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All the High-Rate Links Anyone Could 
Be Interested In (until we travel to the stars)

10
Gbps

GEO
TelecomAi LEO to

1
Gbps

Lagrange

Telecom
and

Relay

Air
Links

LEO to 
Ground
Links

Lunar
Trunks

100
Mbps

10

Trunks

Over six orders of 
magnitude of distance =10

Mbps

1
Mbps

NEO
Science
Return

magnitude of distance  
120 dB of technology to 
span

Mbps
GEO AU

AIR-TO-AIR LEO SATS VENUS
MERCURY

MARSNEAR-EARTH
SATS MOON JUPITER

SATURN URANUS
NEPTUNE

PLUTO
L1

MIT Lincoln Laboratory
Overview-5

DMB 9/4/2012

101 102 103 104 105 106 107 108 1010Km Km 109

light second light minute light hour



All the High-Rate Links Anyone Could 
Be Interested In (until we travel to the stars)

10
Gbps

GEO
TelecomAi LEO to

1
Gbps

Lagrange

Telecom
and

Relay

Air
Links

LEO to 
Ground
Links

Lunar
Trunks

100
Mbps

10

Trunks

Highly lossy links means 
always receive classical 
signals10

Mbps

1
Mbps

NEO
Science
Return

signals
Far-field means no spatial 
information about source

Mbps
GEO AU

AIR-TO-AIR LEO SATS VENUS
MERCURY

MARSNEAR-EARTH
SATS MOON JUPITER

SATURN URANUS
NEPTUNE

PLUTO
L1

MIT Lincoln Laboratory
Overview-6

DMB 9/4/2012

101 102 103 104 105 106 107 108 1010Km Km 109

light second light minute light hour



Radio Frequency (RF) vs Optical
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Radio Frequency (RF) vs Optical
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Radio Frequency (RF) vs Optical

1015 Hz 0.3 m
PHz

1012 Hz
THz

0.3 mm

HigherHigher 
frequencies 

are more 
power 

efficient by

109 Hz 0.3 m

efficient by 
~f in 

freespace*

*More on

MIT Lincoln Laboratory
Overview-9

DMB 9/4/2012

GHz
0.3 m *More on 

this later10 dB



Opportunity/Challenge –
Achieve Narrow-Beam Benefits of Optical
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Challenge –
Achieve Optimum Coded Efficiency
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Challenge – Achieve Optimum Coded 
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Parts of a Free-Space
Communications System - Optical
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What’s Hard About Optical?
In Both Vacuum and Atmospheric Links

• Finding (acquiring) where to point
• Stabilizing (tracking) very narrow beam in face of platform 

micro-vibrations
• Subsystems must withstand vibrations of launch, wild 

temperature swings, and radiation
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What’s Hard About Optical?
In Atmospheric Links

• Transmitting beam up through atmosphere and preserving 
high gain in face of turbulence

• Receiving low-power signal via large aperture and coupling 
light into single-mode (or other small) receiver in face of 
turbulence

• Extremely narrow-band filtering of received light when pointed 
near sunnear sun

• Dealing with wide power fluctuations
• Clouds, fog, trees…..
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What’s Hard About Optical?
Technologies

• High-optical-power, low-electrical-power transmitters that can 
achieve high speed, high peak powers, high optical quality, etc
R i t d hit t th t hi• Receiver components and architectures that can achieve near-
optimum performance at desired rates and desired aperture 
sizes

• Present-day photon-counting technologies not simply suitable• Present-day photon-counting technologies not simply suitable 
for space environment
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Lunar Laser Communication 
Demonstration Program

To be world’s first lunar To be world’s first lunar lasercomlasercom

Space terminal to fly on Lunar Atmosphere and 
D t E i t E l (LADEE)Dust Environment Explorer (LADEE)

Main lasercom goals
– 622 Mbps downlink

LADEE Launch
August 2013

– 1 month cruise
– 1 month lasercom orbits

– 20 Mbps uplink
– Sub-centimeter 

real-time ranging
1 month lasercom orbits

– 3 months science orbits
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Summary

• Present technologies adeq ate for achie ing ide range of• Present technologies adequate for achieving wide range of 
high-performance (optical) communications systems

• Stage is set for optical transmission and reception based• Stage is set for optical transmission and reception based 
on quantum properties of light
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