Simulations of Quantum Dimer Models

Didier Poilblanc

Laboratoire de Physique Théorique CNRS & Université de Toulouse

1

A wide range of applications

- Disordered frustrated quantum magnets
- Correlated fermions on frustrated lattices (Mott)
- XXZ (frustrated) magnets under magnetic field
- Ultra-cold atom systems
- Josephson junction arrays
- Spin orbital models
- Quantum computing

OUTLINE

- Quantum dimer models for frustrated magnets
 - From short-range valence-bond basis to "dimer" basis ...
 - Rokhsar-Kivelson expansion
 - Green function's QMC for QDM's: a new phase
- Doped quantum dimer models
 - Spinon doping: still a (non-frustrated) "bosonic" problem
 - Holon doping: minus sign problem !

J_1 - J_2 - J_3 AF Heisenberg model

- Classical phase diagram (Chubukov et al., PRB 90)
 - \rightarrow collinear vs spiral
- Quantum case: AF → VBC transition ? deconfined critical point (Senthil et al.) ?

Quantum disordered phases between magnetic phases

SL vs VBC order ?

Belong to the class of constrained models

Hilbert space cannot be written as tensor product of HS of sub-systems !

Emerging global conservation laws

Interesting **topological** properties

Moessner & Sondhi, PRL 2001

$$\hat{H} = -t\hat{T} + v\hat{V} = \sum_{i=1}^{N_{p}} \left\{ -t \sum_{\alpha=1}^{3} (|\nabla_{\alpha} \nabla_{\alpha} \vee \nabla_{\alpha} | + H.c.) + v \sum_{\alpha=1}^{3} (|\nabla_{\alpha} \nabla_{\alpha} \vee \nabla_{\alpha} | + |\nabla_{\alpha} \vee \nabla_{$$

Finite correlation length Exponential decay of dimer-dimer correlations

Degeneracy from "topological order" {

F

Rich phase diagrams at zero doping: "valence bond crystals" and RVB phases

Motion of "monomers"

Inject monomers (by pairs) & add new term to H:

$$-t\sum_{c,c''}|c
angle\langle c''|$$

Phase diagram vs spinon doping / magnetic field

holon vs spinon doping ?

		monomers	definition of dimer operator	« bare » monomer statistics	Sign of J	« true » monomer statistics
	Chemical doping	holons	$\frac{1}{\sqrt{2}}(f_{i\uparrow}^{\dagger}f_{j\downarrow}^{\dagger}+f_{j\uparrow}^{\dagger}f_{i\downarrow}^{\dagger})$	bosonic	J<0 non- - Frobenius	bosonic/ fermionic
A Mag	Applied gnetic field	spinons	$\frac{1}{\sqrt{2}}(b_{i\uparrow}^{\dagger}b_{j\downarrow}^{\dagger}-b_{i\downarrow}^{\dagger}b_{j\uparrow}^{\dagger})$	bosonic	J>0 Frobenius	bosonic
			I	Input in Ha	miltonian	emerging
						26

Summary / Conclusions

- Can replace efficiently "microscopic" models since easier to simulate
- To do list:
 - for frustrated magnets, carry out systematic "loop" expansion => more complicated QDM's but minus-sign problem can still be avoided !
 - doped systems: optics, transport, impurity doping, connection with Z₂ gauge field theory...

Collaborators

- Arnaud Ralko (Post-doc -> Institut Néel, Grenoble)
- Fabien Trousselet (PhD)
- Roderich Moessner (Dresden)
- Matthieu Mambrini (Toulouse)
- Karlo Penc (Budapest)
- Nic Shannon (Bristol)
- Federico Becca (Trieste)
- Frédéric Mila (Lausanne)

