
Introduction to quantum Monte Carlo: !

The Stochastic Series Expansion method!

Anders Sandvik, Boston University!

•! Illustration of concept; classical Monte Carlo example!

•! Detailed account of SSE for the S=1/2 Heisenberg model !

This presentation is based on material available at!
http://physics.bu.edu/~sandvik/programs/

A simple SSE program (Fortran90) for the !

2D Heisenberg model can be downloaded from this site!

NUMERICAL APPROACHES TO QUANTUM MANY-BODY PROBLEMS, IPAM, JANUARY 22, 2009

References:
•! A. W. Sandvik, Phys. Rev. B 59, 14157 (1998),

•! O. F. Syljuasen and A. W. Sandvik, Phys. Rev. E 66, 046701 (2002)

Warm-up: SSE for a classical problem!

Classical thermal expectation value!

Classical (e.g., Ising) spins:!

Classical Monte Carlo: Importance sampling of spin configurations!

Probability of generating a configuration!

Estimate of expectation value based on sampled configurations!

Imagine that we are not able to evaluate the exponential function!

How could we proceed then?!

Use Taylor expansion of the exponential function!

Expansion power n is a new “dimension” of the configuration space!

To ensure positive-definitness we may have to shift E (must be < 0)!

The sampling weight for the configurations (!,n) is!

The function to be averaged (estimator) f(!) is the same as before;!

it does not depend on n!

However, if f(!) is a function of the energy it can be rewritten!

as a function of n only! !

Define:!

Shift summation index: m=n+1!

Therefore the energy expectation value is!

We can also easily obtain!

And thus the specific heat is!

What range of expansion orders n is sampled?!

From the preceding results we obtain!

Consider low T; C " 0!

Thus, for a system with N spins:!

Average expansion order!

Width of distribution !

These results hold true for quantum systems as well!

 requires more complicated treatment!

Quantum-mechanical SSE!

Thermal expectation value!

Choose a basis and Taylor expand the exponential operator!

Write the hamiltonian as a sum of local operators!

such that for every a, b: (no branching)!

Write the powers of H in terms of “strings” of these operators!

a = operator type (e.g., 1=diagonal, 2=off-diagonal)!

b = lattice unit (e.g., bond connecting sites i,j)!

Operator strings of varying length n!

•! as in the classical case!

Fixed-length operator strings: introduce unit operator:!

Expansion cut-off M: add M-n unit operators to each string!

•! there are M!/n!(M-n)! ways of doing this #!

The truncation should not be considered an approximation !

•! M can be chosen such that the truncation error is negligible!

The terms are sampled according to weight in this sum!

•! requires positive-definiteness!

•! to this end, a constant may have to be added to diagonal Hab!

•! there can still be a “sign problem” arising from off-diagonal Hab !

n = number!
of non-[0,0]!
operators!

SSE algorithm for the S=1/2 Heisenberg model!
•! The algorithm for this model is particularly simple and efficient!

Consider bipartite lattice (sign problem for frustrated systems)!

Standard z-component basis: !

Bond operators: bond b connects sites i(b),j(b)!

Diagonal and off-diagonal bond operators!

A minus sign in front of the off-diagonal H2b is neglected!

•! this corresponds to a sublattice rotation; 180 degree rotation in!

 the xy-plane of the spin operators on sublattice B!

•! The sign is irrelevant for a bipartite lattice (will be shown later)!

SSE operator string!

Represented in the computer program by!

Spin state |$> represented by!

SSE partition function!

Both H1b and H2b give 0 when acting on parallel spins!

•! non-zero matrix element = 1/2 in both cases !

The configuration weight is then!

Define propagated states!

For a contributing configuration: (periodic) !

Periodicity requires an even number of spin flips!

•! This is why the sign of H2b is irrelevant for a bipartite lattice!

•! For a frustrated lattice an odd number of flips is possible!

Graphical representation!
•! 1D example; 8 spins, M=12! 1D: bond b connects sites b and b+1!

Linked-list representation!
•! vertex: operator and spins before and after the operator has acted!

•! replace spins between vertices by links!

p

•! linked vertex list used in some parts of the program!

 l = 0 1 2 3 p

[v] vertexlist[v]: [1] 31 [2] 32 [3] 29 [4] 17 1

 [5] 0 [6] 0 [7] 0 [8] 0 2

 [9] 43 [10] 44 [11] 18 [12] 42 3

 [13] 35 [14] 47 [15] 33 [16] 34 4

 [17] 4 [18] 11 [19] 30 [20] 41 5

 [21] 0 [22] 0 [23] 0 [24] 0 6

 [25] 0 [26] 0 [27] 0 [28] 0 7

 [29] 3 [30] 18 [31] 1 [32] 2 8

 [33] 15 [34] 16 [35] 13 [36] 45 9

 [37] 0 [38] 0 [39] 0 [40] 0 10

 [41] 20 [42] 12 [43] 9 [44] 10 11

 [45] 36 [46] 48 [47] 14 [48] 46 12

A vertex has 4 “legs”, numbered l=0,1,2,3:!

position p of operator in operator string opstring[p], vertex leg l !

#! position v in linked vertex list: v=1+l+4*(p-1)!

vertexlist[v] contains the element # to which v is linked !

Sampling the SSE configurations; updates!

1)! Diagonal update!

 - replace unit operator by diagonal operator, and vice versa !

2) Off-diagonal update (local or loop)!

 - change the operator type, diagonal off-diagonal,!

 for two (local) or several (loop) operators!

3)! Flip spins in the state |$>!

Updates satisfy detailed balance:!

-! unconstrained “free” spins; weight unchanged after flip!

-! only possible at high temperatures; strictly not necessary!

Diagonal update!

•! Carried out in opstring[p] for p=1,...,M!

•! State |$(p-1)> stored in spin[] !

insertion of!

diagonal operator!

removal of!

diagonal operator!

off-diagonal!

no change, !

propagate state!

Generate bond index b at random, attempt opstring[p]=2*b

•! can only be done if spin[i(b)]% spin[j(b)]

•! n increases by 1; weight ratio

B ways of selecting b but only one way of removing an operator;!

Accept probabilities:!

Insertion of a diagonal operator if opstring[p]=0

Removal of a diagonal operator if opstring[p]%0

•! n decreases by 1; weight ratio!

Local off-diagonal update (obsolete)!

Change type of 2 operators on the same bond!

•! cannot always be done; check for constraining operators!

•! no weight change; accept with fixed probability (e.g., P=1)!

Note: periodic boundary conditions in the “propagation” direction!

•! update spanning across the boundary affects the stored state |$>!

Local updates typically are not very efficient !

•! critical slowing-down!

•! no winding-number or particle-number fluctuations!

Loop update!

•! carried out in the linked-vertex-list representation!

•! move “vertically” along links and “horizontally” on the same operator!

•! spins flipped at all vertex-legs visited; operator type changes; weight unchanged!

•! construct all loops, flip with probability 1/2 (as in Swendsen-Wang)!

Starting the simulation!

•! “empty” perator string, opstring[p]=0, p=1,...,M

•! M is arbitrary, e.g., M=20

•! random spin state; spin[p]=+1,-1

Monte Carlo step!

•! a cycle of diagonal updates (p=1,...,M in opstring[p])!

•! construction of the linked vertex list!

•! construct all loops, flip each with probability 1/2!

•! map updated vertex list back to opstring[], spin[]!

Determining the cut-off M!

•! after each, MC step, compare expansion order n with M!

•! if M-n<n/a, with, e.g., a=3, then M=n+n/a!

Generalization of loop update; directed loops!

In the case of the isotropic S=1/2 model!

•! There are only 4 non-0 vertices!

•! The operators uniquely define all loops!

•! Loops are non-self-intersecting !

Directed loops !

•! In general, there are more than 4 allowed vertices!

•! A vertex is entered at some entrance leg !

•! The path can proceed (exit) through any of the 4 legs!

•! Exit probabilities are obtained from directed-loop equations!

•! Loops can back-track (“bounce”) and self-intersect !

•! Bounces can be avoided for some models (more efficient)!

Can be used for spins, bsons, 1D fermions,… !

