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Hlw) = B,

® Sparse matrix, but for guantum many body systems the vector space
dimension grows exponentially!

® Some people will tell you that’s all there is.

® But if you want to get a maximum of physical information out of a
finite system there is a lot more to do and the reward is a powerful:

Quantum Mechanics Toolbox
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— talk by D. Pollblanc on Tuesday afternoon

® Full Configuration Interaction in Quantum Chemistry
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Fractional guantum hall effect
different filling fractions v, up to 16-20 electrons
up to 300 million basis states, up to 1 billion in the near future

Spin S=1/2 models:

40 spins square lattice, 39 sites triangular, 42 sites star lattice at S%=0
64 spins or more In elevated magnetization sectors
up to 1.5 billion(=10) basis states with symmetries, up to 4.5 billion without

t-d models:
32 sites checkerboard with 2 holes
32 sites square lattice with 4 holes
up to 2.8 billion basis states

Hubbard models
20 sites square lattice at half filling, 20 sites quantum dot structure
22-25 sites in ultracold atoms setting

up to 80 billion basis states

low-lying eigenvalues, not full diagonalization
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® Hilbert space
® Basis represention, Lookup techniques
® Symmetries

® Hamiltonian Matrix
® Sparse Matrix representation (memory/disk)
® Matrix recalculation on the fly (matrix-free)

® Linear Algebra : Eigensolver / Time propagation
® [APACK full diagonalization
® Llanczos type diagonalization (needs only |v) = H |u) operations)
® More exotic eigensolver techniques, real oder imaginary-time propagation,

® Observables
® Static quantities (multipoint correlation functions, correlation density matrices,...)
® Dynamic observables (spectral functions, density of states,...)
® Real-time evolution
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5asIs representation

® States of the Hilbert space need to be represented in the computer.

® Choose a representation which makes it simple to act with the Hamiltonian
or other operators on the states, and to localize a given state in the basis

® Simple example: ensemble of S=1/2 sites in binary coding

TTIT) —[1101]2=13

detection of up or down spin can lbe done with bit-test.
transverse exchange STS~ + .5~ S™ can be performed by an XOR operation:

1101, XOR[0110],=[101 1]

initial config bit 1 at the two sites coupled final config

® For S=1, one bit is obviously not sufficent. Use ternary representation
or simply occupy two bits to label the 3 states.



5asIs representation

® For t-d models at low doping it is useful to factorize hole positions and
spin configurations on the occupied sites.

® For Hubbard models one can factorize the Hilbert space in up and down
electron configurations.

® For constrained models - such as dimer models - the efficient
generation of all basis states requires some thought.

® One of the key challenges for a fast ED code is to find the index of the new
configuration in the list of all configurations (index f in His).

® Let us look at the example of S=1/2 spins at fixed S?



Basis lookup procedures (Lin tables)

® One of the key problems for a fast ED code is to find the index of the new
configuration in the list of all configurations (index f in His).

101 1]y = 1110
® But is 11 the index of this configuration in a list of all $?=3/2 states ? no !

® Use Lin tables to map from binary number to index in list of allowed states:
(generalization of this idea works for arbitrary number of additive guantum numbers)

® Two tables with 2NV2) [=sgrt(2MN)] entries, one for MSBs and one for LSBs

00 = X 00 = X md([0 1A 1) =0+0 = 0
01 = 0 01 = 0 md(L0L1)=1+0 = 1
10 = 1 10 = 1 md([1101)=2+0 = 2
11 = 2 11 = 0 md([1110)=2+1 = 3

MSB LSB



Basis lookup procedures (Lin tables)

® Lookup can therefore be done with two direct memory reads. This is a
time and memory efficient approach (at least in many interesting cases).

® An alternative procedure is to build a hash list [const access time] or to
perform a binary search [log access time].

® This becomes somewhat more involved when using spatial symmetries...



Symmetries
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Symmetries

® Consider a XXZ spin model on a lattice. What are the symmetries of the problem 7

H = Z JTY(SPSY 4 SYSY) + J7 ;8757

® The Hamiltonian conserves total S%, we can therefore work within a given S# sector
This easily implemented while constructing the basis, as we discussed before.

® The Hamiltonian is invariant under the space group, typically a few hundred elements.
(in many cases = Translations x Pointgroup). Needs some technology to implement...

® At the Heisenberg point, the total spin is also conserved. It is however very difficult to
combine the SU(2) symmetry with the lattice symmetries in a computationally useful
way (non-sparse and computationally expensive matrices).

® At 5%=0 one can use the spin-flip (particle-hole) symmetry which distinguishes even
and odd spin sectors at the Heisenberg point. Simple to implement.



Spatial Symmetries

® Spatial symmetries are important for reduction of Hilbert space

® Symmetry resolved eigenstates teach a lot about the physics at work,
dispersion of excitations, symmetry breaking tendencies,
topological degeneracy, ...

40 sites square lattice lcosidodecahedron (30 vertices)
T ® PG =40 x 4 elements Ih:120 elements
OO0O0O0O0OO0Q O
OO0 QOO O
QO O O0OO0OO0 O
0,0 O 000 O
OYWOOO0OO0 O
O O0O0O0O0 O
O 00000 O
O O O Q0 O
ONONOgoNONO O



Spatial Symmetries
® Symmetries are sometimes not easily visible, use graph theoretical tools
to determine symmetry group [nauty, grape].

® In an ED code a spatial symmetry operation is a site permutation operation.
(could become more complicated with spin-orbit interactions and multiorbital sites)

40 sites square lattice lcosidodecahedron (30 vertices)
T ® PG =40 x 4 elements Ih:120 elements
OO0O0O0O0OO0Q O
OO0 QOO O
QO O O0OO0OO0 O
0,0 O 000 O
OYWOOO0OO0 O
O O0O0O0O0 O
O 00000 O
O O O Q0 O
ONONOgoNONO O



Spatial Symmetries: Building the basis

® Build a list of all allowed states satisfying the “diagonal” constraints, like
particle number, total &7, ...

® for each state we apply all symmetry operations and keep the state
as a representative If it has the smallest integer representation among
all generated states in the orbit.
Example: 4 site ring with cyclic translation T, S*=3/2 sector

T°(0111]) —[0111 T°((1011]) - [1011]
T'(0111)—[1011 T'((1011]) —=[1101]
T?([0111))—[1101 T(1011]) = [1110
T3([0 ) > [1110 T°(1011) —[0111

keep state discard state
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® For one-dimensional representations x of the spatial symmetry group:

® “Bloch” state 7) Gl Z X(g
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® Norm of the state is given as: N = > x(r)
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Spatial Symmetries: Building the basis

® For one-dimensional representations x of the spatial symmetry group:

® “Bloch” state 7) = x(9)g(r))
P>
® Norm of the state is given as: N = > x(r)
geG,g(r)=r

® The norm (and therefore the state itself) can vanish if it has a nontrivial
stabilizer combined with a nontrivial representation X.

® Example: 4 site S=1/2 ring with cyclic translations:

K =0 = ::7‘(’/2 K = 24=16

S2=2 |[1111),N =2 1+1
=1 [0111),N =1 0111),NM=1 0111),NM=1 444
cg 0101)N=v2 010 1),N =2 2
0011),N=1 0011),N =1 0011),N =1 4
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The Hamiltonian Matrix

® Now that we have a list of representatives and their norms, can we
calculate the matrix elements of the Hamiltonian ? (s|H|7) =7

® Let us look at an elementary, non-branching term in the Hamiltonian:

h¥|r) = h%(r)ls)

® \We can now calculate the matrix element (5|h®|7) without double expanding
the Bloch states:

(510%17) = JF g e ()

® key algorithmic problem: given a possibly non-representative |s), how do we

find the associated representative |S | > as well as a symmetry element g
relating |s) to |S) ?



The Hamiltonian Matrix

® key algorithmic problem: given a possibly non-representative |s), how do we
find the associated representative |5), as well as a symmetry element g~
relating |$) to |S) ?

® Brute force: loop over all symmetry operations applied on \s) and retain
|3> and g* . This is however often not efficient (many hundred symmetries).

® Prepare a lookup list, relating each allowed configuration with the index of its
representative, and also the associated group element linking the two.
Gives fast implementation, but needs a list of the size of the non spatially-
symmetrized Hilbert space.

® For specific lattices and models (Hubbard models) clever tricks exist which
factorize the symmetry group into a sublattice conserving subgroup times
a sublattice exchange. They give \§> fast, then a hash or binary search is
needed to locate |§) in the list of representatives in order to get its index.



Hamiltonian Matrix Storage

® Different possibilities exist:

® Store hamiltonian matrix elements in memory in a sparse matrix format
Fast matrix vector multiplies, but obviously limited by available memory.

® Store hamiltonian matrix elements on disk in a sparse matrix format.
In principle possible due to the vast disk space available, but /0O speed
IS much slower than main memory access times. Difficult to parallelize.

b}

® Recalculate the hamiltonian matrix elements in each iterations “on the fly”.
Needed for the cutting edge simulations, where the whole memory is
used by the Lanczos vectors. Can be parallelized on most architectures.
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Backend



Linear Algebra:
The most popular: Lanczos Algorithm

® [anczos Algorithm (C. Lanczos, 1950)

Three vector recursion  |¢') = H|én) — Bnldn-1) , %i gi 502 o 8
an = (Pnld') . . 0 B ax f3 0 0
6") = 1¢) —anlén), VT RN
fa = =V, |0 0 e oz Au
Gme1) = [6")/Bois 0 . Bn-1 an-—1
17.25 ——

-17.3 | 1 ++ +++++ ++++t %'*ﬁh %Q‘Nw.\t%“m%m §
® Eigenvalues of Hy converge rapidly A R e
. 17.45 | + v ++ |

towards eigenvalues of H.

+ % E
7S % k A M
C
17.55 | M
+ t .t.+'

Energy

176 |, Y |
® Once desired eigenvalue is converged, 765 | ', _
. - - A w
restart recursion and assemble the 17.7 ———
eigenvector. T ORI [ 150

very quick convergence for extremal eigenvalues !



_inear Algebra:
_anczos Algorithm

® Once the ground state has converged, the vectors in the recursion tend to lose
their orthogonality. As a consequence fake new eigenvalues show up in the
approximate spectrum. These can be removed by heuristic techniques

'15.74 §8 Ol8

-15.75 1504

157683 o 8 &

Energy [J]

-15.77

urssssuiiilised |

-15.78

0 500 1000 1500 2000 2500 _ 3000
lterations

® Degeneracies of eigenvalues can not be resolved by construction. For this
task one would need a band lanczos or the (Jacobi-)Davidson technique.
However multiply degenerate eigenvalues are converged.

® Checkpointing is useful when performing large-scale simulations.



Full

Diagonalization: Thermodynamics

® [Lapack / Householder complete diagonalization of the spectrum.

® Calculate partition function and all the thermodynamic quantities you want,
often the only pedestrian method available for frustrated systems.

® Symmetries are also very important, because the computational requirements
scale as O(D3), where D is the dimension of the block Hilbert space. Typical
D’s for a workstation are a few 1’000, up to a few 100’000 on supercomputers.

Tid,
. Noow A
o =L PO Wwo O

CIN

-

F. Heidrich-Meisner, A. Honecker, T. Vekua,
Phys. Rev. B 74, 020403(R) (2006).

O
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Observables

® In principle once can calculate any correlation function, since one has access
to the full many body wave functions. When using spatial symmetries, the
correlation functions need to be properly symmetrized too.

® Complicated correlation functions occur in frustrated systems:

Dimer-dimer correlations Spin current correlations




Frequency Dynamics

o Ga(w+in) = (AT

® Generate Krylov space of A|v)

EO—I—QJ—

- — H

Use continued fraction used to invert (Eo + w +in — H)

® Triangular Lattice Spin Dynamics in zero field
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—xact Diagonalization
Real-Time Dynamics

® It is expensive to obtain the full propagator exp|—it H |

® Krylov methods exist to approximate the propagator for a given state |1(0))
One can get the time propagated state |¢(t)) with only |v) = H|u) operations.

AL || L | R ]

T T T T HE T T T T | T —_ _—_
. (@) 1D Chain, U=2J,U=40J | Jw\ L Eln
1 oo L=14, ED L Y | T W B

® Example: time evolution of a strongly 0.9
correlated quantum systems afteran |, |
: : Pl § [, — L=82,Uz80J
abrupt change in the parameters in the % e T
' ' ' ' Vool TR 'X}ifi» SR AR ARA AR SRS A A
Hamiltonian. Revivals and Relaxation. SHM R Ry (YT

o—o L=64, t-DMRG 0 40 80 120 A
Frequency w [J] _

’’’’’

b - | 1 | 1 1 1 1 | |
0.9} (b) 2D Square, U=2J,U=40J |

A o—o N_,_ =16, ED 0 40 80 120 -
506 o—o N_,_=18, ED Frequency o [J]
+-Q°
lo)
V

O_ ..". 1 | 1 | 1 1 1 1 | 1 1 1 1 |
Time t[J7]

C. Kollath, AML, E. Altman, PRL 2007
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Parallelization:
Shared memory nodes

® In the Lanczos algorithm the heaviest part is the elementary matrix-vector
multiplication.

® In a matrix-free formulation this part can easily be parallelized using OpenMP
pragmas in the code, even on your multi-core workstation.
Choose the right strategy between pull and push !
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Parallelization:
Shared memory nodes

® In the Lanczos algorithm the heaviest part is the elementary matrix-vector
multiplication.

® |In a matrix-free formulation this part can easily be parallelized using OpenMP
pragmas in the code, even on your multi-core workstation.
Choose the right strategy between pull and push !

In this parallelization
we have uncritical
concurrent reads,
but No concurrent

updates of vector v.




Parallelization: _ ;
Shared memory nodes 9
12000 ‘ ® ‘ | ‘ ‘ | |
@ SGl Origin 3800 [Eridan]
= IBM p690 [zahir019/020]
10000 - R <Sun :
& IBM p5
- SGI Altix 1t2 1.5GHz
» 8000 - i
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O )
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% 5000 - ]
> - .
€ 4000 - e -
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Number of Threads
® scales well up to a few ten threads on “memory uniform” SMP machines.



Parallelization:
Distributed memory nodes

® For some classes of problems the Hilbert space size is not too big,
but the vast number of matrix elements is a challenge.

[ED in momentum space formulation & Quantum Hall problems]

® These problems can be OpenMP parallelized, but are also suitable for
large scale Message passing parallelization.
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Parallelization:
Distributed memory nodes

® For some classes of problems the Hilbert space size is not too big,
but the vast number of matrix elements is a challenge.
[ED in momentum space formulation & Quantum Hall problems]

® These problems can be OpenMP parallelized, but are also suitable for
large scale Message passing parallelization.
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Parallelization:
Distributed memory nodes

® Strong scaling example RG-ED: matrix dimension 10 million
performed on a 1024 node Cray XT-3 machine: speedup of = 800 on 1024 procs
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Parallelization:
How to harness the petaflop computers ?

® Cutting edge petaflop systems have a huge number of core, but only a
moderate amount of node-local memory.

® Next generation ED codes need to be developed in order to attack
e.g. the 80 billion Hiloert space of a 48 site kagome antiferromagnet.

System
112 Racks
Cabled

Rack

® Problem remains difficult to parallelize due to its 32 Node Cards
all-to-all structure. Global Arrays or UPC can o
help developing distributed ED codes.

i

1.5PF/s
224 TB

Node Card
32 chips

Compute Card
1 chip, 20
DRAMs

435 GF/s

Chip 64 GB

4 processors

13.6 GF/s
2.0 GB DDR2
(4.0GB is an option)

13.6 GF/s
8 MB EDRAM
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