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Electronic computing: the beginnings

1939-42: Atanasoff-Berry Computer - Iowa State Univ.

1943/44: Colossus Mark 1&2 - Britain
1940: Konrad Zuse’s Z2 - Germany

Zuse and Z3 (1941)
Z4 @ ETH 
(1950-54)

1945-51: UNIVAC I
Eckert & Mauchly - “first commercial computer”

1945: John von Neumann report that 
defines the “von Neuman” architecture



1946: ENIAC
1952: MANIA C I
1957: MANIAC II
...
1974: Cray 1 - vector architecture
...
1987: nCUBE 10 (SNL) - MPP architecture
1993: Intel Paragon (SNL)
1993: Cray T3D
...
2004: IBM BG/L (LLNL)
2005: Cray Redstorm/XT3 (SNL)
2007: IBM BG/P (ANL)
2008: IBM “Roadrunner”
2008: Cray XT5 (ORNL)

Since the dawn of High-performance computing: 
Supercomputing at Los Alamos National Laboratory

Nicholas Metropolis: group 
leader in LANL’s T Division that 
designed MANIAC I & II

Downloaded 03 Jan 2009 to 128.219.176.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

2002: Japanese Earth Simulator - Sputnik shock of HPC



Outline / goals

• History of scientific computing and HPC

• Overivew of typical HPC architectures

- Important terminology used later

• Longterm development trends in HPC

- Understand the brutal facts of HPC today

• Parallel programming models

- There is more to parallel programming than MPI and OpenMP

• Mapping methods/algorithm onto hardware

- Importance of computational methematics and computer science

• Example: running QMC/DCA at scale

- Even simple things can be challenging on 150,000 processors



Scalar / superscalar / vector processors

• Scalar processor: process one data item (integer / floating 
point number) at a time

• Vector processor: a single instruction operates on many data 
items simultaneously

• Typical processor today: “pipelined superscalar”

- Superscalar: simultaneously dispatch multiple instruction to 
redundant functional units (multiplier or adder)

- Pipeline: set of processing elements connected in a series

- Example: 2 multiplies and two add per cycle
                (4 floating point operations per cycle)

The good news: compiler-level optimization will take care of this!



Distributed vs. shared memory architecture

Distributed
memory

Shared 
memory

Interconnect

CPU

Memory



Aspects of performance - typical values in 2009

• Floating point (integer) performance: 2 or 4 per cycle

- Flop/s = floating point operation per second

- 2.4 GHz processors: 9.6 GFlop/s 

• Memory latency: ~50 ns

• Memory bandwidth: ~10 GB/s

• Network latency ~2-10 µs

• Network bandwidth: ~5 GB/s

• Disk access time ~ ms

• I/O bandwidth ~ MB/s Cray XT5 node
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Computers in the past and today 

1970s (*) my laptop improvement

clock 
(CPU)

6 MHz 2GHz 300 x

Flop/s 6 MFlop/s 8 GFlop/s 103 x

RAM 128kB ~2GB 105 x

Mem. 
latency 850ns ~50ns 20 x

(*) Charles Thacker’s computer in the 1970s



Single processor performance is no longer 
tracking Moore’s Law



Multi-core and heterogeneous processors 
architectures

Multi-core processors: OpenMP (or just MPI)

NVIDIA G80 GPU: CUDA, cuBLAS

IBM Cell BE: SIMD, threaded prog.



Explosion in the number of processing cores

Average Number of Processors Per Supercomputer (Top 20 of Top 500)

Source: www.top500.org

(June)

202 408
808

1,245 1,073
1,644 1,847

2,230

10,073

16,316

722

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

2,827 3,093
3,518

Rate of increase has increased with advent of multi-core chips
Sold systems with more than 100,000 processing cores today
Million processor systems expected within the next five years

Equivalent to the entire Top 500 list today

http://www.top500.org
http://www.top500.org


Interconnects in the TOP500 systems

LCI 2007



Complexity of interconnect

IBIB IBIB IBIB IBIB IBIBIBIB IBIBIBIB

Link with Error

Error detected and 
corrected at the 
offending link

Source Node must 
retain copies of all 
potential in-flight 
messages – an O(n2) 
problem…

Error detected at the 
destination.  Packet is 
discarded.  Resent 
after 
timeout



01/22/2009 Slide  

Getting ready for Quad Core
Bytes/flops will decrease
 XT3 – 5 GB/sec/2.6 GHZ* 2Flops/clock

1 Byte/flop
 XT4 (dual) – 6.25GB/sec/2.6 GHZ* 2Flops/clock/2 processors

 ½ Byte/flop
 XT4 (quad) – 8 GB/sec/2.2GHZ*4Flops/clock/4 processors

¼ Byte/flop 
 Interconnect Bytes/flop will decrease
 XT3 – 2 GB/sec/2.6 GHZ* 2Flops/clock

1/3 Bytes/flop
 XT4 (dual) – 4 GB/sec/2.6 GHZ* 2Flops/clock/2 processors

 1/3 Bytes/flop
 XT4 (quad) – 4 GB/sec/2.2GHZ*4Flops/clock/4 processors

1/10 Byte/flop 



HPC in the age of massively parallel processing 
(MPP) architectures: what does this really mean?

1989 1998 2008 2018

1.5 Gigaflop/s
Cray YMP
0.8 101 processors

1.02 Teraflop/s
Cray T3D
1.5 103 processors

1.35 Petaflop/s
Cray XT5
1.5 105 processor cores

~1 Exaflop/s 
~107 processing units

Evolution of the fastest sustained performance
in real simulations



Summary: Brutal fact of modern HPC

• Mind boggling numbers of processing processing units

• Processor complexity (multi-core, heterogeneous)

• Interconnect is a non-trivial part of the HPC system

• Accessing memory is prohibitively expensive compared to 
the cost of floating point operations

- 1960s: transistors were expensive, memory access was cheap

- today: transitors are cheap, memory access is expensive

Key aspect of programming 
in HPC systems: 

All about anaging resources
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Programming models (I): 
message passing

•Concurrent sequential processes 
cooperating on the same task 

•Each process has own private space 

•Communication is two-sided through 
send and receive 
- Large overhead! 

• Lots of flexibility in decomposing 
large problems, however, provides 
only fragmented view of the problem 
- All burden is placed on the programmer 

to maintain global view 

•Examples are message passing 
libraries like MPI or PVM

... ...



......

Programming models (II): 
shared memory

•Multiple independent threads operate 
on same shared address space  

•Easy to use since there is only one 
type of memory access
- One-sided remote access (low overhead)

•Application view remains integrated 
(global view)

•Shared memory hardware doesn’t 
scale (local & remote memory access)

• It is difficult to exploit inherent data 
locality - degradation of performance!

•Examples are OpenMP or Pthreads 
- Compiler directive used with C, Fortran, ...



Programming models (III): 
data parallel

... ...

•Concurrent processing of many data 
elements in the same manner 

•Executing only one process (on 
many processors)

•Major drawback: does not permit 
independent branching 
- Not good for problems that are rich in 

functional parallelism

•Popular examples are C* and HPF 



Programming models (IV):
distributed shared memory

......

• Independed threads operate in shared 
memory space
- preserve global view of program

•Shared space is locally partitioned 
among threads
- allows exploiting data locality

• “Single program multiple data 
stream” (SPMD) execution
- independent forking (functional parallelism)

•Popular examples: UPC and co-Array 
Fortran

•May still not have the same flexibility as 
Message Passing Model

Also called partitioned global 
address space (PGAS) model



 Distributed shared memory or PGAS:
keeping the best from all other models 

... ...

......

... ...

......



Unified Parallel C (UPC) see http://upc.lbl.gov

#include <upc.h>
#define SZ 20

main(){
  static shared int array[SZ];
  shared int *ar_ptr;
  static shared int step=10;
  int argument, i;

  ar_ptr = array + MYTHREAD;

  upc_forall (i=0; i<SZ; i++; i) {
    argument = step*i;
    *ar_ptr = some_function(argumet);
    ar_ptr += TREADS;
  }

  upc_barrier;

  if(MYTREAD==0) {
    ar_ptr = array;
    for (i=0; i<SZ; i++, ar_ptr++) {
      argument = step*i;
      printf (“%d \t %d \n”, *ar_ptr, argument)
    }
  }
}

•Simple extension to ISO C to 
implement PGAS model in SPMD 
mode of programming 

•Available on most systems (as 
extension to gcc or LBL UPC 
compiler)

• “Simpler” to program than MPI or 
OpenMP (!)

• Limitation: supports only one-
dimensional decomposition of shared 
arrays 
- more complex decomposition are 

supported by DARPA HPCS languages 
(Chapel, X10, Fortress)

Example modified from Tarek El-Ghazawi, Wiliam Carlson, Thomas Sterling, and Katherine Yelick, 
                                                         “UPC Distributed Shared Memory Programming”, WILEY 2005

http://ups.lbl.gov
http://ups.lbl.gov
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Sketch of the Dynamical Cluster Approximation

Bulk lattice

Size Nc clusters Reciprocal space

kx

ky

K

k
~

Integrate out remaining 
degrees of freedom

Embedded cluster with 
periodic boundary conditions

DCA

K

Solve many-body problem on cluster
➣Essential assumption: Correlations are short ranged

Σ(z, k)

Σ(z, K)



DCA cluster 
mapping

Quantum cluster
solver

DCA method: self-consistently determine the
                        “effective” medium

Gc(R, z)

Σ(K, z) = G′−1

0
− G−1

c
(K, z)

Gc(K, z)
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ky
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~
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0(K, z) =
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Ḡ−1(K, z) + Σ(K, z)
]−1

Ḡ(K, z) =
Nc
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Hirsch-Fye Quantum Monte Carole (HF-QMC) for 
the quantum cluster solver

Partition function & HF-QMC:

Partition function & Metropolis Monte Carlo Z =

∫
e
−E[x]/kBT

dx

Acceptance criterion for M-MC move: min{1, e
E[xk]−E[xk+1]}

Acceptance:

Update of accepted Green’s function:
Gc({si, l}k+1) = Gc({si, l}k) + ak × bk

Z ∼

∑

si,l

det[Gc(si, l)
−1]

min{1,det[Gc({si, l}k)]/ det[Gc({si, l}k+1)]}

Hirsch & Fye, Phys. Rev. Lett. 56, 2521 (1998)

matrix of dimensions Nt × Nt

Nc Nl ≈ 10
2

Nt = Nc × Nl ≈ 2000



HF-QMC with delayed updates (or Ed updates)

Gc({si, l}k+1) = Gc({si, l}0) + [a0|a1|...|ak] × [b0|b1|...|bk]t

Complexity for k updates remains

Gc({si, l}k+1) = Gc({si, l}k) + ak × b
t
k

O(kN
2

t
)

But we can replace k rank-1 updates with one matrix-matrix multiply plus 
some additional bookkeeping.



Performance improvement with delayed updates
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DCA++ with mixed precision

SUBMITTED TO SUPERCOMPUTING 2008 

  

 Therefor, to study the accuracy on GPUs, we must compare the results between the CPU precision runs with 

the GPU-accelerated full DCA++ code. (The porting and acceleration is described in detail in the next section.) To 

answer this question, we turn now to the final result calculated for the critical temperature Tc. Because of the way in 

which it is calculated from the leading eigenvalues for each sequence of runs, this value may vary wildly based on 

small changes in the eigenvalues, and is thus a sensitive measure. 

The final values for Tc are shown in Figure 6 for four each of 

CPU double, CPU single, and GPU single precision runs. As seen in 

the figure, the mean across runs was comparable between each of the 

various precisions on the devices – and certainly well within the 

variation within any given configuration. Although it will require 

more data to increase the confidence of this assessment, the GPU runs 

had a standard error in their mean Tc of less than 0.0008 relative to 

the double precision mean Tc (which is within 0.05x of the standard 

deviation of the double precision runs). 

5 Performance 

5.1 Initial Acceleration of QMC Update Step 
Initial profiles of the DCA++ code revealed that on large problems, the vast majority of total runtime (90% or 

more) was spent within the QMC update step. Furthermore, within the QMC update step, the runtime was 

completely dominated by the matrix-matrix multiply that occurs in the Hirsch-Fye solver when updating the Green’s 

function at the end of the batched smaller steps. (See Section 3.1 for details.) This leads to an obvious initial target 

for acceleration: the matrix-matrix multiply, along with its accumulation into the Green’s function, is performed in 

the CPU code with a BLAS level 3 DGEMM operation for double precision (and SGEMM for single precision). 

The CUDA API from NVIDIA does have support for BLAS calls (only single precision at the time of this 

writing). Unfortunately, it is not a literal drop-in replacement – although one could wrap this “CUBLAS” API to 

attempt this route, there will be overheads incurred by being naïve about using the GPU in this way. Since the GPU 

hangs off the PCI-Express bus, and has its own local memory, using the GPU as a simple accelerator for the BLAS 

function calls would require allocation of GPU-local memory for matrix inputs, transfer of the matrices to the GPU, 

0.016
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0.021

T
c

Double Precision
CPU Single Precision
GPU Single Precision
Mean

 
Figure 6: Comparison of Tc results 
across precision and device 

Double Precision
CPU Mixed Precision
GPU Mixed Precision
Mean

DCA cluster 
mapping

HF‐QMC cluster
solver

Run HF-QMC in single precision

Keep the rest of the code, in particular 
cluster mapping in double precision

Results for mixed and 
double precision runs 
are identical for same 
random number 
sequence!

Multiple runs to compute Tc:

Speedup of HF-QMC updates (2GHz 
Opteron vs. NVIDIA 8800GTS GPU):
- 9x for offloading BLAS to GPU & 
  transferring all data
- 13x for offloading BLAS to GPU &
   lazy data transfer
- 19x for full offload HF-updates &
   full lazy data transfer
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Disorder and inhomogeneities 

DCA cluster 
mapping

QMC cluster
solver

random walkers

...

.

..

disorder
configura=ons

required
communica=on

H
(ν)

= −t
∑

〈ij〉,σ

c
†
iσcjσ +

∑

i

U
(ν)
i ni↑ni↓ Gc(Xi − Xj , z) =

1

Nc

Nd∑

ν=1

Gν
c (Xi, Xj , z)

U
(ν)
i

∈ {U, 0}; Nc = 16 → Nd = 216

Hubbard Model with random disorder (eg. in U) ... need to disorder-average cluster Green function

The diagonal entries of the Green’s function matrix are then
obtained from ak = αk(colk − epk), bk = rowk and

dk+1(p) = Gk+1(p, p) = dk(p)+ak(p)bk(p), for p = 1 : Nt.
(18)

The computational complexity of calculating the transition
probability R in this delayed algorithm is thus reduced to
O(kNt) from O(N2

t ) if the updating of the Green’s function
is delayed by k steps. This also means that occasional Green’s
function matrix updates are required so that the complexity of
the delayed algorithm does not exceed the complexity of the
ordinary algorithm. The Green’s function update is performed
as a rank-k update (BLAS xGEMM matrix-matrix multiply
operation) according to

Gk+1 = G0 + [a0|a1| · · · |ak] [b0|b1| · · · |bk]t . (19)

As in the original algorithm, this requires O(kN2
t ) operations.

There is a small amount of redundant computation in updating
the diagonal vector d that is not required in the non-delayed
algorithm; however, the matrix-matrix multiply operation has
many more FLOPs per memory access than the rank-one
matrix update of the original algorithm, and therefore performs
much better on most architectures (more details will be given
in section IV-A and in Figure 5).

As is usual in Monte Carlo simulations, measurements
of physical quantities such as the cluster Green function
G(ν)

c (Xi − Xj , z) or two-particle correlation functions, are
performed along the Markov chain. Several update sweeps are
performed between measurements to ensure that the measure-
ments are fully decorrelated.

Algorithm 1 DCA/QMC Algorithm with QMC cluster solver
(lines 5-10), disorder averaging (lines 4, 11-12), and DCA
cluster mapping (line 3, 13)

1: Set initial self-energy
2: repeat
3: Compute the coarse-grained Green Function
4: for Every disorder configuration (in parallel) do
5: Perform warm-up steps
6: for Every Markov chain (in parallel) do
7: Update auxiliary fields
8: Measure Green Function and observables
9: end for

10: Accumulate measurements over Markov chains
11: end for
12: Accumulate measurements over disorder configurations.
13: Re-compute the self-energy
14: until self consistency is reached

The main parts in the simulation sequence of the HF-
QMC can be summarized as follows: during the “warm-
up” or thermalization phase of the calculations, only Monte
Carlo moves with updates of the Green function are per-
formed until the HS field configurations are thermalized.
Measurements should not be performed during this phase,
as the auto-correlation time is very long and one would not
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Fig. 2. The DCA self-consistency loop that has to be iterated consists of
two essential parts. The Cluster mapping in which the new self-energy (using
Eq. (9) for all but the first iteration), the coarse grained Green function in
Eq. (6) and the cluster excluded Green function in Eq. (7) are computed.
In the present case, the quantum cluster solver implements the HF-QMC
algorithm with delayed updates (section II-C). Between these two steps the
Green’s functions are lattice Fourier transformed. The top level parallelization
is over disorder configurations. For every disorder configuration we run one
cluster solver that itself is parallelized over Markov chains. The two red circles
indicate points where communications occurs. At the end of every cluster
solver, the measured Green’s function and charge susceptibility have to be
accumulated for every disorder configuration. At the beginning of every cluster
mapping step, the Green’s function and charge susceptibility are averaged over
all configurations.

measure independent samples. This phase typically lasts for
approximately 50 sweeps though the space-time lattice. The
“measurement” phase of the calculations consists of Monte
Carlo moves and updates as well as measurements that are
typically performed every two, four, or eight sweeps depending
on the simulated temperature (larger numbers of sweeps are
needed for lower temperatures as the auto-correlation time is
longer when the temperature is reduced). The HF-QMC with
delayed updates is executed for every disorder configuration.
Averaging over disorder configurations leads to the cluster
Green function of a given DCA iteration, from which the self-
energy is recomputed. The DCA loop is iterated until the self-
energy is converged (see depiction in Figure 2 and algorithm
template 1).

III. SIMULATION RESULTS: DISORDER EFFECT ON THE
SUPERCONDUCTING TRANSITION TEMPERATURE Tc

In the present simulations we are interested in a transition
to a superconducting state with d-wave symmetry. The order



DCA++ code from a concurrency point of view

DCA cluster 
mapping

QMC cluster
solver

random walkers

...

.

..

disorder
configura=ons

OpenMP / CUDA

MPI AllReduce
MPI Broadcast

MPI AllReduce

Problem of interest: ~102 - 103 disorder 
                                        configurations

up to 103 Markov 
                 chains



DCA++: strong scaling on HF-QMC

Gc
(i)

Warm up Sample QMC time

Measurement ! zgemm

Updates ! cgemm

DCA cluster 
mapping

QMC cluster
solver

random walkers

...



Weak scaling on Cray XT4
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• HF-QMC: 122 Markov chains on 122 cores

• Weak scaling over disorder configurations

cores @ 2.1 GHz

17,812 cores @ 2.3 GHz

31,232 cores @ 2.1 GHz +
17,812 cores @ 2.3 GHz =
49,044-core chimera
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Cray XT5 portion of Jaguar @ NCCS

Peak: 1.382 TF/s
Quad-Core AMD 
Freq.: 2.3 GHz
150,176 cores
Memory: 300 TB
For more details, go to 
www.nccs.gov



Sustained performance of DCA++ on Cray XT5

51.9% efficiency

Weak scaling with number disorder configurations, each running on 128 Markov chains on 
128 cores (16 nodes) - 16 site cluster and 150 time slides
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