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Complexity of many particle problems

* Classical
* 1 particle: 6-dimensional ODE
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* 3 position and 3 velocity coordinates m d_;c —F

t

* N particles: 6/N-dimensional ODE

* Quantum
® 1 particle: 3-dimensional PDE 3
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* N particles: 3N dimensional PDE o 2m

¢ Quantum or classical lattice model
® 1 site: g states

* Nsites: gV states

* Effort grows exponentially with N
e How can we solve this exponential problem?



The Metropolis Algorithm (1953)
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A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION II. THE GENERAL METHOD FOR AN ARBITRARY

. . . POTENTIAL BETWEEN THE PARTICLES
HE purpose of this paper is to describe a general

method, suitable for fast electronic computing In order to reduce the problem to a feasible size for

machines, of calculating the properties of any substance numerical work, we can, of course, consider only a finite
which may be considered as composed of interacting number of particles. This “1'"‘}’“"-\ may be as high as
individual molecules. Classical statistics is assumed, Several hlf"dm(!' Our system consists of a squaref con-




Mapping quantum to classical systems

e (lassical: (AY =) Ae """ / Y e EelT
* (Quantum: <A> — Ty Ae—H/T/Tre—H/T

* (alculate exponential by integrating a diffusion equation
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The negative sign problem

* In mapping of quantum to classical system
Z = Tre P8 = Zpi

e there is a “sign problem” if some of the p; <0

* Appears e.g. in simulation of electrons when two electrons exchange

places (Pauli principle) /
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The negative sign problem

Sample with respect to absolute values of the weights

ZAi Sgnpi‘pi‘/Z‘pi‘ <A- Sign>
<A>=zi,A,-Pi/zi,Pi: ngnpi‘pi‘/Z‘pi‘ = <sign>p

Exponentially growing cancellation in the sign

|p|
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Exponential growth of errors
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NP-hard problem (no general solution) [Troyer and Wiese, PRL 20051



Is the sign problem exponentially hard?

* The sign problem is basis-dependent

* Diagonalize the Hamiltonian matrix H i) =¢]i)

(4) = Trl Aexp(-BH)]/ TrlexpED] = 2. (A l)exp(—Be) /2 exp=Pe)

i

e All weights are positive
* But this is an exponentially hard problem since dim(H)=2N!
* (Good news: the sign problem is basis-dependent!

* But: the sign problem is still not solved

* Despite decades of attempts
* Reminiscent of the NP-hard problems

* No proof that they are exponentially hard

* No polynomial solution either



Complexity of decision problems

Partial hierarchy of decision problems

* TUndecidable (“This sentence is false”) | '“]ﬁ‘l : I.“"“li”
* Partially decidable (halting problem of Turing machines)  [Pertally decidable; Undecidable
e EXPSPACE [ e !I

* Exponential space and time complexity: I

diagonalization of Hamiltonian EXPSPACE

* PSPACE oo

* Exponential time, polynomial space complexity: Monte C | "\
* NP —=

* Polynomial complexity on non-deterministic machine NPl

* Traveling salesman problem

* 3D Ising spin glass

® Polynomial complexity on Turing machine



Complexity of decision problems

* Some problems are harder than others:

* Complexity class P
e (Can be solved in polynomial time on a Turing machine
e FEulerian circuit problem
e Minimum spanning Tree (decision version)

* Detecting primality

* Complexity class NP
* Polynomial complexity using non-deterministic algorithms
e Hamiltonian cirlce problem
e Traveling salesman problem (decision version)
* Factorization of integers

* 3D spin glasses



The complexity class P

* The Eulerian circuit problem

Seven bridges in Konigsberg (now Kaliningrad) crossed the river Pregel
Can we do a roundtrip by crossing each bridge exactly once?

Is there a closed walk on the graph going through each edge exactly once?
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Looks like an expensive task by testing all possible paths.
Euler: Desired path exits only if the coordination of each edge is even.
This is of order O(IN?)

Concering Ko6nigsberg: NO!



The complexity class NP

* The Hamiltonian cycle problem

e Sir Hamilton's Icosian game:

e Is there a closed walk on going through each vertex exactly once?
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e Looks like an expensive task by testing all possible paths.

e No polynomial algorithm is known, nor a proof that it cannot be
constructed



The complexity class NP

* Polynomial time complexity on a nondeterministic machine

e (Can execute both branches of an if-statement, but branches cannot
merge again

e Has exponential number of CPUs but no communication

* It can in polynomial time

e Test all possible paths on the graph to see whether there is a
Hamiltonian cycle

e Test all possible configurations of a spin glass for a configuration
smaller than a given energy de:E. <E

® |t cannot

e (alculate a partition function since the sum over all states cannot be
performed M



NP-hardness and NP-completeness

* Polynomial reduction
* 'Two decision problems Q and P:
e () < P: there is an polynomial algorithm for Q, provided there is one for P
* ’Typical proof: Use the algorithm for P as a subroutine in an algorithm for P

* Many problems have been reduced to other problems

e NP-hardness
e AproblemPis NP-hardif VOENP: Q<P

* This means that solving it in polynomial time solves all problems in NP too

* NP-completeness

* A problem P is NP-complete, if P is NP-hard and P e NP [ }

* Most Problems in NP were shown to be NP-complete




The P versus NP problem

* Hundreds of important NP-complete problems in computer science
e Despite decades of research no polynomial time algorithm was found

e Exponential complexity has not been proven either

* The P versus NP problem

e Js P=NP or is P+tNP ? - s »

* One of the millenium challenges [ ]

N

of the Clay Math Foundation
http://www.claymath.org [ ]

* 1 million USS$ for proving

either P=NP or P+NP

* The situation is similar to the sign problem


http://www.claymath.org/
http://www.claymath.org/

The Ising spin glass: NP-complete

* 3D Ising spin glass H=-)J,0,0, withJ, =01
(i)

* The NP-complete question is: “Is there a configuration
with energy < E?”

* Solution by Monte Carlo:
. . 3 1
® Perform a Monte Carlo simulation at B=NIn2+InN + ln5 + 5

* Measure the energy: (E)<E, +% if there exists a state with energy < E,

(E)> E,+1 otherwise

* A Monte Carlo simulation can decide the question



The Ising spin glass: NP-complete

* 3D Ising spin glass is NP-complete H=->J,0,0, withJ, =041
(i)

¢ Frustration leads to NP-hardness of Monte Carlo
f’l
/
|—]

* Exponentially long tunneling and autocorrelation times

AA=\/<(Z —<A>)2> =\/va 1+27,) )

C,—>Cy—>..—C, —>C




Frustration

* Antiferronmagnetic couplings on a triangle:

I?k
e Leads to “frustration”, cannot have each bond in lowest energy state

e With random couplings finding the ground state is NP-hard

* (Quantum mechanical:

e negative probabilities for a world line configuration

e Due to exchange of fermions l/]\
-J

Negative weight (-J)3




What is a solution of the sign problem?

e Consider a fermionic quantum system with a sign problem (some p; < 0)

(A)=Tr[ Aexp(—BH )]/ Tr[exp(-BH )] = ZAZ. P, /Z P,

e Where the sampling of the bosonic system with respect to Ip/| scales
polynomially

TOCS_ZNnﬁm

* A solution of the sign problem is defined as an algorithm that can
calculate the average with respect to p, also in polynomial time

e Note that changing basis to make all p; = 0 might not be enough:
the algorithm might still exhibit exponential scaling



Solving an NP-hard problem by QMC

;0 0, with J,, =01

* Take 3D Ising spin glass w=>J
(i)

* View it as a quantum problem in basis where H it is not
diagonal

H®® =) J,0%0"; with J, =01
(i)

* The randomness ends up in the sign of offdiagonal matrix elements
* Ignoring the sign gives the ferromagnet and loop algorithm is in P

M) — —Zijij
(8.4

* The sign problem causes NP-hardness

* solving the sign problem solves all the NP-complete
problems and prove NP=P



Summary

* A “solution to the sign problem” solves all problems in NP

* Hence a general solution to the sign problem does not
exist unless P=NP

* Ifyou still find one and thus prove that NP=P you will get
e 1 million US §!
* A Nobel prize?
* A Fields medal?

* What does this imply?
* A general method cannot exist

* Look for specific solutions to the sign problem or model-specific
methods



The origin of the sign problem

We sample with the wrong distribution by ignoring the sign!

We simulate bosons and expect to learn about fermions?

* will only work in insulators and superfluids

We simulate a ferromagnet and expect to learn something
useful about a frustrated antiferromagnet?

We simulate a ferromagnet and expect to learn something
about a spin glass?

* 'This is the idea behind the proof of NP-hardness



Working around the sign problem

1. Simulate “bosonic” systems
* Bosonic atoms in optical lattices
* Helium-4 supersolids

* Nonfrustrated magnets

2. Simulate sign-problem free fermionic systems

e Attractive on-site interactions

e Half-filled Mott insulators

3. Restriction to quasi-1D systems

e Use the density matrix renormalization group method (DMRG)

4. Use approximate methods
* Dynamical mean field theory (DMFT)



