# **Dynamic cluster quantum Monte Carlo simulations of cuprate superconductors**

#### **Thomas A. Maier**

Oak Ridge National Laboratory

| G. Alvarez, P. Kent, T.C. Schulthess, | ORNL                       |
|---------------------------------------|----------------------------|
| E. D'Azevedo                          |                            |
| M. Jarrell, A. Macridin               | UC/LSU                     |
| D. Scalapino                          | UCSB                       |
| P. Hirschfeld, A. Kemper,             | UFL                        |
| HP. Cheng                             |                            |
| D. Poilblanc                          | <b>CNRS &amp; Toulouse</b> |

Funding: ORNL/LDRD, DOE-ASCR, DOE-BES

#### Outline



# Optimizing the Dynamic Cluster QMC

#### **Effects of disorder**



#### Avoiding the sign problem



National Laboratory

#### **HTSC cuprates**

- \* <U> ≈ <T>
- Competing states
- Rich phase diagram
- Nanoscale inhomogeneities
- Superconductivity





# **2D Hubbard Model for Cuprates**



National Laboratory

# **Cuprate Superconductivity = Multi-Scale Problem**

| Atomic scale                                                            | Nano-scale                                                                                        | Macro-scale                             |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------|
| <ul> <li>Strong local correlations</li> <li>Moment formation</li> </ul> | <ul> <li>Antiferromagnetic correlations</li> <li>Cooper pairs</li> <li>Inhomogeneities</li> </ul> | ~ μm* Macroscopic<br>quantum<br>effects |
| <i>Theory:</i><br>Atomistic description                                 |                                                                                                   | Thermodynamics<br>Continuum description |
| Complexity $\sim 4^{N}$                                                 |                                                                                                   | N ~ 10 <sup>23</sup>                    |



## **Quantum Cluster Theories**

#### Quantum cluster theories: Maier, Jarrell, Pruschke & Hettler, RMP '05



Coherently embed cluster into effective medium



Hettler et al., PRB '98



11/15/08 CMSN meeting Oak Ridge

Split lattice into clusters/sublattices





Hettler et al., PRB '98



Self-energy finite between nn sites on different sublattices



Hettler et al., PRB '98

11/15/08 CMSN meeting Oak Ridge



Self-energy finite between nn sites on different sublattices

→ In reciprocal space:





National Laboratory

 $= \frac{N_c}{N} \sum_{\tilde{\iota}} \frac{1}{z - \epsilon_{K+\tilde{k}} - \Sigma(K, z)}$ 



calculate  $\Sigma$  on coarse-grid:  $\Sigma(K, z) = \mathcal{F}[\overline{G}(K, z)]$ 

coarse-grained propagator:  $\bar{G}(K,z) = \frac{N_c}{N} \sum_{\tilde{z}} G(K+\tilde{k},z)$ 

→ Cluster with periodic BC embedded in mean-field host









National Laboratory



National Laboratory



National Laboratory



National Laboratory

#### **DCA: Some properties**

#### **Basic approximation:**

- \* Treats spatial correlations beyond cluster size in a mean-field
- \* Completely retains temporal fluctuations
- Non-perturbative!

#### **Consequences:**

- Can describe broken symmetry phases
- Transitions are mean-field (mean-field exponents etc.)
- Transition occurs when correlation length exceeds cluster size (finite size scaling)
- \* Systematic improvements by increasing cluster size



## Antiferromagnetism in half-filled 2D Hubbard model





# **Overview of DCA calculations for 2D Hubbard model**



Macridin *et al.,* PRB 71 '05 Kent *et al.,* PRB 78 '08 Wang *et al.,* preprint '08 Phonons



Superconductivity & pairing mechanism



#### High-energy kink/Waterfall



Macridin et al., PRL 76 '07

#### Inhomogeneities/disorder



Doluweera *et al.,* PRB 78 '08 Kemper *et al.,* preprint '08 Okamoto & Maier, PRL 101 '08



#### **Overview of DCA calculations for 2D Hubbard model**



11/15/08 CMSN meeting Oak Ridge

#### **Superconductivity in 2D Hubbard Model**

d-wave pair-field susceptibility  $P_d = \int_0^\beta d\tau \langle \Delta_d(\tau) \Delta_d^{\dagger}(0) \rangle$  diverges in large clusters



Maier, Jarrell, Schulthess, Kent & White, PRL '05



4-site cluster: Rich phase diagram with competing phases including antiferromagnetism, pseudogap and superconductivity



#### **Pairing matrix formalism**

Bethe-Salpeter equation for pair-field susceptibility

$$P = \chi_0^{pp} + \Gamma^{pp} \chi_0^{pp} P$$
$$= \chi_0^{pp} [1 - \Gamma^{pp} \chi_0^{pp}]^{-1}$$

\* Instead of calculating P, calculate eigenvalues and eigenvectors of

$$-\frac{T}{N_c}\sum_K \Gamma^{pp}(K,K')\chi_0^{pp}(K')\Phi_\alpha(K') = \lambda_\alpha \Phi_\alpha(K)$$

- \* *P* diverges when leading eigenvalue  $\lambda_{\alpha}$  becomes one
- Symmetry of superconducting state is given by K=(K,ω<sub>n</sub>)
   dependence of φ<sub>α</sub>(K)



#### Leading eigenvalue and eigenvector



#### **Pairing mechanism**

Analyze particle-particle vertex

Maier et al., PRL '06, PRB '06, Physica C '07

 Spin susceptiblity representation of the pairing interaction

$$V_d(k,k',\omega,\omega')pproxrac{3}{2}ar{U}^2\chi(k-k',\omega-\omega')$$
 Maier *et al.*, PRB '07 x 2

 Relative importance of spin fluctuations and RVB mechanism

$$V_d \approx \frac{3}{2} \bar{U}^2 \chi (k - k', \omega - \omega')$$
  
-  $\bar{J} (\cos k_x - \cos k_y) (\cos k'_x - \cos k'_y)$ 



Maier et al., PRL '08

## Nanoscale inhomogeneities in cuprates



## Hirsch-Fye quantum Monte Carlo (HF-QMC) solver

Update of Green's function after acceptance:

$$\mathbf{G}_{c,\sigma}(\{s_{i,l}\}_{k+1}) = \mathbf{G}_{c,\sigma}(\{s_{i,l}\}_k) + \mathbf{a}_k \times \mathbf{b}_k$$



#### **Scaling of HF-QMC algortihm**



Green's function update at step k after acceptance of spin flip at position  $p_k$ :

$$\mathbf{G}_{k+1} = \mathbf{G}_k + \alpha_k (\mathbf{G}_k(:, p_k) - \mathbf{e}_{p_k}) \mathbf{G}_k(p_k, :)$$
  
=  $\mathbf{G}_k + \mathbf{a}_k \mathbf{b}_k^t$   
=  $\mathbf{G}_0 + \mathbf{a}_0 \mathbf{b}_0^t + \mathbf{a}_1 \mathbf{b}_1^t + \dots + \mathbf{a}_k \mathbf{b}_k^t$  (rank 1 update)

Transition probability from state k to state k+1:

$$R = \frac{\det(\mathbf{G}_k)}{\det(\mathbf{G}_{k+1})} = 1 + \gamma_k (1 - \mathbf{G}_k(p_k, p_k)).$$

 $\rightarrow$  Computing *R* requires O( $N_t^2$ ) operations



# Acceleration through delayed (Ed) updates

#### → Computing *R* requires $O(kN_t)$ operations (as opposed to $O(N_t^2)$ ) Green's function update after *k* steps $G_{k+1} = G_0 + [\mathbf{a}_0|\mathbf{a}_1|\cdots|\mathbf{a}_k] [\mathbf{b}_0|\mathbf{b}_1|\cdots|\mathbf{b}_k]^t$ . (rank *k* update)

 $\rightarrow$  Comlexity for k updates remains O( $kN_t^2$ ), but rank-1 update is replaced by rank-k update (+ bookkeeping)

#### **Performance improvement for delayed updates**



delay



# **Disorder and inhomogeneities**

Hubbard model with diagonal disorder







# Effect of random disorder in U

 $U_i = U \pm \Delta U$   $P(\{U_i\}) = \prod_{i=1}^{N_c} P_i(U_i)$  $P_i(U_i = U \pm \Delta U) = 1/2$   $N_c = 16$ ,  $\langle n \rangle = 0.9$ , U=4t



#### → Random disorder reduces transition temperature

Effect on the pairing interaction? 1/kTSpatial variation of pairing strength? Relation to chemistry?  $\rightarrow P_i(U_i = U + \Delta U) = x$ 



## Limit of small impurity concentration

Kemper, Doluweera, Maier, Jarrell, Hirschfeld, Cheng, preprint '08

Hubbard model with diagonal disorder

$$\mathcal{H} = -t \sum_{\langle ij \rangle, \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + \sum_{i, \sigma} V_i n_{i\sigma}$$

 For small impurity concentrations x, consider only configurations with zero or one impurity V<sub>i</sub>=V





# **Effect of single impurity**

Kemper, Doluweera, Maier, Jarrell, Hirschfeld, Cheng, preprint '08



- Decrease of T<sub>c</sub> for strong scattering
  - Due to scattering from impurity-induced magnetic moments and ordinary pairbreaking

- Initial rise of T<sub>c</sub> with impurity potential
  - > Due to enhancement of antiferromagnetic spin correlations



 Robustness of superconductivity against weak disorder due to correlations (consistent with Garg, Randeria, Trivedi, Nature Physics '08)



## Mechanism



**Cluster spin susceptibility** 

- Decrease of T<sub>c</sub> for strong scattering due to moment formation
- Induced moment for strong scattering: m<sup>2</sup> ~ 1/4
  - > Valence bond solid??

 Increase in T<sub>c</sub> due to enhancement of AF spin correlations

#### Induced magnetic moment





Doping a Mott insulator:

Physics dominated by Coulomb energy, kinetic energy is frustrated



Doping a Mott insulator:

Physics dominated by Coulomb energy, kinetic energy is frustrated



Doping a Mott insulator:

Physics dominated by Coulomb energy, kinetic energy is frustrated



Doping a Mott insulator:

Physics dominated by Coulomb energy, kinetic energy is frustrated



Doping a Mott insulator:

Physics dominated by Coulomb energy, kinetic energy is frustrated



Doping a Mott insulator:

Physics dominated by Coulomb energy, kinetic energy is frustrated



Doping a Mott insulator:

Physics dominated by Coulomb energy, kinetic energy is frustrated



Doping a Mott insulator:

Physics dominated by Coulomb energy, kinetic energy is frustrated



Hole localization due to increase in exchange energy!



Doping a Mott insulator:

Physics dominated by Coulomb energy, kinetic energy is frustrated



Hole localization due to increase in exchange energy!



#### Stripes: A way to relieve kinetic energy frustration

System phase separates into hole rich and hole poor regions Gor'kov, Sokol '87; Zaanen, Gunnarson '89; Emory, Kivelson, Lin '90; Emery, Kivelson '93; White, Scalapino '98, Zaanen, Nature '00



- \* DCA cluster has periodic boundary conditions
  - > Stripes are easily frustrated
  - > 20-site 5 x 4 cluster should accommodate exactly one stripe without frustrating it



> But half-filled unstriped cluster frustrates AF correlations -  $(\pi,\pi)$  is not cluster K-point

> Average over boundary conditions?



- \* DCA cluster is translationally invariant
  - > Every site in the cluster couples to the mean-field
  - > Holes can move in the cluster via mean-field without frustrating AF bonds





# **DCA/QMC** sign problem



#### Avoiding the sign-problem with parquet

- Present approach (DMFT, CDMFT, DCA, ...)
  - > Calculate self-energy and irreducible vertices in cluster

Cluster:  

$$G_{c} = [G_{c,0}^{-1} - \Sigma_{c}]^{-1} \qquad \chi_{c} = [\chi_{c,0}^{-1} - \Gamma_{c}]^{-1}$$
Lattice:  

$$G = [G_{0}^{-1} - \Sigma_{c}]^{-1} \qquad \chi = [\chi_{0}^{-1} - \Gamma_{c}]^{-1}$$

- > Use cluster self-energy and vertices in lattice Green's functions
- > Assumes that self-energy and vertices are local or weakly momentum dependent





# Avoiding the sign problem ...

SciDAC-2: Jarrell, Tomko, Bai, Savrasov, Scalettar, Maier, D'Azevedo

- New multi-scale many-body approach
  - > Calculate fully irreducible vertex  $\Lambda_c$  on small cluster using QMC



- > Use parquet equations to calculate  $\Sigma_c\,,~\Gamma_c$  on larger cluster
- > No sign problem  $\rightarrow$  scales algebraically
- >  $\Lambda_c$  more local than  $\Sigma_c\,,~\Gamma_c$
- > Short-ranged correlations on small cluster treated explicitly with QMC
- > Intermediate-ranged correlations on larger cluster treated with parquet
- > Long-ranged correlations treated in mean-field

(see also K. Held: Dynamical vertex approximation, PRB '07, Rubtsov *et al*.: dual Fermions arXiv:0810.3819v2)



#### Summary

#### **Optimizations of Dynamic Cluster quantum Monte Carlo**

\* Ten-fold speedup through delayed (Ed) updates and mixed precision

#### DCA simulations of homogeneous 2D Hubbard model

- Superconductivity, antiferromagnetism, pseudogap behavior
- \* Insights into the pairing mechanism RVB vs. spin fluctuations

#### **DCA simulations of disordered Hubbard model**

- Disorder reduces transition temperature
- \* Robustness of superconductivity against weak disorder due to correlations

#### Multi-scale many-body approach

Treat correlations on different length-scales with different accuracy

