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• Mott transition = Metal-Insulator transition due to interactions 

• Hubbard model, a minimal model for theorists.

Mott physics 3
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Doped Mott insulators Anderson (1987), ...

Example : Cuprates

How is a metal(superconductor) destroyed close to a Mott transition ?
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Nodes and Antinodes 4
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t-t!-t"-J model calculations, which reproduce the sub-
stantial deformation of the quasiparticle band structure
upon doping and suggest a unifying point of view for
both the undoped insulator and the high-Tc supercon-
ductors (Eder et al., 1997; Kusko et al., 2002). The
chemical-potential shift scenario is also supported by the
data available on Na-CCOC, which show a quasiparticle
dispersion strikingly similar to that of undoped CCOC.
On the other hand, the lack of chemical-potential shift
observed in LSCO in the underdoped regime and the
detection of multiple electronic components support the
formation of in-gap states upon doping the systems and,
consequently, the need for a completely new approach.
Further scrutiny is required to establish whether the
evolution from Mott insulator to high-Tc supercon-
ductor is truly accounted for by one of the existing mod-
els or whether a different approach, maybe beyond a
purely electronic description, is required (e.g., in which
other factors, such as the underlying structural distor-
tions, are explicitly included).

V. SUPERCONDUCTING GAP

The ability of ARPES to detect spectral changes
across the superconducting phase transition is a remark-
able testimony to the improvement in resolution over
recent years, and is the key to the success of this tech-
nique in the study of the cuprate superconductors. The
most important results obtained in the superconducting
state are (i) the detection of an anisotropic d-wave gap
along the normal-state Fermi surface, which contributed
to the debate on the pairing mechanism [for a recent
review of the pairing symmetry in the cuprate high-Tc
superconductors, see Tsuei and Kirtley (2000a)]; (ii) the
dramatic changes in the spectral line shape near (!,0). In

this section, we shall review point (i) for several systems,
while we shall come back to (ii) later, within the discus-
sion of the superconducting peak (Sec. VI.A) and of the
self-energy corrections (Sec. VIII).
A. Bi2Sr2CaCu2O8+!

Figure 45 shows the early ARPES data from an over-
doped Bi2212 sample at two different momenta in the
Brillouin zone (Shen et al., 1993). In the nodal region
(B), the spectra taken above and below Tc are very simi-
lar, indicating a small or vanishing superconducting gap.
Near the (!,0) point (A), on the other hand, the normal-
and superconducting-state spectra are clearly very dif-
ferent: in addition to the obvious line-shape evolution,
note the shift of the leading edge, which reflects the
opening of a sizable energy gap. These results strongly
suggest that the superconducting gap is anisotropic and,
in particular, consistent with a d-wave order parameter
(Scalapino, 1995). Together with the microwave penetra-
tion depth results (Hardy et al., 1993), this direct evi-
dence for gap anisotropy played a major role in the early
debate on the pairing symmetry (Levi, 1993).

Initially the magnitude of the gap was quantified sim-
ply on the basis of the position of the leading-edge mid-
point of the ARPES spectra, which has since become a
standard procedure (Tinkham, 1996). In particular, one
could either follow the leading-edge shift of the spectra
measured on the superconducting material above and
below Tc or compare, at the same temperature below
Tc, the positions of leading edges for the supercon-
ductor and a polycrystalline noble metal like Pt or Au (a
caveat here is that the comparison between the non-
trivial line shape measured on a single crystal of a high-

FIG. 45. Temperature dependent ARPES spectra from Bi2212
(Tc!88 K): A, measured close to (!,0); B, measured in the
nodal region, as sketched in the inset. From Shen et al., 1993.

FIG. 46. Superconducting gap measured at 13 K on Bi2212
(Tc!87 K) plotted vs the angle along the normal-state Fermi
surface (see sketch of the Brillouin zone), together with a
d-wave fit. From Ding, Norman, et al., 1996.
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Figure 1: Symmetrized EDCs for underdoped samples along the Fermi surface. a  

TC = 90 K sample in the superconducting state at T = 40 K, and b the same sample 

in the pseudogap phase at T = 140 K. The bottom EDC is at the node, while the 

top is at the anti-node, as defined in d. c Variation of the gap around the Fermi 

surface extracted from a and b. d Location of the momentum cuts (red lines), 

Fermi surface (blue curves), and special points (node and anti-node) in the zone. e 

Symmetrized EDCs for a very underdoped, Tc = 25 K, sample (corresponding to 

! 

k
F
points 4 through 15), measured at 55 K in the pseudogap state. For this sample, 

the spectral weight is much reduced relative to higher doping values. We therefore 

removed the extrinsic background18.
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• Spectral intensity map at Fermi level (ARPES) 
Bi2212 : Kanigel et al. Nature 2,447 (2006)
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peak disappears above Tc, but the suppression of spectral weight—
the pseudogap—persists well above Tc, as noted in earlier work4–6.

The striking new feature which is apparent from Fig. 1 is that the
pseudogap at different k points closes at different temperatures,
with larger gaps persisting to higher Ts. At point a, near M̄, there is a
pseudogap at all Ts below 180 K, at which the Bi2212 leading edge
matches that of Pt. We take this as the definition of T! (ref. 5) above
which the largest pseudogap has vanished within the resolution of
our experiment, and a closed contour of gapless excitations—a
Fermi surface—is obtained7. The surprise is that if we move along
this Fermi surface to point b the sample leading edge matches Pt at
120 K, which is smaller than T!. Continuing to point c, about
halfway to the diagonal direction, we find that the Bi2212 and Pt
leading edges match at an even lower temperature of 95 K. In
addition, we have measured spectra on the same sample along the
Fermi contour near the GY line and found no gap at any T, even
below Tc, consistent with dx2 ! y2 anisotropy.

One simple way to quantify the behaviour of the gap is to plot the
midpoint of the leading edge of the spectrum (Fig. 1e). We will say
that the pseudogap has closed at a k point when the midpoint equals
zero energy, in accordance with the discussion above. From this
plot, we find that the pseudogap closes at point a at a Tabove 180 K,

at point b at 120 K, and at point c just below 95 K. If we now view
these data as a function of decreasing T, the picture of Fig. 2 clearly
emerges. The pseudogap suppression first opens up near (p, 0) and
progressively removes larger portions of the Fermi contour, leading
to gapless arcs which shrink with decreasing T. We note that
midpoints with negative binding energy, particularly for k point
c, indicate the formation of a peak in the spectral function at q ¼ 0
as T increases.

We see similar results on other underdoped samples of Bi2212.
For example, in the upper panel of Fig. 3 we show midpoints for a
77 K underdoped sample at two k points shown in the inset, with
behaviour very similar to that of the 85 K sample of Fig. 1. This
behaviour may be compared with that of the more conventional T-
dependence of an overdoped 87 K sample as shown in the lower
panel. Gaps with different magnitudes, one at a k point near M̄ and
the other halfway towards the GY direction, go to zero at the same
temperature, very close to Tc; we have also seen this in other
overdoped samples. This is in marked contrast with the new results
on underdoped samples. Further, to show that the negative mid-
points at high Ts are not unusual, we plot those for an 82 K
overdoped sample at the M̄Y Fermi point as filled symbols in the
lower panel of Fig. 3. The midpoint goes to zero at about Tc
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Figure 1 Data obtained on single crystals of Bi2212 grown by the travelling solvent

floating-zone method. Doping was achieved by adjusting the oxygen partial

pressure during annealing with samples labelled by their onset Tcs. Measure-

ments were carried out at the Synchrotron Radiation Center, Wisconsin, using a

high resolution 4-m normal incidence monochromatorwith 22-eV photons and an

energy resolution of 20meV (full-width at half-maximum). The spectra in a–c are

taken at three k points in the Brillouin zone, shown in d, for an 85K underdoped

Bi2212 sample at various temperatures (solid curves). (The Y quadrant was

studied to minimize effects due to the superlattice12.) Our notation is G ¼ ð0; 0Þ,
M̄ ¼ ðp; 0Þ and Y ¼ ðp; pÞ, in units of 1/a, where a is the Cu–Cu distance, and GM̄ is

along the CuO bond direction. The dotted curves are reference spectra from

polycrystalline Pt (in electrical contact with the sample) used to determine the

chemical potential (zero binding energy). Note the closing of the spectral gap at

differentT for different k. This feature is also apparent in the plot (e) of the midpoint

of the leading edge of the spectra as a function of T.
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Figure 2 Schematic illustration of the temperature evolution of the Fermi surface

in underdoped copper oxides. The d-wave node below Tc (left panel) becomes a

gapless arc above Tc (middle panel) which expands with increasing T to form the

full Fermi surface at T! (right panel).
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Figure 3 Midpoints of the leading edge of the ARPES spectra of Bi2212 samples,

plotted against temperature. Top panel, data for a 77K underdoped (UD) sample,

again showing closure of the spectral gap at different T for different k. This

behaviour can be contrasted with that of overdoped samples (bottom panel)

where all gaps close near Tc.

Shen et al. Science 307, 901 (2005) 
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Figure 2.1: Angle Resolved Photo-Emission Spectra A(k,ω = 0+) = − 1
π G(k,ω = 0+)

in the first quadrant of the Brillouin Zone for the normal state of a hole-doped cuprate
superconductor material close to the Mott metal-insulator transition. Doping is labeled
x. (data taken form [27])

spectral function A(k,ω → 0) = − 1
π ImG(k, 0+) in a doped cuprate superconductor

[27] in the first quadrant of the two dimensional (kx, ky)-plane in the Brillouin zone.

The color scale spans from blue to bright red for the highest spectral weight. Close to

optimal doping (right-hand panel at 10% doping) we observe that the spectral weight

remains in the region close to the point (π/2,π/2) of momentum space and almost

completely disappears around (0,π) (π, 0), indicating that in the last regions the quasi-

particles have disappeared and the Fermi Surface (FS) has broken up. An arc remains

instead close to the (π/2,π/2) region. If we then look at A(k,ω)vs ω in the specific

direction (0, 0) → (π,π) of the k-space (Fig. 5.24), we observe around (π/2,π/2) a

quasiparticle peak (the line-width is of the order of 0.05-0.1 eV at T = 100K [26]) and

a wave-vector dispersion of this peak together with the temperature dependence can

be followed. On the contrary, in the regions around (0,π) (π, 0) the spectral function

is very broad (the line-width is of the order of 0.2-0.3 eV at T = 100K [26]) and a

quasiparticle cannot easily be distinguished. These features are typical of incoherent

(localized) states where a very strong scattering mechanism is dominant. The ratio of

the Fermi velocities in the two regions is vF (π/2,π/2)/vF (0,π) # 3. The quasiparticle

states around the nodal points (π/2,π/2) look therefore coherent (delocalized states)

and the scattering mechanism is weaker and more conventional.

Ca2-xNaxCuO2Cl2 Quasi-Particle

No Quasi-Particle
“Good” Fermi liquid

δ➘
Arcs shrinks for δ→0

A(k,ω = 0)



• What is the low temperature normal state ?

• Vanishing arcs at T=0 ? Nodal liquid ?  
Kanigel et al. Nature 2,447 (2006)

• Fermi liquid with strong variations of Z, Tcoh, m* along the Fermi 
surface ?

• Quantum oscillations in strong magnetic field (Shubnikov-de 
Haas) N. Doiron-Leyraud at al, Nature, 2007

• Low temperature, suppress SC with field

• Pocket Fermi surface in the normal state  ?

Nature of the Fermi Arcs ? 6
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peak disappears above Tc, but the suppression of spectral weight—
the pseudogap—persists well above Tc, as noted in earlier work4–6.

The striking new feature which is apparent from Fig. 1 is that the
pseudogap at different k points closes at different temperatures,
with larger gaps persisting to higher Ts. At point a, near M̄, there is a
pseudogap at all Ts below 180 K, at which the Bi2212 leading edge
matches that of Pt. We take this as the definition of T! (ref. 5) above
which the largest pseudogap has vanished within the resolution of
our experiment, and a closed contour of gapless excitations—a
Fermi surface—is obtained7. The surprise is that if we move along
this Fermi surface to point b the sample leading edge matches Pt at
120 K, which is smaller than T!. Continuing to point c, about
halfway to the diagonal direction, we find that the Bi2212 and Pt
leading edges match at an even lower temperature of 95 K. In
addition, we have measured spectra on the same sample along the
Fermi contour near the GY line and found no gap at any T, even
below Tc, consistent with dx2 ! y2 anisotropy.

One simple way to quantify the behaviour of the gap is to plot the
midpoint of the leading edge of the spectrum (Fig. 1e). We will say
that the pseudogap has closed at a k point when the midpoint equals
zero energy, in accordance with the discussion above. From this
plot, we find that the pseudogap closes at point a at a Tabove 180 K,

at point b at 120 K, and at point c just below 95 K. If we now view
these data as a function of decreasing T, the picture of Fig. 2 clearly
emerges. The pseudogap suppression first opens up near (p, 0) and
progressively removes larger portions of the Fermi contour, leading
to gapless arcs which shrink with decreasing T. We note that
midpoints with negative binding energy, particularly for k point
c, indicate the formation of a peak in the spectral function at q ¼ 0
as T increases.

We see similar results on other underdoped samples of Bi2212.
For example, in the upper panel of Fig. 3 we show midpoints for a
77 K underdoped sample at two k points shown in the inset, with
behaviour very similar to that of the 85 K sample of Fig. 1. This
behaviour may be compared with that of the more conventional T-
dependence of an overdoped 87 K sample as shown in the lower
panel. Gaps with different magnitudes, one at a k point near M̄ and
the other halfway towards the GY direction, go to zero at the same
temperature, very close to Tc; we have also seen this in other
overdoped samples. This is in marked contrast with the new results
on underdoped samples. Further, to show that the negative mid-
points at high Ts are not unusual, we plot those for an 82 K
overdoped sample at the M̄Y Fermi point as filled symbols in the
lower panel of Fig. 3. The midpoint goes to zero at about Tc
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Figure 1 Data obtained on single crystals of Bi2212 grown by the travelling solvent

floating-zone method. Doping was achieved by adjusting the oxygen partial

pressure during annealing with samples labelled by their onset Tcs. Measure-

ments were carried out at the Synchrotron Radiation Center, Wisconsin, using a

high resolution 4-m normal incidence monochromatorwith 22-eV photons and an

energy resolution of 20meV (full-width at half-maximum). The spectra in a–c are

taken at three k points in the Brillouin zone, shown in d, for an 85K underdoped

Bi2212 sample at various temperatures (solid curves). (The Y quadrant was

studied to minimize effects due to the superlattice12.) Our notation is G ¼ ð0; 0Þ,
M̄ ¼ ðp; 0Þ and Y ¼ ðp; pÞ, in units of 1/a, where a is the Cu–Cu distance, and GM̄ is

along the CuO bond direction. The dotted curves are reference spectra from

polycrystalline Pt (in electrical contact with the sample) used to determine the

chemical potential (zero binding energy). Note the closing of the spectral gap at

differentT for different k. This feature is also apparent in the plot (e) of the midpoint

of the leading edge of the spectra as a function of T.
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Figure 2 Schematic illustration of the temperature evolution of the Fermi surface

in underdoped copper oxides. The d-wave node below Tc (left panel) becomes a

gapless arc above Tc (middle panel) which expands with increasing T to form the

full Fermi surface at T! (right panel).
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Figure 3 Midpoints of the leading edge of the ARPES spectra of Bi2212 samples,

plotted against temperature. Top panel, data for a 77K underdoped (UD) sample,

again showing closure of the spectral gap at different T for different k. This

behaviour can be contrasted with that of overdoped samples (bottom panel)

where all gaps close near Tc.
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• Evolution of the superconducting gap with doping δ

• Non-BCS behaviour : 

SC phase 7

In order to understand the LSCO data within a d-wave
BCS theory of low-temperature heat transport, it will be nec-
essary to incorporate the effects of impurity scattering in the
underdoped regime outside of the clean !universal" limit. The
effect of impurity scattering on a d-wave superconductor has
been worked out in the standard case of a normal state that is
metallic, and conducts heat better than the superconducting
state.25 When the concentration of impurities is increased in
such a case, Tc is gradually suppressed to zero and the re-
sidual linear term rises monotonically to meet its normal
state value. However, our LSCO samples with x#0.09 ex-
hibit the well-known insulating upturns in the normal-state
resistivity associated with the ground-state metal-insulator
transition observed near x$0.16.26 In fact the resistivity in a
strong magnetic field appears to diverge as T→0.27 Thus, for
the LSCO samples where x!0.16, the effect of increasing
the impurity concentration would be to evolve the system
towards an insulating state, or at least one that conducts heat
less well. In this scenario, we expect the measured residual
linear term %0 /T to be smaller than the universal value,
which would explain how in Fig. 5 we measure a linear term
smaller than that allowed by Eq. !2".
Another possibility is suggested by the theoretical work of

Atkinson and Hirschfeld,28 in which the Bogoliubov–de
Gennes equations are used to model the paired state as an
inhomogenous superfluid. This approach allows for the pos-
sibility of quantum interference processes such as localiza-
tion which are neglected in the usual framework. In their
model, the residual linear term %0 /T is seen to decrease in
the presence of increasing impurity concentration, a direct
result of weak localization of carriers. The fact that we mea-
sure a linear term in underdoped LSCO which is smaller than
that allowed by Eq. !2" may be evidence for the existence of
such localization in LSCO. We hope these observations will
stimulate further theoretical work.

C. Doping dependence of the superconducting gap

The remarkable success of Eq. !2" at optimal doping vali-
dates the extension of our study across the doping phase
diagram, at least for our YBCO samples, where the clean
!universal" limit is established. In interpreting our measure-
ments of the anisotropy ratio vF /v2 in such a study, the first
thing to emphasize is the fact that vF , the Fermi velocity at
the node, is essentially independent of doping. This was
shown by ARPES both in Bi-2212 !Ref. 20" and in LSCO,33

where the slope of the E vs k dispersion at the Fermi energy
is seen to vary by no more than 10% over the range 0.03
!x!0.3, with an average value of vF!2.5"107 cm/s in
both materials. The position of the node in k space is also
independent of doping,20 with kF!0.7 Å#1 as measured
from (& ,&) to the Fermi surface. As a result, a study of
%0 /T vs p yields the doping dependence of v2$v2(p). In
Fig. 6, we plot the slope of the gap at the node as a function
of carrier concentration, not as v2 vs p but in a more familiar
guise as the corresponding gap maximum, '0, of a putative
d-wave gap function '$'0 cos 2( , via Eqs. !2" and !3".
Given that kF is constant, this is equivalent to plotting v2
directly. The values of '0 are also listed in Table I. Again,

here we have confined our analysis to YBCO only, given that
LSCO was seen to lie outside the clean limit. Plotted along-
side these data is a conventional BCS d-wave gap !dashed
curve", where we have assumed '0$2.14kBTc !weak-
coupling approximation". The p dependence of the gap is
estimated using Eq. !1", with a maximum Tc at optimal dop-
ing of 90 K.
Let us examine the implications of these results by start-

ing on the overdoped side of the phase diagram. The only
available data in the strongly overdoped regime is on
Tl-2201,8 a single-plane cuprate with optimal Tc!90 K. For
an overdoped crystal with Tc$15 K, the measured residual
linear term is %0 /T$1.4 mW K#2 cm#1, which yields
vF /v2$270 via Eq. !2". In comparison, the weak-coupling
BCS prediction based on the value of Tc$15 K is vF /v2
$210, using the values of vF and kF given above. The good
quantitative agreement shows that in this strongly overdoped
regime BCS theory works quite well, and the much larger
anisotropy ratio is a consequence of the much smaller Tc .
We now turn our attention to the underdoped region of the

phase diagram. In the case of YBCO the decrease in %0 /T by
a factor 2 between y$6.99 and y$6.54 provides one of the
main results of this paper: the velocity ratio decreases with
underdoping; it drops from 16 to 8 in going from a sample
with Tc$89 K to an underdoped sample with Tc$62 K.
This reflects an underlying steepening of the gap at the node

while Tc drops, with underdoping. Note that this is in con-

FIG. 6. Doping dependence of the superconducting gap '0 ob-
tained from the quasiparticle velocity v2 defined in Eq. !3" !filled
symbols". Here we assume '$'0cos2( , so that '0$)kFv2 /2,
and we plot data for YBCO alongside Bi-2212 !Ref. 7" and Tl-2201
!Ref. 8". For comparison, a BCS gap of the form 'BCS$2.14kBTc is
also plotted, with Tc taken from Eq. !1" !and Tc

max$90 K). The
value of the energy gap in Bi-2212, as determined by ARPES, is
shown as measured in the superconducting state29 and the normal
state30–32 !open symbols". The thick dashed line is a guide to the
eye.

MIKE SUTHERLAND et al. PHYSICAL REVIEW B 67, 174520 !2003"
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• But recent experiments suggest this is too simple ....

∆0(δ) ∝ Tc(δ)
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Electronic Raman spectroscopy

• HgBa2CuO4+δ

• 2 set of measures, probing Nodal 
Region (NR) and Antinodal 
Region (ANR)

8

M. LeTacon, A. Sacuto, A. Georges,  G. Kotliar, Y Gallais, 
D. Colson and A. Forget, Nature Physics, 2, 537,2006 

ARTICLES

instead of only one as expected from a standard d-wave gap.
We find a strong momentum dependence of the quasiparticle
spectral weight (QPSW) in the superconducting state of the
underdoped regime, and we finally establish, using a new Raman
sum rule, a relationship between the superfluid density and
the low-energy Raman scattering associated with nodal physics,
suggesting that the Fermi-liquid renormalization of the current
and Raman tensor (which transforms as a product of currents)
have similar doping dependence. Our new experimental results
place strong constraints on theories of the high-temperature
superconductivity phenomenon.

EXPERIMENTAL RESULTS

Figure 1 shows the NR and ANR Raman responses in both
the normal and superconducting states of the Hg-1201 single
crystals, at various doping levels. At optimal doping (Tc = 95 K),
the electronic Raman continua for both the NR and ANR
exhibit a redistribution of spectral weight from energies lower
than 400 cm−1 to higher energy, when going from the normal
to the superconducting state. At low energy (below 400 cm−1),
the ANR superconducting continuum exhibits a cubic frequency
dependence with a well-marked superconducting pair-breaking
peak, at a frequency ωAN " 505 cm−1 (" 8kBTc, where kB is the
Boltzmann constant). In contrast, the superconducting spectrum
in the NR has a linear frequency dependence up to 400 cm−1, as
well as a weaker signature of the pair-breaking peak close to the
same frequency ωN " ωAN that for the ANR spectrum.

The Raman response at optimal doping is thus characterized by
a single energy scale ωAN " ωN associated with the pair-breaking
peak, and all the features described above are consistent with those
expected for a d-wave superconductor2 with a maximum value ∆m

of the superconducting gap given by 2∆m = ωAN. Our results for
one overdoped sample (spectra at the top of Fig. 1) can also be
interpreted in terms of a single energy scale.

In contrast, as doping is decreased below the optimal level,
the evolution of the Raman spectra in the superconducting phase
becomes strikingly different in the ANR and in the NR. As the
doping level (and Tc) is reduced, the energy of the antinodal peak
(indicated by an arrow on the right panel of Fig. 1) increases.
Simultaneously, the intensity of this peak rapidly decreases as Tc

decreases, and finally disappears in the vicinity of Tc =78 K. On the
contrary, the nodal peak persists down to the lowest doping that
we have studied (Tc = 63 K), and its energy follows Tc. We note
that similar observations have been reported previously for other
cuprates, such as Y-123, Bi-2212, Bi2Sr2−xLaxCuO6+δ (Bi-2201) and
La2−xSrxCuO4 (LSCO)3–5. This demonstrates that the electronic
Raman response in the underdoped regime involves two distinct
energy scales, with opposite doping dependences. As discussed
below, this is inconsistent with a simple BCS d-wave description2.

To further substantiate this point, in Fig. 2 we have plotted
the characteristic ratios ωAN/Tmax

c and ωN/Tmax
c obtained for

several families of cuprates by different groups3–5, as a function
of doping at a fixed temperature well below Tc (Tmax

c is Tc at
optimal doping). The doping value p is inferred from Tc using
Tallon’s equation6: 1−Tc/Tmax

c = 82.6 (p−0.16)2. Figure 2 reveals
that these ratios have a universal dependence on doping. For
underdoped compounds, two distinct scales are present, clearly
separated beyond the scatter of the data, with the two ratios
behaving in opposing ways as a function of doping, whereas a
unique energy scale (and doping dependence) is recovered in the
optimally doped and overdoped regime.

We do not address the more subtle effects here, such as the
possible downwards shift of the higher-energy scale in Raman
measurements, due to collective modes7.
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Figure 1 Raman responses in the nodal (B2g) and antinodal (B1g) regions as a
function of doping. The dashed lines on B2g (B1g) spectra show the linear (cubic)
frequency dependences of the nodal (antinodal) Raman responses. The arrows
indicate the position of the superconducting peak maxima. We clearly distinguish
two energy scales that depend on doping in opposite directions. Ov.: overdoped;
Opt.: optimally doped; Und.: underdoped.

INCONSISTENCY WITH A SIMPLE BCS MODEL

Let us now analyse these results using the simplest possible
framework, that of a BCS superconductor with a d-wave gap
function of the form ∆k = ∆m cos(2φ) (φ is the angle associated
with momentum k on the Fermi-surface). The Raman response
would then read2,8:

χ′′
AN,N(ω) = 2πNF

ω
Re

〈
(γAN,N

k (φ))2∆2
m cos2(2φ)

√
ω2 −4∆2

m cos2(2φ)

〉

FS

(1)

where NF is the density of states at the Fermi level, γAN,N(φ)
is the Raman vertex associated with each polarization:
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• No BCS fit 

• Two energy scales in the SC phase
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instead of only one as expected from a standard d-wave gap.
We find a strong momentum dependence of the quasiparticle
spectral weight (QPSW) in the superconducting state of the
underdoped regime, and we finally establish, using a new Raman
sum rule, a relationship between the superfluid density and
the low-energy Raman scattering associated with nodal physics,
suggesting that the Fermi-liquid renormalization of the current
and Raman tensor (which transforms as a product of currents)
have similar doping dependence. Our new experimental results
place strong constraints on theories of the high-temperature
superconductivity phenomenon.

EXPERIMENTAL RESULTS

Figure 1 shows the NR and ANR Raman responses in both
the normal and superconducting states of the Hg-1201 single
crystals, at various doping levels. At optimal doping (Tc = 95 K),
the electronic Raman continua for both the NR and ANR
exhibit a redistribution of spectral weight from energies lower
than 400 cm−1 to higher energy, when going from the normal
to the superconducting state. At low energy (below 400 cm−1),
the ANR superconducting continuum exhibits a cubic frequency
dependence with a well-marked superconducting pair-breaking
peak, at a frequency ωAN " 505 cm−1 (" 8kBTc, where kB is the
Boltzmann constant). In contrast, the superconducting spectrum
in the NR has a linear frequency dependence up to 400 cm−1, as
well as a weaker signature of the pair-breaking peak close to the
same frequency ωN " ωAN that for the ANR spectrum.

The Raman response at optimal doping is thus characterized by
a single energy scale ωAN " ωN associated with the pair-breaking
peak, and all the features described above are consistent with those
expected for a d-wave superconductor2 with a maximum value ∆m

of the superconducting gap given by 2∆m = ωAN. Our results for
one overdoped sample (spectra at the top of Fig. 1) can also be
interpreted in terms of a single energy scale.

In contrast, as doping is decreased below the optimal level,
the evolution of the Raman spectra in the superconducting phase
becomes strikingly different in the ANR and in the NR. As the
doping level (and Tc) is reduced, the energy of the antinodal peak
(indicated by an arrow on the right panel of Fig. 1) increases.
Simultaneously, the intensity of this peak rapidly decreases as Tc

decreases, and finally disappears in the vicinity of Tc =78 K. On the
contrary, the nodal peak persists down to the lowest doping that
we have studied (Tc = 63 K), and its energy follows Tc. We note
that similar observations have been reported previously for other
cuprates, such as Y-123, Bi-2212, Bi2Sr2−xLaxCuO6+δ (Bi-2201) and
La2−xSrxCuO4 (LSCO)3–5. This demonstrates that the electronic
Raman response in the underdoped regime involves two distinct
energy scales, with opposite doping dependences. As discussed
below, this is inconsistent with a simple BCS d-wave description2.

To further substantiate this point, in Fig. 2 we have plotted
the characteristic ratios ωAN/Tmax

c and ωN/Tmax
c obtained for

several families of cuprates by different groups3–5, as a function
of doping at a fixed temperature well below Tc (Tmax

c is Tc at
optimal doping). The doping value p is inferred from Tc using
Tallon’s equation6: 1−Tc/Tmax

c = 82.6 (p−0.16)2. Figure 2 reveals
that these ratios have a universal dependence on doping. For
underdoped compounds, two distinct scales are present, clearly
separated beyond the scatter of the data, with the two ratios
behaving in opposing ways as a function of doping, whereas a
unique energy scale (and doping dependence) is recovered in the
optimally doped and overdoped regime.

We do not address the more subtle effects here, such as the
possible downwards shift of the higher-energy scale in Raman
measurements, due to collective modes7.
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Figure 1 Raman responses in the nodal (B2g) and antinodal (B1g) regions as a
function of doping. The dashed lines on B2g (B1g) spectra show the linear (cubic)
frequency dependences of the nodal (antinodal) Raman responses. The arrows
indicate the position of the superconducting peak maxima. We clearly distinguish
two energy scales that depend on doping in opposite directions. Ov.: overdoped;
Opt.: optimally doped; Und.: underdoped.

INCONSISTENCY WITH A SIMPLE BCS MODEL

Let us now analyse these results using the simplest possible
framework, that of a BCS superconductor with a d-wave gap
function of the form ∆k = ∆m cos(2φ) (φ is the angle associated
with momentum k on the Fermi-surface). The Raman response
would then read2,8:

χ′′
AN,N(ω) = 2πNF

ω
Re

〈
(γAN,N

k (φ))2∆2
m cos2(2φ)

√
ω2 −4∆2

m cos2(2φ)

〉

FS

(1)

where NF is the density of states at the Fermi level, γAN,N(φ)
is the Raman vertex associated with each polarization:
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“Two gaps” in SC phase ? 9
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FIG. 2: Energy of pseudogap Epg = 2∆pg and superconducting gap Esc = 2∆sc for a number of HTSCs with T max
c ∼ 95K

(Bi2212, Y123, and Tl2201), as measured as a function of hole doping x by angle-resolved photoemission spectroscopy (ARPES),
tunneling (STM, SIN, SIS), Andreev reflection (AR), Raman scattering (RS), and heat conductivity (HC). On the same plot
we are also including the energy Ωr of the magnetic resonance mode measured by inelastic neutron scattering (INS), which
we identify with Esc because of the striking quantitative correspondence as a function of Tc. The data fall on two universal
curves given by Epg =Emax

pg (0.27 − x)/0.22 and Esc =Emax
sc [1 − 82.6(0.16 − x)2], with Emax

pg =Epg(x=0.05)=152±8 meV and
Emax

sc = Esc(x= 0.16) = 42±2 meV (the statistical errors refer to the fit of the selected datapoints; however, the spread of all
available data would be more appropriately described by ±20 and ±10 meV, respectively). Alternatively, the doping dependence
of Esc can be expressed in terms of Tc as Esc#5kBTc (corresponding Tc values can be deduced from the right-hand axis).

3. Which is the correct phase diagram with respect to
the pseudogap line?

4. Do the pseudogap and the superconducting gap co-
exist below Tc?

5. What is the nature of the electronic states in the
pseudogap phase?

In this communication we try to address these questions.

I. EMERGING PHENOMENOLOGY

The literature on the HTSC pseudogap is very
extensive and still growing. In this situation it seems
interesting to step back for a moment, go over the vast
amount of data obtained from as many experimental
techniques as possible, and look whether one can find
some systematics in them. This is the primary goal of
this focused review. We want to emphasize right from
the start that we are not aiming at providing exact quan-
titative estimates of superconducting and pseudogaps for
any specific compound or any given doping. Rather, we
want to identify the general phenomenological picture
emerging from the whole body of available experimental
data.5,9,13,16,18,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70

In this field, there are two types of data to be con-
sidered: from spectroscopic probes, such as tunneling,
and from thermodynamic experiments, such as heat con-
ductivity. In addition, with respect to the spectroscopic

data, it will be important to differentiate between single-
particle probes such as angle-resolved photoemission and
scanning tunneling microscopy, and two-particle probes
such as Raman and inelastic neutron scattering. The
emphasis in this review will be on spectroscopic data
because of their simpler and more direct interpretative
significance; however, the spectroscopic results will be
checked against thermodynamic data whenever possible.

A compilation of experimental results for the magni-
tude of the pseudogap Epg = 2∆pg and superconducting
gap Esc = 2∆sc, as a function of carrier doping x, is
presented in Fig. 2. As for the choice of the specific com-
pounds to include, we decided to focus on those HTSCs
exhibiting a similar value of the maximum superconduct-
ing transition temperature T max

c , as achieved at optimal
doping, so that the data could be quantitatively com-
pared without any rescaling. We have therefore selected
Bi2Sr2CaCu2O8+δ (Bi2212), YBa2Cu3O7−δ (Y123), and
Tl2Ba2CuO6+δ (Tl2201), which have been extensively in-
vestigated and are all characterized by T max

c ∼95K.71 It
should also be noted that while Bi2212 and Y123 are ‘bi-
layer’ systems, i.e. their crystal structure contains as a
key structural element sets of two adjacent CuO2 layers,
Tl2201 is a structurally simpler single CuO2-layer mate-
rial; therefore, this choice of compounds ensures that our
conclusions are generic to all HTSCs with a similar Tc,
independent of the number of layers.

The data in Fig. 2 were obtained from both conven-

picture from  arXiv:0706.4282 

• Gap at antinode 
(maximum) 
increases for δ→0.

• Gap close to node (slope) 
decreases for δ→0, like Tc.

• Raman experiments. 
M. LeTacon et al., Nature Physics, 2, 537,2006 

• See also ARPES experiments. 
Tanaka et al,Science 314, 1910, (2006) 

v∆ =
d∆(φ)

dφ

∣∣∣∣
Node

→ 0 for δ → 0

• Still debated...

δ



Nodal-Antinodal dichotomy : summary 

• Normal phase : 

• Fermi Arcs

• Quasi-particle in the nodes, pseudogap in the antinode

• Superconducting phase : 

• Two behaviours of the gap of 1-particle Green function(?)

• Phenomenological idea : 

• Node like an ordinary Fermi liquid/SC

• Antinode more like an insulator

• Can we understand this from a systematic microscopic calculation
 e.g. of Hubbard model ?

• What is the mechanism ?

10

In this talk : DMFT approach
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1. Physical motivations

2. DMFT and clusters

3. Selective Mott transition in k space

4. Two gaps in the SC phase



Dynamical Mean Field Theory

• Ising model (Weiss) :  A single spin in an effective field.

• Fermionic Hubbard model (Kotliar-Georges, 92)
Anderson impurity with an effective band determined self-consistently

12

A. Georges, G. Kotliar, W. Krauth and M. Rozenberg, Rev. Mod. Phys. 68, 13, (1996) 
G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, OP, C. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

Local site Coupled to an effective electronic bath 

S = −
∫ β

0
c†σ(τ)G−1

0σ (τ − τ ′)cσ(τ ′) +
∫ β

0
dτUn↑(τ)n↓(τ)

G−1
0σ (iωn) ≡ iωn + ε0 −

∑

k

|Vkσ|2

iω − εkσ

Bath

“Weiss field” 

H = ε0
∑

σ=↑,↓
c†σcσ + Un↑n↓

︸ ︷︷ ︸

+
∑

k,σ=↑,↓
Vkσξ†kσcσ + h.c. +

∑

k,σ=,↓
εkσξ†kσξkσ

︸ ︷︷ ︸

G0



DMFT 13

Self-consistency

Impurity Solver

• Continuous Time QMC : Sum diagrams with Monte-Carlo

• Expansion in U  : A.N. Rubtsov et al., Phys. Rev. B (2005) 

• Expansion around atomic limit :  [P.  Werner's talk] 
P.  Werner, A. Comanac, L. de’ Medici, M. Troyer, A. J. Millis, PRL (2006)

• CT-AUX [P.  Werner's talk]: E.Gull et al., EPL (2008) 

• No sign problem (1 site DMFT). 

• Exact diagonalization M.Caffarel and W. Krauth PRL (1994)

Seff = −
∫ β

0
c†σ(τ)G−1

0 (τ − τ ′)cσ(τ ′) +
∫ β

0
dτUn↑(τ)n↓(τ)

Gc G0

Gc(τ) = −〈Tc(τ)c†(0)〉Seff



DMFT equations (simplest case) 14

• The self-energy on the lattice is local :  in metals, Z, m*, coherence 
temperature, finite temperature lifetime are constant along the Fermi 
surface.

Ising Hubbard

H = −J
∑

〈ij〉

σiσj H = −
∑

〈ij〉σ

tijc
†
iσcjσ +

∑

i

Uni↑ni↓

m = 〈σ〉 Gc(τ) = −〈Tc(τ)c†(0)〉Seff

Heff = −Jheffσ Seff = −
∫ β

0
c†σ(τ)G−1

0 (τ − τ ′)cσ(τ ′) +
∫ β

0
dτUn↑(τ)n↓(τ)

heff = zJm

Σ(iωn) ≡ G−1
0 (iωn)−G−1

c (iωn)

G−1
0 (iωn) =

(
∑

k

1
iωn + µ− εk − Σ(iωn)︸ ︷︷ ︸

Glattice(k, iωn)

)−1

+ Σ(iωn)



A diagrammatic point of view

• DMFT approximation  (exact in d→∞ limit) Metzner, Vollhardt (1989)

• Local 2PI diagrams of Hubbard = 2PI diagrams of Anderson impurity     

15

De Dominicis, Martin (1964)Σij =
δΦ

δGji

ΦHubbard(Gij) ≈
∑

i

φ1(Gii)

ΦHubbard[Gij ] =
∑

2 particle-irreducible (2PI) diagrams

=
∑

i

φ1(Gii)

︸ ︷︷ ︸
Local

+
∑

〈i,j〉

φ2(Gi,j) +
∑

〈i,j,k〉

φ3(Gi,j , Gi,k, Gj,k) + . . .

︸ ︷︷ ︸
Non local

Kotliar, Georges (1992)

DMFT sums local 2 PI diagrams, with a sign-free QMC.

φ1(Gii) = ΦAnderson(Gii)



From Mean Field to a controllable method : clusters

• Principle :  systematic interpolation between 
with a finite number of sites in a self consistent bath.

• One way to bring control to DMFT [See also A. Lichtenstein's talk] 

16

G0
G0

short range quantum fluctuationslocal quantum fluctuations

ΦHubbard and ΦDMFT

• Real space cluster (CDMFT)  
DMFT on a superlattice 
A. Lichtenstein and M. Katsnelson, PRB 62, R9283 (2000) 
G. Kotliar et al. PRL 87 186401 2001,

• Reciprocal space cluster method (DCA)
Cluster method in k-space : Σ piecewise constant on B.Z.
M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke,H.R. Krishnamurthy  PRB (1998)

T. Maier et al, Rev. Mod. Phys. 77,1027 (2005)



C-DMFT 17

Superlattice

CDMFT

H = −
∑

RmµRnν

t̂µν(Rm−Rn)c+
RmµcRnν+

∑

R1µR2ν

R3ρR4ς

Uµνρς({Ri})c
+
R1µ

c+
R2ν

cR4ςcR3ρ

Seff = −

∫∫ β

0
dτdτ ′c†µ(τ)G−1

0,µν(τ, τ
′)cν(τ

′) +

∫ β

0
dτUαβγδ(0)(c†αcβc†γcδ)(τ)

Gcµν(τ) = −
〈

Tcµ(τ)c†ν(0)
〉

Seff

Σc = G−1
0 − G−1

c

G−1
0 (iωn) =

[

′
∑

K∈R.B.Z.

(

iωn + µ − t̂(K) − Σc(iωn)

)−1
]−1

+ Σc(iωn)

Cologne 18-01-2006 – p.15/42

• DMFT on a superlattice of clusters.

• R,R’ : position of the cluster. 
μ,ν= cluster site labels.

1 2

43

t

t

t’

Cluster site labeling

1 ≤ µ, ν ≤ 4

ΦCDMFT (G) =
∑

R

Φ4sites(Gµ,R;ν,R|Gρ,R;λR′ = 0)

• Same equations as multiorbital DMFT (4 sites as orbitals)



DCA
• Cluster method in k-space : Σ piecewise constant on B.Z.

M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke,H.R. Krishnamurthy  PRB (1998)

• Example for 2x2 cluster on square lattice. 

18

kc K

k k
~

(0,!)

(!,0)(0,0)

(!,!)

Cluster momenta 

ΦDCA(G) = Nsites Φ(G(k))|U(k1,k2,k3,k4)=UDCA(k1,k2,k3,k4)

UDCA(k1, k2, k3, k4) = δKc(k1)+Kc(k2),Kc(k3)+Kc(k4)/Nsites

T. Maier et al, Rev. Mod. Phys. 77,1027 (2005)

Σ(k, iωn) ≈ Σc(kc(k), iωn)

Cluster size = momentum resolution



Is DMFT a good starting point ? 

• Compare to experiments...

• Cluster corrections small at small U, high T, large doping
e.g. good for ultra-cold fermions.

• Why ? ...

19



DMFT : a good starting point for Mott physics 20

Lattice Anderson impurity

• Abrikosov-Suhl resonance

• Local Fermi liquid with 
coherence temperature TK

Nozières, 1974

Hubbard bands

as we have done for the corresponding energies. This,
however, is far from trivial because during the photo-
emission process itself the system will relax. The prob-
lem simplifies within the sudden approximation, which is
extensively used in many-body calculations of photo-
emission spectra from interacting electron systems and
which is in principle applicable only to electrons with
high kinetic energy. In this limit, the photoemission pro-
cess is assumed to be sudden, with no post-collisional
interaction between the photoelectron and the system
left behind (in other words, an electron is instanta-
neously removed and the effective potential of the sys-
tem changes discontinuously at that instant). The
N-particle final state ! f

N can then be written as

! f
N!A " f

k ! f
N"1, (6)

where A is an antisymmetric operator that properly an-
tisymmetrizes the N-electron wave function so that the
Pauli principle is satisfied, " f

k is the wave function of the
photoelectron with momentum k, and ! f

N"1 is the final
state wave function of the (N"1)-electron system left
behind, which can be chosen as an excited state with
eigenfunction !m

N"1 and energy Em
N"1 . The total transi-

tion probability is then given by the sum over all pos-
sible excited states m . Note, however, that the sudden
approximation is inappropriate for photoelectrons with
low kinetic energy, which may need longer than the sys-
tem response time to escape into vacuum. In this case,
the so-called adiabatic limit, one can no longer factorize
! f

N into two independent parts and the detailed screen-
ing of photoelectron and photohole has to be taken into
account (Gadzuk and S̆unjić, 1975). In this regard, it is
important to mention that there is evidence that the sud-
den approximation is justified for the cuprate high-
temperature superconductors even at photon energies as
low as 20 eV (Randeria et al., 1995; Sec. II.C).

For the initial state, let us assume for simplicity that
! i

N is a single Slater determinant (i.e., Hartree-Fock for-
malism), so that we can write it as the product of a one-
electron orbital " i

k and an (N"1)-particle term:

! i
N!A " i

k ! i
N"1. (7)

More generally, however, ! i
N"1 should be expressed as

! i
N"1!ck! i

N , where ck is the annihilation operator for
an electron with momentum k. This also shows that
! i

N"1 is not an eigenstate of the (N"1) particle Hamil-
tonian, but is just what remains of the N-particle wave
function after having pulled out one electron. At this
point, we can write the matrix elements in Eq. (4) as

#! f
N!Hint!! i

N$!#" f
k!Hint!" i

k$#!m
N"1!! i

N"1$ , (8)

where #" f
k!Hint!" i

k$%Mf ,i
k is the one-electron dipole ma-

trix element, and the second term is the (N"1)-electron
overlap integral. Note that here we replaced ! f

N"1 with
an eigenstate !m

N"1 , as discussed above. The total pho-
toemission intensity measured as a function of Ekin at a
momentum k, namely, I(k,Ekin)!& f ,iwf ,i , is then pro-
portional to

&
f ,i

!Mf ,i
k !2&

m
!cm ,i!2'(Ekin#Em

N"1"Ei
N"h)*, (9)

where !cm ,i!2! "#!m
N"1!! i

N"1$ "2 is the probability that
the removal of an electron from state i will leave the
(N"1)-particle system in the excited state m . From this
we can see that, if ! i

N"1!!m0

N"1 for one particular state
m!m0 , then the corresponding !cm0 ,i!2 will be unity
and all the other cm ,i zero; in this case, if Mf ,i

k +0, the
ARPES spectra will be given by a delta function at the
Hartree-Fock orbital energy EB

k !",k , as shown in Fig.
3(b) (i.e., the noninteracting particle picture). In
strongly correlated systems, however, many of the !cm ,i!2

will be different from zero because the removal of the
photoelectron results in a strong change of the systems
effective potential and, in turn, ! i

N"1 will overlap with
many of the eigenstates !m

N"1 . Thus the ARPES spec-
tra will not consist of single delta functions but will show
a main line and several satellites according to the num-
ber of excited states m created in the process [Fig. 3(c)].

This is very similar to the situation encountered in
photoemission from molecular hydrogen (Siegbahn
et al., 1969) in which not simply a single peak but many
lines separated by a few tenths of eV from each other

FIG. 3. Angle-resolved photoemission spetroscopy: (a) geometry of an ARPES experiment in which the emission direction of the
photoelectron is specified by the polar (-) and azimuthal (.) angles; (b) momentum-resolved one-electron removal and addition
spectra for a noninteracting electron system with a single energy band dispersing across EF ; (c) the same spectra for an interacting
Fermi-liquid system (Sawatzky, 1989; Meinders, 1994). For both noninteracting and interacting systems the corresponding ground-
state (T!0 K) momentum distribution function n(k) is also shown. (c) Lower right, photoelectron spectrum of gaseous hydrogen
and the ARPES spectrum of solid hydrogen developed from the gaseous one (Sawatzky, 1989).
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Quasi-particle-peak

Mott physics : 
Hubbard band (localized)

vs 
Q.P. peak (delocalized)

DMFT : from an analogy to a mean field formalism

− 1
π

ImGc(ω)
A(k,ω)

ωω
Free electrons Fermi liquid
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1. Physical motivations

2. DMFT and clusters

3. Selective Mott transition in k space

4. Two gaps in the SC phase



Minimal cluster DMFT approach to normal phase

• Two complementary points of view on cluster DMFT : 

• A systematic numerical method (largest cluster)
e.g. 16 sites : A. Macridin et al., PRL 97, 036401 (2006)

• A mean field method (smallest cluster)
M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, 
G. Kotliar, A. Georges, arxiv:0806.4383

• Goal : Describe the normal phase (Fermi arcs, pseudogap) with a 
minimal cluster of 2 sites.
Search for a simple (analytical) picture of the mechanism.
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Shen et al. Science 307, 901 (2005) 

33

Figure 2.1: Angle Resolved Photo-Emission Spectra A(k,ω = 0+) = − 1
π G(k,ω = 0+)

in the first quadrant of the Brillouin Zone for the normal state of a hole-doped cuprate
superconductor material close to the Mott metal-insulator transition. Doping is labeled
x. (data taken form [27])

spectral function A(k,ω → 0) = − 1
π ImG(k, 0+) in a doped cuprate superconductor

[27] in the first quadrant of the two dimensional (kx, ky)-plane in the Brillouin zone.

The color scale spans from blue to bright red for the highest spectral weight. Close to

optimal doping (right-hand panel at 10% doping) we observe that the spectral weight

remains in the region close to the point (π/2,π/2) of momentum space and almost

completely disappears around (0,π) (π, 0), indicating that in the last regions the quasi-

particles have disappeared and the Fermi Surface (FS) has broken up. An arc remains

instead close to the (π/2,π/2) region. If we then look at A(k,ω)vs ω in the specific

direction (0, 0) → (π,π) of the k-space (Fig. 5.24), we observe around (π/2,π/2) a

quasiparticle peak (the line-width is of the order of 0.05-0.1 eV at T = 100K [26]) and

a wave-vector dispersion of this peak together with the temperature dependence can

be followed. On the contrary, in the regions around (0,π) (π, 0) the spectral function

is very broad (the line-width is of the order of 0.2-0.3 eV at T = 100K [26]) and a

quasiparticle cannot easily be distinguished. These features are typical of incoherent

(localized) states where a very strong scattering mechanism is dominant. The ratio of

the Fermi velocities in the two regions is vF (π/2,π/2)/vF (0,π) # 3. The quasiparticle

states around the nodal points (π/2,π/2) look therefore coherent (delocalized states)

and the scattering mechanism is weaker and more conventional.

Ca2-xNaxCuO2Cl2



Orbital selective transition in k-space

• DCA method with two patches of equal volume

23

Seff = −
∫∫ β

0
dτdτ ′c†µ(τ)G−1

0,µν(τ, τ ′)cν(τ ′) +
∫ β

0
dτUnµ↓nµ↑(τ)

G−1
0±(iωn) =




∑

k∈P±

1
iωn + µ− ε(k)− Σ±(iωn)




−1

+ Σ±(iωn)

µ = 1, 2

c± = (c1 ± c2)/
√

2

• Using even/odd basis

M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges, arxiv:0806.4383

kx

ky

(0,0) π

π

Inner patch P+

Outer patch P-

Fermi surface

Antinodes

Nodes

(π,π)

• Two cluster momenta : 
(0,0) and (π,π)

• CTQMC solution using 
Werner’s et al algorithm



Orbital selective transition in k-space

• At high doping/temperature, DMFT not corrected by cluster terms.

• Around 16%, orbital corresponding to outer patch P- becomes 
insulating : μ - Σ_(0) reaches the band edge of P- patch

• Quasi-particles only exists in the inner patch

24

3

-0.2 -0.1 0 0.1 0.2
V

5

10

15

d
I/

d
V

 [
a
rb

. 
u
n
it

s]

0.16
0.14
0.12
0.10
0.08

0 0.1 0.2
!

0

0.02

0.04

0.06

0.08

"

FIG. 2: (Color online) Left panel: tunneling spectra for dif-
ferent doping levels. All curves are obtained using Eq. (6) of
Ref. [22] with the same proportionality factor. Right panel:
gap ∆ to the band edge of the unoccupied odd-orbital states.
β = 100.

particle-hole asymmetry of dI/dV and the peak at posi-
tive voltage. This peak shifts towards higher energy with
decreasing doping, as does the gap ∆, and can indeed be
traced back to the edge of the unoccupied odd-orbital
spectral function. These observations compare favorably
to tunneling experiments in the normal state of under-
doped cuprates [22].

We now address two related issues: how to reconstruct
information in momentum space using our two-orbital
description, and how to gauge the reliability of a descrip-
tion based on only two momentum-space components,
as compared to calculations with larger cluster sizes and
better momentum-space resolution. The approximation
of lattice quantities from the cluster ones is a central issue
in cluster methods. Periodization is crucial in CDMFT
to restore translational invariance. In DCA, translational
invariance is not broken, but there is still a large freedom
when interpolating the self-energy in the BZ from the
cluster self-energies. The most local quantity is expected
to give the more reliable interpolation. We investigate
two possibilities among those that have been discussed
in the literature [23]: i) interpolating the self-energy (Σ-
interpolation) as Σ(k, ω) = Σ+(ω)α+(k) + Σ−(ω)α−(k),
with α±(k) = 1

2
{1 ± 1

2
[cos(kx) + cos(ky)]}; ii) inter-

polating the cumulant (M -interpolation) as M(k, ω) =
M+(ω)α+(k) + M−(ω)α−(k). The cumulant is related
to the self-energy by Σ = ω + µ − M−1. It is the dual
quantity of the self-energy in an expansion around the
atomic limit and a natural measure of how much the
hybridization to the self-consistent environment changes
the impurity Green’s function as compared to an iso-
lated dimer. Close to the Mott insulator, it is more local
than the self-energy and a better quantity to interpo-
late [23]. Comparing the interpolations on small clus-
ters with direct calculations on larger clusters, having
better k-resolution, provides a systematic test of clus-
ter schemes and interpolations. As a first step, we com-
pare in Fig. 3 the results of VB-DMFT, with Σ - or M -
interpolation, to the cluster components ΣK(ω) of a four-

site cluster (plaquette), using the standard DCA embed-
ding (with the BZ divided into 4 patches centered around
K = (0, 0), (0, π), (π, 0), (π, π)). The results of Fig. 3 re-
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FIG. 3: (Color online) Comparison of the plaquette (dots)
and dimer self-energies at K = (0, 0), (π, π), (π, 0). Upper
and lower-left panels: ImΣK(i0+) as a function of doping.
Lower-right panel: Σπ0(iωn) at fixed δ = 0.08. The dimer re-
sults at K = (π, 0) are obtained by M-interpolation (squares)
and Σ-interpolation (diamonds). At K = (0, 0), (π,π) both
interpolations coincide. β=100.

veal two main points: i) the M -interpolation of the two-
orbital results is clearly superior to the Σ-interpolation
for reconstructing plaquette cluster quantities and ii)
when M -interpolated, the two-orbital description does
quite a remarkable job at capturing the full frequency-
dependence of the various cluster components ΣK(ω) of
the plaquette results. Note that the plaquette cluster-
momentum K = (π, 0) is not present as an individual
orbital in the two-site description: it is entirely recon-
structed by interpolation, and as such is the most direct
test of the reconstructed momentum-dependence. A dis-
tinctive feature of the results depicted in Fig. 3 is that
the scattering rate near momentum (π, 0), ImΣπ0(i0+),
displays a maximum around a doping level δ " 8%, as
previously noted in the plaquette study of [24]. Note
however, that this maximum does not induce a maximum
of the scattering rate computed at the Fermi surface.

VB-DMFT provides a simple description of momentum
differentiation as observed in ARPES experiments. This
is illustrated by the intensity maps of the spectral func-
tion A(k, 0) (obtained with M -interpolation) displayed in
Fig. 4. At very high doping δ ≥ 25% (not shown), clus-
ter corrections to DMFT are negligible and the spectral
intensity is uniform along the Fermi surface. In contrast,
at lower δ, momentum differentiation sets in, revealing
apparent “Fermi arcs” at finite temperature with higher
spectral intensity in the nodal direction in comparison
to antinodes [11, 25, 26, 27]. The last panel in Fig. 4
shows that the contrast of the spectral intensity along

Gap of the outer 
Green function G_

2

and t′/t = −0.3, which are values commonly used for
modeling hole-doped cuprates in a single-band frame-
work. All energies (and temperatures) are expressed
in units of D = 4t = 1, and the doping is denoted
by δ. We use a two-site effective Anderson impurity
problem, involving the on-site interaction U and two hy-
bridization functions: a local one ∆11(ω) = ∆22(ω) and
an inter-site one ∆12(ω), which are self-consistently de-
termined by relating the two-impurity problem to the
original lattice one. We have investigated several such
embeddings, both of the dynamical cluster approxima-
tion (DCA) and cellular-DMFT (CDMFT) type [4, 12]
with similar results. Here, we focus on a somewhat gen-
eralized form of the DCA embedding, which preserves
the symmetries of the square lattice, in which the Bril-
louin zone is decomposed into two patches of equal sur-
face: a central square (denoted P+) centered at momen-
tum (0, 0) and the complementary region (P−) extend-
ing to the edge of the BZ and containing in particular
the (π, π) momentum. From the lattice Green’s func-
tion, two coarse-grained Green’s functions in momen-
tum space are constructed: G±(ω) =

∑
k∈P±

G(k, ω)

(with momentum summations normalized to unity within
each patch). Following the DCA construction, the in-
ner (resp. outer) patch self-energy is associated with the
even- (resp. odd) parity self-energy of the two-impurity
effective problem, i.e to the even (resp. odd) orbital com-
binations (c†1 ± c†2)/

√
2. Indeed, the states close to (0, 0)

have more bonding character while those close to (π, π)
have more antibonding character. The self-consistency
condition reads: GK(ω) =

∑
k∈PK

[ω+µ−εk−ΣK(ω)]−1.
In this expression, the index K = ± refers both to the in-
ner/outer patch index and to the even/odd orbital combi-
nations. We solve the self-consistent two-impurity prob-
lem using both continuous-time quantum Monte Carlo
(CTQMC) [20] which sums the perturbation theory in
∆ab(iωn) on the Matsubara axis, and an approximate
method geared at low-energy properties: the rotation-
ally invariant slave-boson formalism (RISB) presented
in [19]. The RISB method introduces slave-boson ampli-
tudes φΓn, a density matrix connecting the eigenstates
|Γ〉 of the isolated dimer to the quasiparticle Fock states
|n〉, determined by minimizing (numerically) an energy
functional.

In Fig. 1, we display the real part of the even- and
odd-orbital self-energy at zero frequency, as determined
by both methods, as a function of δ. We find a rather re-
markable agreement between the CTQMC solution and
the low-energy RISB. The two orbitals behave in a simi-
lar way at high doping δ ! 25%. Below this doping level,
we observe an onset of orbital differentiation, which is a
manifestation of momentum differentiation in the lattice
model. This differentiation increases as δ is reduced, un-
til a transition is reached at δ $ 16% (in CTQMC). At
this characteristic doping, µ − Σ ′
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FIG. 1: (Color online) Left: real part of Σ±(0) as a function of
doping level, computed with RISB (lines) and CTQMC (sym-
bols). µ − Σ ′

−(0) (diamonds) reaches the odd-orbital band
edge (dotted line), which becomes empty at low energy be-
low δ ∼ 16%. Right: statistical weights of the various dimer
cluster eigenstates. S is the intra-dimer singlet, 1+ the (spin-
degenerate) state with one electron in the even orbital, E the
empty state and T the intra-dimer triplet. β = 100.

edge corresponding to the odd orbital, and the latter be-
comes empty at low energy and remains so for all lower
dopings. G(k, ω) no longer has poles at ω = 0 in the
outer patch, and low-energy quasiparticles exist only in-
side the inner patch. Hence, at low doping, momentum-
space differentiation becomes strong and manifests itself
as an orbital-selective transition in VB-DMFT.

In order to gain further qualitative insight, we also
plot in Fig. 1 (right part) the statistical weight of several
cluster eigenstates |Γ〉, given within slave bosons by the
amplitude pΓ =

∑
n |φΓn|2. We compare it to a simi-

lar estimate [21] from CTQMC. The agreement between
CTQMC and RISB is again very good, and even quanti-
tative for the two states with highest weights. At large
doping, the empty state and the two spin-degenerate
states with one electron in the even orbital dominate, as
expected. As doping decreases, these states lose weight
and the intra-dimer singlet prevails, reflecting the strong
tendency to valence-bond formation. The states with
immediately lower weights are the one-electron states
and the valence-bond breaking triplet excitation which
dominates over the empty state. Therefore, the orbital
(momentum) differentiation at low doping is governed by
intra-dimer singlet formation, reminiscent of the singlet
regime of the two-impurity Anderson model.

The gaping of the odd orbital (outer patch) is actu-
ally a crude description of the pseudogap phenomenon.
To illustrate this, we compute the tunneling conduc-
tance dI/dV as a function of voltage V . This calcula-
tion is made possible by the high quality, low-noise, of
the CTQMC results on the Matsubara axis, allowing for
reliable analytical continuations to the real axis at low
and moderate energy, using simple Padé approximants.
The conductance is displayed on Fig. 2 together with
the gap ∆ in the odd Green’s function, obtained from
∆ = Σ ′

−(∆) + εmin − µ, with εmin the lower edge of the
band dispersion εk in the outer patch. Note the overall

β=200

band edge of P- patch



• Ordinary slave boson mean field : 

• RVB theory of cuprates 
Anderson, Science (1987), G. Kotliar, J. Liu Phys. Rev. B 38, 5142 (1988)

• Low energy solution of 1 site DMFT (Brinkman-Rice) 

• No k dependence of Σ !

• Here, low energy is given by 
Rotationnally Invariant Slave Bosons  
F.Lechermann, A. Georges, G. Kotliar, OP, PRB (2007)

2

and t′/t = −0.3, which are values commonly used for
modeling hole-doped cuprates in a single-band frame-
work. All energies (and temperatures) are expressed
in units of D = 4t = 1, and the doping is denoted
by δ. We use a two-site effective Anderson impurity
problem, involving the on-site interaction U and two hy-
bridization functions: a local one ∆11(ω) = ∆22(ω) and
an inter-site one ∆12(ω), which are self-consistently de-
termined by relating the two-impurity problem to the
original lattice one. We have investigated several such
embeddings, both of the dynamical cluster approxima-
tion (DCA) and cellular-DMFT (CDMFT) type [4, 12]
with similar results. Here, we focus on a somewhat gen-
eralized form of the DCA embedding, which preserves
the symmetries of the square lattice, in which the Bril-
louin zone is decomposed into two patches of equal sur-
face: a central square (denoted P+) centered at momen-
tum (0, 0) and the complementary region (P−) extend-
ing to the edge of the BZ and containing in particular
the (π, π) momentum. From the lattice Green’s func-
tion, two coarse-grained Green’s functions in momen-
tum space are constructed: G±(ω) =

∑
k∈P±

G(k, ω)

(with momentum summations normalized to unity within
each patch). Following the DCA construction, the in-
ner (resp. outer) patch self-energy is associated with the
even- (resp. odd) parity self-energy of the two-impurity
effective problem, i.e to the even (resp. odd) orbital com-
binations (c†1 ± c†2)/

√
2. Indeed, the states close to (0, 0)

have more bonding character while those close to (π, π)
have more antibonding character. The self-consistency
condition reads: GK(ω) =

∑
k∈PK

[ω+µ−εk−ΣK(ω)]−1.
In this expression, the index K = ± refers both to the in-
ner/outer patch index and to the even/odd orbital combi-
nations. We solve the self-consistent two-impurity prob-
lem using both continuous-time quantum Monte Carlo
(CTQMC) [20] which sums the perturbation theory in
∆ab(iωn) on the Matsubara axis, and an approximate
method geared at low-energy properties: the rotation-
ally invariant slave-boson formalism (RISB) presented
in [19]. The RISB method introduces slave-boson ampli-
tudes φΓn, a density matrix connecting the eigenstates
|Γ〉 of the isolated dimer to the quasiparticle Fock states
|n〉, determined by minimizing (numerically) an energy
functional.

In Fig. 1, we display the real part of the even- and
odd-orbital self-energy at zero frequency, as determined
by both methods, as a function of δ. We find a rather re-
markable agreement between the CTQMC solution and
the low-energy RISB. The two orbitals behave in a simi-
lar way at high doping δ ! 25%. Below this doping level,
we observe an onset of orbital differentiation, which is a
manifestation of momentum differentiation in the lattice
model. This differentiation increases as δ is reduced, un-
til a transition is reached at δ $ 16% (in CTQMC). At
this characteristic doping, µ − Σ ′
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FIG. 1: (Color online) Left: real part of Σ±(0) as a function of
doping level, computed with RISB (lines) and CTQMC (sym-
bols). µ − Σ ′

−(0) (diamonds) reaches the odd-orbital band
edge (dotted line), which becomes empty at low energy be-
low δ ∼ 16%. Right: statistical weights of the various dimer
cluster eigenstates. S is the intra-dimer singlet, 1+ the (spin-
degenerate) state with one electron in the even orbital, E the
empty state and T the intra-dimer triplet. β = 100.

edge corresponding to the odd orbital, and the latter be-
comes empty at low energy and remains so for all lower
dopings. G(k, ω) no longer has poles at ω = 0 in the
outer patch, and low-energy quasiparticles exist only in-
side the inner patch. Hence, at low doping, momentum-
space differentiation becomes strong and manifests itself
as an orbital-selective transition in VB-DMFT.

In order to gain further qualitative insight, we also
plot in Fig. 1 (right part) the statistical weight of several
cluster eigenstates |Γ〉, given within slave bosons by the
amplitude pΓ =

∑
n |φΓn|2. We compare it to a simi-

lar estimate [21] from CTQMC. The agreement between
CTQMC and RISB is again very good, and even quanti-
tative for the two states with highest weights. At large
doping, the empty state and the two spin-degenerate
states with one electron in the even orbital dominate, as
expected. As doping decreases, these states lose weight
and the intra-dimer singlet prevails, reflecting the strong
tendency to valence-bond formation. The states with
immediately lower weights are the one-electron states
and the valence-bond breaking triplet excitation which
dominates over the empty state. Therefore, the orbital
(momentum) differentiation at low doping is governed by
intra-dimer singlet formation, reminiscent of the singlet
regime of the two-impurity Anderson model.

The gaping of the odd orbital (outer patch) is actu-
ally a crude description of the pseudogap phenomenon.
To illustrate this, we compute the tunneling conduc-
tance dI/dV as a function of voltage V . This calcula-
tion is made possible by the high quality, low-noise, of
the CTQMC results on the Matsubara axis, allowing for
reliable analytical continuations to the real axis at low
and moderate energy, using simple Padé approximants.
The conductance is displayed on Fig. 2 together with
the gap ∆ in the odd Green’s function, obtained from
∆ = Σ ′

−(∆) + εmin − µ, with εmin the lower edge of the
band dispersion εk in the outer patch. Note the overall

β=200

Line = RISB
Dots = QMC

Orbital selective transition in k-space 25

c†σ = bf†
σ,

∑

σ

f†
σfσ + b†b = 1

• Cluster :  k dependency as a multiorbital problem
+ RISB  :  slave bosons for multiorbital problem

 ⇒ Cluster + RISB = a slave boson method with k dependency



Orbital selective transition in k-space

• With CTQMC and Rotationnally Invariant Slave Bosons methods, it 
is possible to compute the relative weight of various cluster states.

• Singlet state dominates at low doping

• Some similarities with RVB approach  
Anderson, Science (1987), G. Kotliar, J. Liu Phys. Rev. B 38, 5142 (1988) 
but here self-energy depends on k (impossible to get with ordinary 
slave bosons).
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β=200

2

and t′/t = −0.3, which are values commonly used for
modeling hole-doped cuprates in a single-band frame-
work. All energies (and temperatures) are expressed
in units of D = 4t = 1, and the doping is denoted
by δ. We use a two-site effective Anderson impurity
problem, involving the on-site interaction U and two hy-
bridization functions: a local one ∆11(ω) = ∆22(ω) and
an inter-site one ∆12(ω), which are self-consistently de-
termined by relating the two-impurity problem to the
original lattice one. We have investigated several such
embeddings, both of the dynamical cluster approxima-
tion (DCA) and cellular-DMFT (CDMFT) type [4, 12]
with similar results. Here, we focus on a somewhat gen-
eralized form of the DCA embedding, which preserves
the symmetries of the square lattice, in which the Bril-
louin zone is decomposed into two patches of equal sur-
face: a central square (denoted P+) centered at momen-
tum (0, 0) and the complementary region (P−) extend-
ing to the edge of the BZ and containing in particular
the (π, π) momentum. From the lattice Green’s func-
tion, two coarse-grained Green’s functions in momen-
tum space are constructed: G±(ω) =

∑
k∈P±

G(k, ω)

(with momentum summations normalized to unity within
each patch). Following the DCA construction, the in-
ner (resp. outer) patch self-energy is associated with the
even- (resp. odd) parity self-energy of the two-impurity
effective problem, i.e to the even (resp. odd) orbital com-
binations (c†1 ± c†2)/

√
2. Indeed, the states close to (0, 0)

have more bonding character while those close to (π, π)
have more antibonding character. The self-consistency
condition reads: GK(ω) =

∑
k∈PK

[ω+µ−εk−ΣK(ω)]−1.
In this expression, the index K = ± refers both to the in-
ner/outer patch index and to the even/odd orbital combi-
nations. We solve the self-consistent two-impurity prob-
lem using both continuous-time quantum Monte Carlo
(CTQMC) [20] which sums the perturbation theory in
∆ab(iωn) on the Matsubara axis, and an approximate
method geared at low-energy properties: the rotation-
ally invariant slave-boson formalism (RISB) presented
in [19]. The RISB method introduces slave-boson ampli-
tudes φΓn, a density matrix connecting the eigenstates
|Γ〉 of the isolated dimer to the quasiparticle Fock states
|n〉, determined by minimizing (numerically) an energy
functional.

In Fig. 1, we display the real part of the even- and
odd-orbital self-energy at zero frequency, as determined
by both methods, as a function of δ. We find a rather re-
markable agreement between the CTQMC solution and
the low-energy RISB. The two orbitals behave in a simi-
lar way at high doping δ ! 25%. Below this doping level,
we observe an onset of orbital differentiation, which is a
manifestation of momentum differentiation in the lattice
model. This differentiation increases as δ is reduced, un-
til a transition is reached at δ $ 16% (in CTQMC). At
this characteristic doping, µ − Σ ′
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FIG. 1: (Color online) Left: real part of Σ±(0) as a function of
doping level, computed with RISB (lines) and CTQMC (sym-
bols). µ − Σ ′

−(0) (diamonds) reaches the odd-orbital band
edge (dotted line), which becomes empty at low energy be-
low δ ∼ 16%. Right: statistical weights of the various dimer
cluster eigenstates. S is the intra-dimer singlet, 1+ the (spin-
degenerate) state with one electron in the even orbital, E the
empty state and T the intra-dimer triplet. β = 100.

edge corresponding to the odd orbital, and the latter be-
comes empty at low energy and remains so for all lower
dopings. G(k, ω) no longer has poles at ω = 0 in the
outer patch, and low-energy quasiparticles exist only in-
side the inner patch. Hence, at low doping, momentum-
space differentiation becomes strong and manifests itself
as an orbital-selective transition in VB-DMFT.

In order to gain further qualitative insight, we also
plot in Fig. 1 (right part) the statistical weight of several
cluster eigenstates |Γ〉, given within slave bosons by the
amplitude pΓ =

∑
n |φΓn|2. We compare it to a simi-

lar estimate [21] from CTQMC. The agreement between
CTQMC and RISB is again very good, and even quanti-
tative for the two states with highest weights. At large
doping, the empty state and the two spin-degenerate
states with one electron in the even orbital dominate, as
expected. As doping decreases, these states lose weight
and the intra-dimer singlet prevails, reflecting the strong
tendency to valence-bond formation. The states with
immediately lower weights are the one-electron states
and the valence-bond breaking triplet excitation which
dominates over the empty state. Therefore, the orbital
(momentum) differentiation at low doping is governed by
intra-dimer singlet formation, reminiscent of the singlet
regime of the two-impurity Anderson model.

The gaping of the odd orbital (outer patch) is actu-
ally a crude description of the pseudogap phenomenon.
To illustrate this, we compute the tunneling conduc-
tance dI/dV as a function of voltage V . This calcula-
tion is made possible by the high quality, low-noise, of
the CTQMC results on the Matsubara axis, allowing for
reliable analytical continuations to the real axis at low
and moderate energy, using simple Padé approximants.
The conductance is displayed on Fig. 2 together with
the gap ∆ in the odd Green’s function, obtained from
∆ = Σ ′

−(∆) + εmin − µ, with εmin the lower edge of the
band dispersion εk in the outer patch. Note the overall
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• Spectral function at Fermi level (DCA + interpolation ...)

• Maximum contrast around 10 %
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FIG. 4: (Color online) Intensity maps of the spectral func-
tion A(k, 0) for different doping levels. Lower-right panel:
normalized intensity A(φ, 0)/A(0, 0) along the Fermi surface
(φ = 0 is the node, φ = ±45 the antinode). The nodal inten-
sity A(0, 0) is 0.045 for δ=6%, 1.66 for δ=10% and 4.61 for
δ=14%. β = 200.

the Fermi surface has a maximum around δ ≈ 10%, simi-
larly to ARPES experiments (cf. Fig. 3B of [27]). At low
doping, singlet formation induces a large real part in ΣK

(cf. Fig. 1) and a large imaginary part of the self-energy
in the (π, 0) and (π, π) regions, which are responsible for
this strong momentum-space differentiation. At interme-
diate doping (10% ! δ ! 20%), this differentiation is reli-
ably addressed using VB-DMFT. At low doping (δ ! 8%)
the M -interpolated self-energy develops singularities on
lines in momentum space, leading to lines of zeroes of the
Green’s function and to the breakup of the Fermi surface
into pockets [23, 28, 29, 30, 31]. A better momentum
resolution (larger clusters) is necessary to obtain reliable
results in this regime.

VB-DMFT and the (non-self-consistent) two-impurity
Anderson model share common features. In both cases,
at low-δ, the singlet state dominates, and the real part
of the odd-orbital self-energy is large. These effects are
due to the term transferring singlet pairs from the even
orbital to the odd orbital, as can be checked by explic-
itly removing it from the dimer Hamiltonian. Interest-
ingly, strong fluctuations in the singlet pairing channel
and momentum-space differentiation appear to be re-
lated effects. The key difference between VB-DMFT and
the two-impurity model with fixed bath is that the self-
consistency leads to the opening of a gap in the odd or-
bital. This gap reduces the scattering rate of the even
orbital, leading to a maximum in ImΣ+(i0+) (and also
in the reconstructed ImΣπ0(i0+)), which is absent in the
non-self-consistent two-impurity model.

To summarize, we have proposed in this article a
valence-bond dynamical mean-field theory (VB-DMFT)

as a minimal cluster-based description of momentum-
space differentiation in doped Mott insulators. Because
of its simplicity, this theory can be investigated with
moderate numerical effort and progress in qualitative un-
derstanding can be achieved with low-energy methods
such as rotationally invariant slave bosons. The cal-
culated STM and ARPES spectra are consistent with
the phenomenology of the normal state of cuprates.
The low-doping regime is dominated by singlet forma-
tion. Mott physics is responsible for the suppression
of coherent quasiparticles at the antinodes, in quali-
tative agreement with other approaches starting from
the weak/intermediate coupling viewpoint [32]. Within
VB-DMFT, this suppression is described as an orbital-
selective transition in momentum-space.
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useful discussions and acknowledge support from ICAM
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• Solution of 8 sites DCA with CTAUX algorithm

• Doping driven transition

• 2 steps transition : sector C before sector B 
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Compare with 8 sites calculations (II)

• Similar mechanism : Re Σ(0) getting large, out of bands
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• Interpolate the self-energy and the cumulant at (π,0) and compare 
with 4 sites DCA at (π,0) (black curve)

Test interpolation 31
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FIG. 2: (Color online) Left panel: tunneling spectra for dif-
ferent doping levels. All curves are obtained using Eq. (6) of
Ref. [22] with the same proportionality factor. Right panel:
gap ∆ to the band edge of the unoccupied odd-orbital states.
β = 100.

particle-hole asymmetry of dI/dV and the peak at posi-
tive voltage. This peak shifts towards higher energy with
decreasing doping, as does the gap ∆, and can indeed be
traced back to the edge of the unoccupied odd-orbital
spectral function. These observations compare favorably
to tunneling experiments in the normal state of under-
doped cuprates [22].

We now address two related issues: how to reconstruct
information in momentum space using our two-orbital
description, and how to gauge the reliability of a descrip-
tion based on only two momentum-space components,
as compared to calculations with larger cluster sizes and
better momentum-space resolution. The approximation
of lattice quantities from the cluster ones is a central issue
in cluster methods. Periodization is crucial in CDMFT
to restore translational invariance. In DCA, translational
invariance is not broken, but there is still a large freedom
when interpolating the self-energy in the BZ from the
cluster self-energies. The most local quantity is expected
to give the more reliable interpolation. We investigate
two possibilities among those that have been discussed
in the literature [23]: i) interpolating the self-energy (Σ-
interpolation) as Σ(k, ω) = Σ+(ω)α+(k) + Σ−(ω)α−(k),
with α±(k) = 1

2
{1 ± 1

2
[cos(kx) + cos(ky)]}; ii) inter-

polating the cumulant (M -interpolation) as M(k, ω) =
M+(ω)α+(k) + M−(ω)α−(k). The cumulant is related
to the self-energy by Σ = ω + µ − M−1. It is the dual
quantity of the self-energy in an expansion around the
atomic limit and a natural measure of how much the
hybridization to the self-consistent environment changes
the impurity Green’s function as compared to an iso-
lated dimer. Close to the Mott insulator, it is more local
than the self-energy and a better quantity to interpo-
late [23]. Comparing the interpolations on small clus-
ters with direct calculations on larger clusters, having
better k-resolution, provides a systematic test of clus-
ter schemes and interpolations. As a first step, we com-
pare in Fig. 3 the results of VB-DMFT, with Σ - or M -
interpolation, to the cluster components ΣK(ω) of a four-

site cluster (plaquette), using the standard DCA embed-
ding (with the BZ divided into 4 patches centered around
K = (0, 0), (0, π), (π, 0), (π, π)). The results of Fig. 3 re-
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veal two main points: i) the M -interpolation of the two-
orbital results is clearly superior to the Σ-interpolation
for reconstructing plaquette cluster quantities and ii)
when M -interpolated, the two-orbital description does
quite a remarkable job at capturing the full frequency-
dependence of the various cluster components ΣK(ω) of
the plaquette results. Note that the plaquette cluster-
momentum K = (π, 0) is not present as an individual
orbital in the two-site description: it is entirely recon-
structed by interpolation, and as such is the most direct
test of the reconstructed momentum-dependence. A dis-
tinctive feature of the results depicted in Fig. 3 is that
the scattering rate near momentum (π, 0), ImΣπ0(i0+),
displays a maximum around a doping level δ " 8%, as
previously noted in the plaquette study of [24]. Note
however, that this maximum does not induce a maximum
of the scattering rate computed at the Fermi surface.

VB-DMFT provides a simple description of momentum
differentiation as observed in ARPES experiments. This
is illustrated by the intensity maps of the spectral func-
tion A(k, 0) (obtained with M -interpolation) displayed in
Fig. 4. At very high doping δ ≥ 25% (not shown), clus-
ter corrections to DMFT are negligible and the spectral
intensity is uniform along the Fermi surface. In contrast,
at lower δ, momentum differentiation sets in, revealing
apparent “Fermi arcs” at finite temperature with higher
spectral intensity in the nodal direction in comparison
to antinodes [11, 25, 26, 27]. The last panel in Fig. 4
shows that the contrast of the spectral intensity along

Σ(k,ω) = Σ+(ω)α+(k) + Σ−(ω)α−(k)
M(k,ω) = M+(ω)α+(k) + M−(ω)α−(k)

α±(k) =
1
2
{1± 1

2
[cos(kx) + cos(ky)]}

Cumulant interpolation is a lot better

M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges, arxiv:0806.4383
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1. Physical motivations

2. DMFT and clusters

3. Selective Mott transition in k space

4. Two gaps in the SC phase



• CDMFT and DCA have a phase diagram with  AF and d-SC
 A. Lichtenstein and M. Katsnelson, PRB 62, R9283 (2000);
M. Jarrell et al,  PRL 85,1524 (2001)

• Large Clusters at U/D=1 (DCA), up to 26 sites : Tc ≈ 0.023t
T. Maier et al., PRL 95, 237001 (2005)

• Smallest cluster : 2x2 plaquette 

• Here :  a minimal cluster approach : 

• Two gaps picture ? Doping dependence of the gap ?
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FIG. 2: Energy of pseudogap Epg = 2∆pg and superconducting gap Esc = 2∆sc for a number of HTSCs with T max
c ∼ 95K

(Bi2212, Y123, and Tl2201), as measured as a function of hole doping x by angle-resolved photoemission spectroscopy (ARPES),
tunneling (STM, SIN, SIS), Andreev reflection (AR), Raman scattering (RS), and heat conductivity (HC). On the same plot
we are also including the energy Ωr of the magnetic resonance mode measured by inelastic neutron scattering (INS), which
we identify with Esc because of the striking quantitative correspondence as a function of Tc. The data fall on two universal
curves given by Epg =Emax

pg (0.27 − x)/0.22 and Esc =Emax
sc [1 − 82.6(0.16 − x)2], with Emax

pg =Epg(x=0.05)=152±8 meV and
Emax

sc = Esc(x= 0.16) = 42±2 meV (the statistical errors refer to the fit of the selected datapoints; however, the spread of all
available data would be more appropriately described by ±20 and ±10 meV, respectively). Alternatively, the doping dependence
of Esc can be expressed in terms of Tc as Esc#5kBTc (corresponding Tc values can be deduced from the right-hand axis).

3. Which is the correct phase diagram with respect to
the pseudogap line?

4. Do the pseudogap and the superconducting gap co-
exist below Tc?

5. What is the nature of the electronic states in the
pseudogap phase?

In this communication we try to address these questions.

I. EMERGING PHENOMENOLOGY

The literature on the HTSC pseudogap is very
extensive and still growing. In this situation it seems
interesting to step back for a moment, go over the vast
amount of data obtained from as many experimental
techniques as possible, and look whether one can find
some systematics in them. This is the primary goal of
this focused review. We want to emphasize right from
the start that we are not aiming at providing exact quan-
titative estimates of superconducting and pseudogaps for
any specific compound or any given doping. Rather, we
want to identify the general phenomenological picture
emerging from the whole body of available experimental
data.5,9,13,16,18,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70

In this field, there are two types of data to be con-
sidered: from spectroscopic probes, such as tunneling,
and from thermodynamic experiments, such as heat con-
ductivity. In addition, with respect to the spectroscopic

data, it will be important to differentiate between single-
particle probes such as angle-resolved photoemission and
scanning tunneling microscopy, and two-particle probes
such as Raman and inelastic neutron scattering. The
emphasis in this review will be on spectroscopic data
because of their simpler and more direct interpretative
significance; however, the spectroscopic results will be
checked against thermodynamic data whenever possible.

A compilation of experimental results for the magni-
tude of the pseudogap Epg = 2∆pg and superconducting
gap Esc = 2∆sc, as a function of carrier doping x, is
presented in Fig. 2. As for the choice of the specific com-
pounds to include, we decided to focus on those HTSCs
exhibiting a similar value of the maximum superconduct-
ing transition temperature T max

c , as achieved at optimal
doping, so that the data could be quantitatively com-
pared without any rescaling. We have therefore selected
Bi2Sr2CaCu2O8+δ (Bi2212), YBa2Cu3O7−δ (Y123), and
Tl2Ba2CuO6+δ (Tl2201), which have been extensively in-
vestigated and are all characterized by T max

c ∼95K.71 It
should also be noted that while Bi2212 and Y123 are ‘bi-
layer’ systems, i.e. their crystal structure contains as a
key structural element sets of two adjacent CuO2 layers,
Tl2201 is a structurally simpler single CuO2-layer mate-
rial; therefore, this choice of compounds ensures that our
conclusions are generic to all HTSCs with a similar Tc,
independent of the number of layers.

The data in Fig. 2 were obtained from both conven-

picture from  arXiv:0706.4282 

• Gap at antinode 
(maximum) 
increases for δ→0.

• Gap close to node (slope) 
decreases for δ→0, like Tc.

• Raman experiments. 
M. LeTacon et al., Nature Physics, 2, 537,2006 

• See also ARPES experiments. 
Tanaka et al,Science 314, 1910, (2006) 
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FIG. 2: (Color online) Evolution of the spectral function
A(k, ω)t with doping. Panel A, nodal quasi-particle peak;
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tion as a 2×2 matrix in Nambu’s space (with εk = tk−µ):

G−1
kσ (ω) =

(
ω − εk − Σnor

σ (k,ω) −Σano(k, ω)
−Σano(k, ω) ω + εk + Σnor

σ (k,−ω)∗

)

(4)
The diagonal entry is the normal component Gnor(k,ω),
whose imaginary part yields the spectral function
A(k,ω) = − 1

π ImGnor(k, ω) observable in photoemission
spectroscopy.

In order to disentangle the normal and anomalous (su-

perconducting) contributions to the spectral function, we
first set Σano = 0 in Eq. (4). We present these results
in Fig. 2 where A(k, ω) is plotted for different dopings
at two different locations in the Brillouin zone, represen-
tative of the nodal (panel A) and the antinodal (panel
B) regions. We adopt the experimental procedure of
Ref. [14] and determine the nodal and antinodal k-points
as those where a quasi-particle peak of maximal height
is observed (which at low doping in the antinodes can
be situated at negative frequency). Their location as a
function of doping is shown in the inset of panel C. Near
the nodal point a quasi-particle peak is well defined at
the Fermi level (ω = 0) and decreases by decreasing dop-
ing. In the antinodal region, a quasi-particle peak is also
found at the Fermi level for δ > 0.08. For δ < 0.08, how-
ever, the spectral weight shifts to negative energies sig-
naling the opening of a pseudogap (PG). The magnitude
of the PG increases further with decreasing doping. At
the same time the peak at the edge of the PG decreases
and broadens by approaching the Mott insulator indicat-
ing that at the antinodes the spectrum becomes more and
more incoherent. The behaviour of the PG found here in
the normal component of the spectra, in the supercon-
ducting CDMFT-solution, is found to smoothly connect
to the PG previously found in normal-state CDMFT-
studies [10]. The approach to the Mott transition is char-
acterized by a strong reduction in the area of the spectral
peaks. We denote this area by Z and plot it in panel C.
The nodal (Znod) and antinodal (Zanod) weights decrease
as we lower doping. However, we cannot rule out the pos-
sibility that they extrapolate to a finite but very small
value at the transition. Moreover, in the underdoped
region the quasi-particle weight displays a momentum-
space modulation, namely Znod > Zanod [21]. In panel D,
we switch on superconductivity by restoring Σano. The
superconducting gap opens in the antinodal region (the
nodal region is practically unaffected). For δ > 0.08, this
results in spectra which are almost symmetric around the
Fermi level, as in a standard BCS d-wave superconduc-
tor. In contrast, close to the Mott transition the under-
lying PG, which originates from the normal component,
is superimposed to the superconducting gap, resulting
in asymmetric spectra. This reveals the origin of the
left/right asymmetry in the cluster-density of states dis-
cussed in Fig.1.

In the nodal region, the quasi-particles are well defined
at all dopings and we can perform the standard Landau
Fermi-liquid analysis by expanding the self-energies in
Eq. (4) at low frequencies. We checked that the quasi-
particle residue Znod = (1− ∂ωReΣk(ω))−1

∣∣
ω=0

numer-
ically coincides with the area of the quasi-particle peak
Znod shown in panel C of Fig. 2. From Eq. (4), we get
A(k, ω) # Znod δ

(
ω −

√
v2

nodk
2
⊥ + v2

∆k2
‖

)
, where vnod =

Znod|∇kξ0
k| is the quasi-particle Fermi velocity perpen-

dicular to the Fermi surface and v∆ = Znod|∇kΣano(k)|
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A(k, ω) ! Znod δ
(
ω −

√
v2

nodk
2
⊥ + v2

∆k2
‖

)

v∆ = Znod|∇kΣano(k)|

nodal region is practically unaffected). For !> 0:08 the
spectra are almost symmetric around the Fermi level, as in
a standard BCS d-wave superconductor. In contrast, close
to the Mott transition the PG, which originates from the
normal component, is superimposed to the superconduct-
ing gap, resulting in asymmetric spectra. This reveals the
origin of the left-right asymmetry in the cluster DOS
discussed in Fig. 1.

In the nodal region the quasiparticle peaks are well
defined at all dopings and we can expand the self-energies
at low frequencies. The quasiparticle residue !1"
@!Re!k#!$%"1j!&0 (blue crosses in panel C of Fig. 2)
numerically coincides with the area of the quasiparticle

peak Znod. From Eq. (3), we get A#k;!$ ’ Znod!#!"
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
v2
nodk

2
? ' v2

"k
2
k

q
$, where vnod & Znodjrk!tk " !nor#k; 0$%j

and v" &
!!!
2

p
Znod!

ano
12 #0$j sinknodj are the normal and

anomalous velocities, respectively, perpendicular and par-
allel to the Fermi surface. v" physically expresses the
superconducting energy-scale discussed in the left panel
of Fig. 1. We display them as a function of doping ! on the
left side of Fig. 3. vnod does not show a special trend for
! ! 0 and it stays finite, consistently with experiments
[20]. The anomalous velocity, v" ( vnod presents a dome-
like shape. This behavior (confirmed by continuous time
quantum Monte Carlo (CTQMC) calculations [21]) is in
agreement with recent experiments on underdoped cup-
rates showing that, contrary to the antinodal gap, the nodal
gap decreases by reducing doping [12–14].

The low-energy behavior of several physical observ-
ables in the superconducting state is controlled by nodal-
quasiparticle properties and hence can be related to vnod,

v" and Znod. Two specific ratios are particularly signifi-
cant, namely: " & Znod=#vnodv"$ and # & Z2

nod=#vnodv"$.
The first one is associated with the low-energy behavior of
the local DOS measured in tunneling experiments: N#!$ &P

kA#k;!$ ) "! (for ! ! 0). Neglecting vertex correc-
tions [12], the second one determines the low-energy B2g

Raman response function $00#!$ / #! and the low-
temperature (T ! 0) behavior of the penetration depth
(superfluid density) %s#T$ " %s#0$ / #T. We display #
and " in the right panel of Fig. 3 as a function of !. # is
monotonically decreasing (see also CTQMC results [21])
and, on the underdoped side !< 0:08, it saturates to a
constant value, in agreement with Raman spectroscopy
[12] and penetration depth measurements [22]. Also "
neatly decreases in going from the overdoped to the under-
doped side, but it presents a weak upturn for low doping.
The low-frequency linear behavior of N#!$ is well estab-
lished in scanning tunneling experiments on the cuprates
[23]. However, it is not currently possible to determine the
absolute values of the tunneling slope # from experiments,
hence the behavior we find is a theoretical prediction.

We finally turn to the one-electron spectra in the anti-
nodal region, shown in Fig. 4, physically interpreting the
cluster energy scales observed in Fig. 1. We evaluate the
antinodal gap in the superconducting state "tot by measur-
ing the distance from the Fermi level (! & 0) at which
spectral peaks are located (panel D of Fig. 2). "tot mono-
tonically increases by reducing doping, as observed in
experiments. The data of panel B in Fig. 2, where !ano &
0, allow us to extract the normal contribution "nor. We
notice that the peaks found there at negative frequency !pg

do not represent Landau quasiparticles in a strict sense, but
we can estimate the PG as j!pgj. We also display the
anomalous contribution to the antinodal gap "sc &!!!!!!!!!!!!!!!!!!!!!!!
"2

tot ""2
nor

p
, and find that, within numerical precision,

"sc ’ Zanodj!ano#kanod; !pg$j. The appearance of "nor

signs a downturn in "sc. We interpret "tot as the mono-
tonically increasing antinodal gap observed in cuprate
superconductors, while the superconducting gap "sc, de-
tectable as the nodal-slope v" (Fig. 3), is decreasing in
approaching the Mott transition.

FIG. 3 (color online). Left: vnod and v" as a function of doping
! (ao is the lattice spacing). Right: low-frequency coefficients of
local DOS " and of the Raman B2g and superfluid density
response #, renormalized by the value at ! & 0:16.

FIG. 2 (color online). Spectral function A#k;!$ for different !.
Broadening & & 0:03t. Panel A: nodal-quasiparticle peak;
panel B, normal component [set !ano & 0 in Eq. (3)] of the
antinodal quasiparticle peaks; panel C, nodal and antinodal
quasiparticle weights. The inset shows the k positions of the
nodal and antinodal points; panel D, spectra at the antinodes.
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v∆ =
d∆(φ)

dφ

∣∣∣∣
Node

∆sc =
√

∆2
tot −∆2

nor

∆sc(k) ∼ Zanod|Σano(k)|



Conclusion

• Clusters : a systematic expansion around DMFT

• Useful for Mott physics

• A lot of recent progress on methods to solve DMFT equations.

• Strong differences between Nodes and Antinodes :

• Normal phase : destruction of quasi-particles at antinodes in a 
transition selective in k-space.

• SC phase : two components SC gap.

36


