mixed states:
ρ  = ∑i pi |ψiXψi| with pi  positive and             
∑i pi = 1

• Can think of it as a bipartite pure state with 
one part traced out: ρB = TrA |ψABXψAB|

• A pure whole can have mixed parts



  

Entropy and Typical Spaces

• Any mixed state can be written as 
•
•                                     is the entropy
• It measures the uncertainty in A 
• Given n copies of       we can reversibly 

map A to a space of dimension             
This is the “typical space”  

• Analogous to “typical sets” of classical 
information theory. 2nH(p) strings



  

Noisy Quantum Channels

• Noiseless quantum evolution: 
 Unitary satisfies  

• Noisy quantum evolution: unitary 
interaction with inaccessible environment

U
ρ

0 E

B
 ρ ρ =



  

Classical Capacity of Quantum Channel

We can understand coding schemes for classical 
information in terms of the Holevo Information:
χ(N) = max{px, ρx} I(X;B)

where I(X;B) = H(X) + H(B) – H(XB) uses von Neumann 
entropy and is evaluated on the state 

Random coding arguments show that χ(N) is an 
achievable rate, so C(N ) >= χ(N).  Furthermore, 

(see Holevo 73, 79, 98, Schumacher-Westmoreland 97)

n uses



  

Alternative form of Holevo 
quantity

(Sometimes people refer to the Holevo quantity without the
maximization as well)



  

Private Classical Capacity

• Quantum channel has one sender, two receivers.  
• Best rate for classical messages from A to B while E 

learns nothing is the private capacity.  Call it P(N ).

• Related to quantum key distribution---the fact than by 
analyzing the map from A to B we can infer the map 
from A to E allows unconditional security that is 
impossible classically.*

UN

B

E

AN A B

* “Stupid” private capacity without back-communcation



  

Private Classical Capacity

• Let P1(N) = maxpv,φ v
 I(V;B)- I(V;E), with mutual 

informations evaluated on 

• Random coding and privacy amplification shows 
P(N) >= P1(N) and, in fact we can get 

UN

B

E

AN A B

n uses
See Devetak 03



  

Quantum Capacity

• If we try to transmit 
an arbitrary 
quantum state, we 
arrive at the 
quantum capacity, 
Q(N).  

• The quantum 
capacity, measured 
in qubits per 
channel use, 
characterizes the 
ultimate limit on 
quantum error 
correction.

 N

 N
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DecoderEncoder



  

Quantum Capacity

 N

 N

 N

.

.

.

DecoderEncoder

Evaluate entropies on 

Something like how much
more B knows than E



  



  



  

Big Idea
(That sometimes is lost in all the formalism)

If you have shared an EPR pair, then you 
can send a quantum state by teleportation 

Furthermore, even though to actually teleport
would require classical communication, if you
can share an EPR pair through a channel then
you can also send a state without the classical
communication  



  

Less Big Idea

If you can share an arbitrary quantum
state through a channel, the you can
share an EPR pair

Obviously

Big idea plus less big idea gets 
capacity converse for free



  



  

With Identity Independent Distributions (IID), everything works
far better than one could even hope:

Shannon coding manages to get to a high probability that 
every bit is correct, when we might have been pretty
happy with each bit being correct with high probability

One is exponentially better than the other:
If the probability of each bit being correct is p,
then the probability of all bits being correct is only pn,
and we expect np of them to be wrong.

The cryptographer wants all the bits to be secure.
If np bits leak, what if they're the most important ones?



  

Cryptographers are just paranoid information theorists.



  



  

Unfortunately, in the cryptographic setting channels are
not IID.

They're adversarial, which is the worst possible thing.  We
don't even get to know what the channel is!

Aside:  There are lots of beautiful results
about privacy in the IID case.  Devetak.

Remarkably, QKD still achieves the strong form of security
where every bit is safe!



  

How is strong security obtained in the adversarial case?

That was the hard part to prove.....

Important tool:  Back communication

Not needed in for IID classical capacity

Channel Tomography:  Figure out what the
channel is, on the average

Randomization:  Change the order around so
the adversary loses some power 

Privacy amplification

Mayers, Preskill-Shor.



  

Reasons your QKD might fail

Quantum Mechanics is wrong

Your system isn't described by the
physics you think it is

Proofs of security are wrong

Your lab is insecure

Your people are insecure

Your random numbers are bad

You're using the proofs wrong

It got jammed



  



  

Authentication is Key

QKD requires the quantum channel and a public,
but authenticated, classical channel

QKD really should be thought of as “key expansion”
because you have to start with some key for authentication

Perhaps this is less of a problem point to point between
ships, but then why do we need QKD at all?



  

Most things aren’t additive

• Q1 is not additive for the very noisy 
depolarizing channel (Shor-Smolin ‘96)

• P1 isn’t additive for BB84 channel (Smith-
Renes-Smolin, ‘08)

•  χ is nonadditive for high-dimensional 
random channel (Hastings ‘09)

• Q1 and P1 can both be extremely 
nonadditive (Smith-Smolin 08, 09)



  

But sometimes they are

•  χ is additive for depolarizing, erasure, and 
entanglement breaking channels.

• Q1 and P1 are additive for degradable 
channels*, Q1 is for PPT channels.

* Just like a degraded broadcast channel when you 
take the less noisy user to be the channel output and 
the more noisy user to be the environment

See King, Shor, Devetak-Shor, Horodecki, …



  



  



  

 Coherent Information

           max S(B)-S(E)

     No (Div-Shor-Smolin ‘98)

 Quantum Capacity

       No (Smith-Yard ‘08)
Quantum

Quantum Mutual Information

Yes (Bennett-Shor-Smolin-
Thapliyal ‘99)

Entanglement assisted 
classical capacity

Yes (Bennett-Shor-Smolin-
Thapliyal ‘99)

Entanglemen
t assisted

        Private Information

         max I(X;B)-I(X;E)

No (Smith-Renes-Smolin ‘08)

         Private Capacity

No (Li-Winter-Zou-Guo ’09

           Smith-Smolin-08/09)  
     

Private

        Holevo Information

           max I(X;B)

       No (Hastings ‘09)

       Classical Capacity

                  ?
Classical

Correlation Measure       CapacityInformation  \  Quantity

Additivity Questions



  



  

Lots of great stuff from quantum information:

Superactivation

Now with gaussian channels

Entropy-Power inequality

Reverse Shannon theorem

Quantum computation (the flip side of QKD)

Entanglement assisted communication
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