The Density Matrix Renormalization Group

* Historical development: Numerical RGs, particle in a
box analysis, density matrix idea and algorithm

* Quantum information, entanglement, matrix product
states

* A few 2D examples and summary

e References:
— S.R.White, PRL 69, 2863 (1992); PRB 48, 10345 (1993);
— U. Schollwéck, RMP 77,259 (2005).
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RG Approach

* Solve a high energy, short length part of the problem
first

* Build solution into a new effective Hamiltonian which
omits the highest energies

* lterate, until you just have long-wavelength, low
energies left

* [Fixed point analysis, scaling, critical behavior, etc]



Wilson’s numerical RG for a Kondo impurity

/ Free el. gas

Magnetic
impurity

/

Standard Feynman diagrammatic

perturbation approaches failed in
the 60’s.

Successes:

e “Poor man’s scaling”, Anderson
et. al. 1970

eWilson’s NRG, 1975

eExact Bethe ansatz solution,
1982
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Wilson’s logarithmic basis



Wilson’s numerical RG

r—o—0—0—0—0—

Diagonalize block, keep m lowest

energy states
<E> &Y

site
. Add one site, diagonalize block
Treat short distance, Hamiltonian again, keeping m states

high energy scales first

Key point:
Keep track of H through m x m operator and transformation matrices
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Numerical RG in detail

O = 2N or m? or 2m

keep
} Eigenvectors

m

H’=OTHO, S’%=0"S%0, etc




4, Combine two adjacent B'’s. More Details—adding 2 blocks

B" = B'® B’ |iia) = |i1)]i2)
M’?Z i iy

H'=H ©1+1% H + connecting terms

Typical connecting term: S7S7 , —> E'};E g@f “j g iz
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What justifies the truncation? -
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1. We want the ground state and we are throwing out hlgh energy
states (of small blocks).

2. In limit “connecting terms” are small, perturbation theory justifies
it,.

% 3. Detailed analysis of structure of H for impurity problems.



Wilson’s Numerical RG: Successes and Failures

* Successes:
— Impurity problems: falling energy scales
-1

* Failures:
— Real space RG

e Block + Block
* Block + site

* Why does it fail?



Test case—1D particle in a box @G —C——a——s

Continuum version: H = waa—;; $(0) = (L) = 0.

Lattice version: oy { dde /\f
£ s (&4 2. € s f‘&f{—* : E/\///I
2 -1 0 _

= Xercise!
-1 2 -1 ‘{\"ui @;{-;;L,,c)"f( [:‘/Ufe,/‘j;

This problem was studied as a test case for why RG fails by Wilson in
1986 (unpublished).

In this 1 particle problem, instead of adding blocks using direct produds
: _ L L iy
®, we use direct sums @. Number of states = L, not 2“ or 4". 5@&{\% Zﬂf - u 7

J/BGL\}

Procedure 4

H T 0 Y= { )

T H T v,

Hsystem = TT H T
™" H T

0
Initially H = (2) and T = (-1).
1. Combine two blocks:

,  (H T ;{0 0
m=(r 1) T=(z o)

2. Diagonalize H', getting eigenvectors V;
3. Form matrix O c:L ccend

: . : I/M i o L'//U;
o=|v v ..V, |

s (hbrer 13 o
of g—*he/«fs/ N 2 \



4. Change basis and truncate: S &5 S b

H'=0THO T"=07TO rewd
X omx A X,
Axp
5. Replace H and T by H” and T" and iterate.
How does it do?
Test calculation: 10 blockings, keeping m = 8 states:
Exact RG
Fy 2.351x107° 1.9207x1072
Iy 9.403x10~¢ 1.9209% 1072
Es 2.116x107° 1.9214x1072
Es 3.761x107° 1.9217x1072

It performs terribly. Why? Look at continuum states.

Isolating a block sets ¥ to 0 at the edges (fixed BCs). Kf\ m

— Particle-in-a-box eigenstates. K 5%
s .
” {

»,,M..m..m—mw_u...__
,_,...—

oy BN
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Any state formed by low-lying states has a “kink” in the middle. To
remove kink, need to keep almost all states.



How to fix it (White and Noack, PRL 68, 3487 (1992).)

One approach involves different boundary conditions.

Periodic BCs? Ounly slightly better. Get “staircases” in excited states.

g m Y, Ucoy= UL

i
Free BCs? (Slope vanishes at edges.) Again, only slightly better (flat
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spots).
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One solution: Combine states from different BCs.

¢ States must be orthogonalized.
Example: Fixed-Free combination.

Use m/4 states from each of Free-Free, Fixed-Free, Iree-Fixed, Fixed-
Fixed BC’s. ( H (-l“'“*'é}‘?"““"/{ R I U R B

2 £f i1 of oF oo o
O=|Vi" ... Vou i Vi Vi V0 Vi

vie ... vie

O = Gram-Schmidt(O) ( O blaew wige frece Jeve Ps lu;;ﬁ‘( /J

Test case: m = 8 states, 10 blockings:

Exact Standard RG Fixed-Free
Ey 2.3508x 10 1.9207x1072 2.3508 x107°
Fy 9.4032x%10~° 1.9209x1072 9.4032 %107
Fy 2.1157x1075 1.9214x1072 2.1157 x107°
Es 3.7613x107° 1.9217x10"%  3.7613x107°

Lesclts covrect 4o /O (2 le e
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MY;@ Other variations: periodic-antiperiodic works almost as well.

Why does varving the boundary conditions work?

When vou isolate a block, that applies a particular BC to the block.
The rest of the lattice, if it were there, would apply different BCs, so
the states you keep aren’t appropriate. You have two ways to rectify
this.

1. Make each block able to represent a variety of BCs. This is what
we just did with the fixed-free method. T~ MQ\
Complode Set " of B¢ [{7/ 7

2. Design each block to represent the exact BC it needs. g B

’(‘b};} Foo newidoscty’ f’%?‘u o

J/; i@f R sk o

L#.\B/ 5 fade fﬁ—;,[aj%k/

In method 2, block must know where it goes. Clearly method 2 must
be iterative.

Method 1 doesn’t work well for interacting systems—need too many
states to represent response to lots of possible BCs. Also, it’s not clear
how to choose to vary the BC’s in interacting systems. I tried scveral

methods for Heisenberg chains—none worked.



Solutions to particle in a box RG (white & Noack, 1991)
* Combination of boundary conditions

* Diagonalize a larger superblock, project out the parts
of the wavefunctions in the block

-

X/

* Interacting systems: multivalued projection!?




Density matrix RG

* Statistical Mechanics Viewpoint (Feynman SM lectures)

) = 3 ilili)

Rest of the
Uni >
niverse: |j Pii! — Z lb:}%’,?
7
(A) = Zwa<oz]A\a>
a=]

* Key idea: throw away eigenstates with small probability

* Algorithm based on this: density matrix renormalization group
(DMRG, srw(1992))
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DMRG Algorithm

E—o— Wilson’s algorithm

DMRG sweeps

O O O O |l e |0 O O

*Diagonalization of entire system
eConstruction of density matrix for block
eTransformation to new density matrix states
eSweeps back and forth
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Convergence in |D

2000 site S=1/2 Heisenberg chain

_ 8 8 5 5 ' | ' | ' | ' | ' 1 00 Absolute error in energy
~885.6 + m=10 _
10”
—885.7 ¢
_ 10~
—885.8 % First excited State
—885.9 i 10_3
~886.0 T \
= 10
—886.] F e
8862 Lo > - ..
0) 200 400 600 800 1000 0 50 100 150 200
i m

Comparison with Bethe Ansatz
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Matrix Product States

Wilson, 1975 (NRG), Accardi (1981), Affleck et al (1988), Fannes et al(1989),
Ostlund and Rommer (1995), ...

Matrix Product State: W(s1,s2,..8N) = Al[s1] A?[sz2] ... AN[s\]

Vector  Matrix Vector
or. | 2 N
Y(s1,52,..sN) = Tr{A'[s1] A*[s2] ... AN[sn]}
) . . All Matrices
Matrix d1mens10n: mxm
Diagrams: ‘ ~
S1 S2 SN

S T e T O A Qe

Basic Unit: tensor/matrix Asij = , I ,
1 J



What do Matrix Product states have to do with DMRG?

Both Wilson’s NRG and DMRG implicitly use an MPS

Matrix A[s] represents change of basis matrix when adding one site

1 /@ i
New Basis

Old Basis

s>

+ | = New Block
O=—O—C 1 J



DMRG as a low entanglement approximation

» Vidal,Verstraete, Cirac: DMRG and QI emntangled.

* Entanglement: Which is more entangled!?
- 1) |TT>+ 11> or
=2) [TT>+|Li>+|Tl>+ 11> 7



Entanglement

* To measure entanglement, must change to the Schmidt
basis where the Y is diagonal:

 ¥=VY(i,j) Ii,jstates of left, right subsystem

* Singular value decomposition: Y=U DV

* Singular values characterize entanglement (entropy)
U,V transform to Schmidt bases

* Density matrix eigenvalues are square of singular
values!

- p=U D2 Ut
* From QI viewpoint: DMRG is a natural
low entanglement approximation

=2, (<




A Low entanglement approximation
Measuring entanglement (QI): Schmidt decomposition
i

* Entropy S depends on partition and state: defined by Schmidt
Decomp: Vi = D a Uia wa Vo (SVD)

° Wo(ZO; Zo(Wo(2=|; S=-Zo(Wo(2|nWo(2

* If entanglement is small, the wqx decay fast, so truncate

* Repeat at every link: MPS ! | | | | |

* m ~ exp(S)

* |D non critical: S ~ const
* |D critical: S(N) ~ In(N)



MPS as a class of optimal variational states

* Desirable properties of variational states
— Completeness: exact when number of d.of f. increased v/
— Rapid convergence
* ID m ~ const, ID non critical, m(N) ~ N¥, critical ¢/
* 2D S ~ width (area law), m ~ exp(width) X
— Physical motivation ¢/

| e summation over index ~ summation over fluctuations
—&—O— * near neighbor links support correlations for local Hamiltonians

* Larger m: extra states act as conduit for longer range correlations
— Compactness (compression, zipping) ¢/

— Computational convenience v/
« DMRG CPU time ~ N m3, up to m ~ 10* feasible

* Optimize one A at a time, sweep



2D algorithms
* Traditional DMRG method (MPS state)

\ Cut S ~ Ly (“area law™)
Long range bonds m ~ exp(a Ly)

Calc time: Lx Ly? m?; allows m ~ 5000, L, ~ 8-10
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Traditional DMRG fo

Tos

AE ~0.3%, A<S;>~0.01

Extrap order param to thermodynamic limit: M = 0.205(15)



Traditional DMRG: t-] model

Iyl odelelely
e ecoccddte
PSS SR PN
LEGrdtotdty]
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...000000..

e -0.04
/]\ 0.35 . 0.04
() 025 : ;
12 x 8 system, Vertical PBC’s

: Ix/t= 0.55 Jy/t=0.45, mu=1.165 doping=0.1579
12 x 8 system, Vertical PBC’s X y mu oping

IJx/t=0.55Jy/t=0.45, mu=1.165,doping=0.1579

Stripes with palrlng' (White and Scalapino, arxiv 810.0523)
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Questions and extensions

* Extension to 2D: projected entangled pair states
— More natural, more compact
— High power-law computational effort

— Which currently works better for 2D, ID-DMRG or PEPS?

e Latest answers: Vidal,Verstraete, Orus

* Time evolution (Schollwock)
— Out-of-equilibrium
— Spectral functions
— Finite temperature

* Matrix Product Operators (McCulloch)

o ) . +
UClenIenfnlte systems, scaling, disorder, QMC+DMRG...
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