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Introduction to quantum Monte Carlo:
The Stochastic Series Expansion method

Anders Sandvik, Boston University

e [llustration of concept; classical Monte Carlo example
e Detailed account of SSE for the S=1/2 Heisenberg model

This presentation 1s based on material available at
http://physics.bu.edu/~sandvik/programs/

A simple SSE program (Fortran90) for the
2D Heisenberg model can be downloaded from this site
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Quantum Monte Carlo for S=1/2 Heisenberg models
Classical Monte Carlo - we know the energies for all configurations

— % ZAne—En/T’ 7 — Ze—En/T

Quantum systems - we normally don’t know the eigenstates/energies
« often the goal is to find the ground state |0>

« for small N (<25), we can diagonalize the hamiltonian

« number of basis states = 2N (size of the matrix)

* block diagonalize using symmetries; up to N=40 possible

* not enough to study N—eo limit

QMC based on quantum mechanical thermal expectation value

1 , 1 3
(A) = ZTr{Ae_H/T}:ZZ(SMe H/T | g)
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The trace can be written in any basis

 But the exponential operator is in general difficult to evaluate
Quantum Monte Carlo; rewrite the exponential operator

» Can be done in different ways; many different algorithms



Warm-up: SSE for a classical problem

Classical thermal expectation value

()= Z S F(@)ePE@, 7=y 0B
{o} {o}
Classical (e.g., Ising) spins: 0 = {01, Ty v s UN}

Classical Monte Carlo: Importance sampling of spin configurations

Probability of generating a configuration

1
Po) = ;W(o), Wi(o)=e PEC

Estimate of expectation value based on sampled configurations

) =(lw = 1 Z f(oli])

N,
samples

Imagine that we are not able to evaluate the exponential function
How could we proceed then?



Use Taylor expansmn 0f the exponentlal function

3E T
W M
{()‘} n=>0 {()‘} n=>0 '
Expansion power n 1s a new “dimension” of the configuration space

To ensure positive-definitness we may have to shift E (must be < 0)
E(o) — E(o) —

The sampling weight for the configurations (o,n) is
Wi(o,n)= Ile _’,f )"

The function to be averaged (estimator) f(o) is the same as before;

it does not depend on n

) =(flw = - 1 Zf((f["])

N samples

However, if f(0) is a function of the energy it can be rewritten
as a function of n only!



Define: H(O’) =¢— F(o)

ZH YW (o,n), Z= ZIVJn

g, n o,n

Shift summation index: m=n+1

ZH (o,n) Z%U’(U m)

o.n o.m '

Therefore the energy expectation value is

1 1

(H) = 3 (Mw = E=€e—=(nw
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We can also easily obtain

‘ 1
(H?) = —(n(n — D)w

8

And thus the specific heat C' = ' ((E?) —

C = Z({n?) — (n)* ~ (n)

Wio,n) =

(E)%) is

8" H(o)"

n!



What range of expansion orders n is sampled?

From the preceding results we obtain
(n) = B(e — F)
(n*) — (n)* =pB(C +¢e—E)
Consider low T; C —= 0
(n?) — (n)? = (n)
Thus, for a system with N spins:

Average expansion order X J N

Width of distribution o< /3N

These results hold true for quantum systems as well

H" requires more complicated treatment



Quantum-mechanical SSE

Thermal expectation value

1 arr- | |
(A) = ZTI{ Ae™ m}. Z = Tr{_o—’m}

Choose a bas1s and Taylor expand the exponential operator
))N
7=y )"|a)
a n=0
Write the hamiltonian as a sum of local operators
H — — Z H, a = operator type (e.g., 1=diagonal, 2=off-diagonal)
o a,o

: b = lattice unit (e.g., bond connecting sites 1,j)
a,o

such that for every a, b: H,p|c) = hg (@) ') (no branching)

Write the powers of H in terms of “strings” of these operators

Z H H“(p)-b(j))

{[[(111} ])_l



Operator strings of varying length n
e as in the classical case (n) = —3(H)

Fixed-length operator strings: introduce unit operator: /1o o = 1

Expansion cut-off M: add M-n unit operators to each string
e there are M!/n!(M-n)! ways of doing this =
‘ n = number

- M
| . (M — n)In!
(_H) — Z | Va | H H(I(pv).l)(i]).) of non'[OSO]

(H,p} o p=1 operators

The truncation should not be considered an approximation
* M can be chosen such that the truncation error is negligible

=Ly O (o T o)

a {H,
The terms («, {H «b}) are sampled according to weight in this sum
e requires positive-definiteness
* to this end, a constant may have to be added to diagonal H,
e there can still be a “sign problem” arising from off-diagonal H




SSE algorithm for the S=1/2 Heisenberg model

e The algorithm for this model is particularly simple and efficient
H=J) S;-8;
(2,7)

Consider bipartite lattice (sign problem for frustrated systems)

~0—0—0—0-
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Standard z-component basis:

‘ ( f~1-1i> -

k-"\_z.‘.

® sublattice A

® sublattice B

Gz Q7 — |
* 9 A '\,'T > | | . P .

'Z»
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Bond operators bond b connects sites 1(b),j(b)

H= Z[S~b)s~b)+ (Si50yS5) + SiceyS5 )]
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b=1 a=1
Diagonal and off-diagonal bond operators
1 i i L/ i i i
L oz @z Yo+ o- — Qo+
Hyp = 1 SiwyRiwy  H2p = 9 (*Szunb,/‘(b) T 5,(1))5,,-(1)))

A minus sign in front of the off-diagonal H,, is neglected
e this corresponds to a sublattice rotation; 180 degree rotation in
the xy-plane of the spin operators on sublattice B

e The sign is irrelevant for a bipartite lattice (will be shown later)
M

SSE operator string H H e (p),b(p)

p=1

Represented in the computer program by

01
opstring|p| = 2b(p) + a(p) — 1 _<i15 /i26 237 :648
Spin state lo> represented by 17|18 :Egs

3 D223
spinfi] = 25 OO0




SSE partition function

-3 % B(M —n)! <(1

Q {][ }

[ 0]

Both H,, and H,, give 0 when acting on parallel spins
* non-zero matrix element = 1/2 in both cases

Define propagated states

a(p)) HH” b)) ) = |a(0))
7=1
For a contributing configuration: |a(M)) = |a(0)) (periodic)

The configuration weight is then

i : » “i'} ! (4\[ — l?)'
W, {Hap}) = ()> M !

i

Periodicity requires an even number of spin flips
* This 1s why the sign of H,, 1s irrelevant for a bipartite lattice
* For a frustrated lattice an odd number of flips 1s possible



Graphical representation
e 1D example; 8 spins, M=12 1D: bond b connects sites b and b+1

i= 1 2 3 4 5 6 7 8
spinf[i] = +1 +1 -1 -1 +1 -1 +1 -1

P a(p) b(p) opstring(p]
® ¢ O O @ O 0 O
— 1 1 2 4
® ¢ O O @ O 0 O
2 0 0 0
® ¢ O O O 0 O
— 3 2 4 9
® e O ® OO @ O
E— 4 2 6 13
® ¢ O O @ OO
— 5 1 3 6
® ®e O @ O ® OO
6 0 0
® ¢ O ® O @ OO
7 0 0 0
® ¢ O @ O @6 OO
— 8 1 2 4
® e O @ O ®8 OO
— 9 2 6 13
® ¢ O ® OO @ O
10 0 0
® ®e O ® OO @ O
— 11 2 4 9
® ¢ O O @ O 0 O
— 12 1 7 14
® e O O @ O 0 O



Linked-list representation
e vertex: operator and spins before and after the operator has acted

o e ® O ® O ® O
— — — —
o e ® O o e o e

e replace spins between vertices by links

i= 12 3 4 5 6 7 8
spin[i] = +1 +1 -1 -1 +1 -1 +1 -1

P a(p) b(p) opstringlp]
® ® O O @ O @ O
— 1 1 2 4
= | |
2 0 0 0
o e
— 3 2 4 9
® O 0O @
I — 4 2 6 13
o e ® O
— 5 1 3 6
o e
| 6 0 0 0
7 0 0 0
® O
— 8 1 2 4
® O ® O
— 9 2 6 13
o e
10 0 0 0
oo | |
— 11 2 4 9
o e ® O
— 12 1 7 14
® © O O O ® O

e linked vertex list used in some parts of the program



A vertex has 4 “legs”, numbered 1=0,1,2,3:

0 1 0O 1 O 1 0 1
| | | | I | | |
o o ® O ® O ® O
| m— | | s— | — —
o o ® O o o o e
|1 |1 I 1 |1
2 3 2 3 2 3 2 3

position p of operator in operator string opstring[p], vertex leg |
=> position v in linked vertex list: v=1+1+4* (p-1)

vertexlist[v] contains the element # to which v is linked

1 = (0] 1 2 3 p
[v] vertexlist[v]: [ 1] 31 [ 2] 32 [ 31 29 [ 4] 17 1
[ 51 ©O [ 6] O [ 71 ©O [ 81 ©O 2
[ 91 43 [10] 44 [11] 18 [12] 42 3
[13] 35 [14] 47 [15] 33 [16] 34 4
[17] 4 [18] 11 [19] 30 [20] 41 5
[21] © [22] © [23] O [24] O 6
[25] O [26] O [27] O [28] © 7
[29] 3 [30] 18 [31] 1 [32] 2 8
[33] 15 [34] 16 [35] 13 [36] 45 9
[37] O [38] O [39] O [40] O 10
[41] 20 [42] 12 [43] 9 [44] 10 11

[45] 36 [46] 48 [47] 14 [48] 46 12



Sampling the SSE configurations; updates

1) Diagonal update
- replace unit operator by diagonal operator, and vice versa
H().() — Hl,b

2) Off-diagonal update (local or loop)
- change the operator type, diagonal off-diagonal,
for two (local) or several (Ioop) operators
{Hay v Hag by s Hap o f < AH3—ay 00y H3—an0r -+ s H3—a o )

3) Flip spins in the state lo>
- unconstrained “free” spins; weight unchanged after flip

- only possible at high temperatures; strictly not necessary
Si — =57
Updates satisfy detailed balance:

‘Iv([))) )s(l((T(B — *l) 1
W (A)Psclect (A — B)’

j)a‘(:(:(‘pt (41 — B) = min (



Diagonal update
e Carried out in opstring[p] for p=1,..M
e State lou(p-1)> stored in spin|]

i= 12 3 4 5 6
= -1 41 -1 +1 41 -1

1 2 3 4 5 6 jnsertion of
diagonal operator

spin[i] =
O @ 0@ e O
O @ 0O e @O
-1 +1 -1 +1 +1 -1
i= 1 2 3 4 5 6 1 2 3 4 5 6 removalof
spin[i] = -1 +1 -1 +1 +1 -1 diagonal operator
O ® 0O @ @ O
— g
O @ 0O @ @ O
-1 41 -1 +1 +1 -1
i= 12 3 4 5 6 1 2 3 4 5 6 off-diagonal
spin[i] = -1 +1 -1 +1 +1 -1 no change,
O ® 0@ e O ropagate state
propag

O e ¢ O @ O
-1+41 41 -1 +1 -1



Insertion of a diagonal operator if opstring[p]=0

Generate bond index b at random, attempt opstring[p]=2*b
e can only be done if spin[i(b)]= spin[j(b)]
* n increases by 1; weight ratio

W(n-+1) 3/2

Wi(n) M —n

Removal of a diagonal operator if opstring[p]=0

* n decreases by 1; weight ratio
Wn-1) M-n+1

W(n) 3/2
B ways of selecting b but only one way of removing an operator;
1')5010(:‘(, (b — ())

1')5010(:‘(, (() — {))
Accept probabilities: P, ....(n — n + 1) = min (

D

B3/2 1)

M —n’

M—-—n+1 1)
B3/2




Local off-diagonal update (obsolete)

Change type of 2 operators on the same bond
e cannot always be done; check for constraining operators
* no weight change; accept with fixed probability (e.g., P=1)

i=1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
P opstring[p] opstring[p]
® ¢ O 0O ¢ O @ O ® ® O O @ O @ O
1 — 4 — 4
= | | = | |
2 ————, 0 0
10 O, o e
3 :—. 9 — 9
@ Oj0o o ® O O o
4 [ e 13 [ — 12
o e ® O o e o e
5 — 6 — 6
o e o e
6 0 0
| — ||
7 0 0
® O ® O
8 —3 4 — 4
® O ® O ® O o e
9 m— 13 — 12
o e o e
10 I 0 0
® O, | ® O |
11 | m— 9 — 9
0_ & ® O o e ® O
12 — 14 — 14




Note: periodic boundary conditions in the “propagation” direction
e update spanning across the boundary affects the stored state lo>
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Local updates typically are not very efficient
e critical slowing-down
* no winding-number or particle-number fluctuations
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Loop update

e carried out in the linked-vertex-list representation

* move “vertically” along links and “horizontally” on the same operator

* spins flipped at all vertex-legs visited; operator type changes; weight unchanged
e construct all loops, flip with probability 1/2 (as in Swendsen-Wang)

i= 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
P opstring[p] opstring[p]
® ¢ O O ¢ O ¢ O ® ¢ O O @ O @ O
1 — 4 — 5
=3 | =l
2 0 el 0
O o . s O @
3 — 9 S ——— 8
@ oo e : " 0.8 0 @
4 — 13 L -l 1 13
e O ' 0 « ® O
5 — 6 | . 6
o_e : © O |
6 0 Y 0
[ | [ | a [}
| | i [}

7 0 6--‘ : : 0
8 — 4 — 5
® O ® O ® O r @ 0
9 —— 13 ] : —— 13

10 o e . O @
0 .- 0
é O | 0" e |
11 — 9 — 8
o ® ® O O e ® O
12 — 14 — 14
® 6 O O ¢ O @ O ® &€ O O ¢ O ® O



Monte Carlo step

e a cycle of diagonal updates (p=1,...,M in opstring[pl)
e construction of the linked vertex list

e construct all loops, flip each with probability 1/2

e map updated vertex list back to opstring[], spin[]

Starting the simulation

e “empty”’ perator string, opstring[pl=0, p=1,...,M
e M 1s arbitrary, e.g., M=20
e random spin state; spin[pl=+1,-1

Determining the cut-off M
e after each, MC step, compare expansion order n with M
e if M-n<n/a, with, e.g., a=3, then M=n+n/a

5()0 e 1 I 1 I | I | I I
400
= 300
200

100
0 l I I I I I 1 | 1

0 500 1000 1500 2000 2500
Monte Carlo step

= .|.|.|.|.I

)
-
-




Generalization of loop update; directed loops

In the case of the isotropic S=1/2 model
e There are only 4 non-0 vertices

» The operators uniquely define all loops
e Loops are non-self-intersecting

Directed loops

* In general, there are more than 4 allowed vertices

* A vertex is entered at some entrance leg

* The path can proceed (exit) through any of the 4 legs

 Exit probabilities are obtained from directed-loop equations
* Loops can back-track (““bounce”) and self-intersect

e Bounces can be avoided for some models (more efficient)

Can be used for spins, bsons, 1D fermions,,...



