Recent progress in Entanglement Renormalization:

Guifre Vidal

In collaboration with:

Glen Evenbly (PhD student) Robert Pfeifer (PhD student) Miguel Aguado (MPQ Garching) Robert Koenig (Caltech) Ben Reichardt (IQC Waterloo)

Australian Government Australian Research Council

Foundations

Entanglement Renormalization

(Multi-scale Entanglement Renormalization Ansatz)

Applications

• real space RG transformation

• Kadanoff (1960's): spin blocking

• Kadanoff (1960's): spin blocking

• Wilson (1970's): keep low energy subspace Kondo impurity problem: Numerical Renormalization Group (NRG)

• Kadanoff (1960's): spin blocking

• Wilson (1970's): keep low energy subspace Kondo impurity problem: Numerical Renormalization Group (NRG)

• real space RG transformation

- Wilson (1970's): keep low energy subspace Kondo impurity problem: Numerical Renormalization Group (NRG)
- White (1990's): keep local support of ground state reduce density matrix Density Matrix Renormalization Group (DMRG)

• entanglement in 1D critical

$$S(\rho_L) \sim k \log L \quad \Rightarrow \quad \chi_\tau \sim e^\tau$$

Introduction

• entanglement in 2D: boundary law $S(\rho_{L \times L}) \sim L$

Introduction

Entanglement Renormalization

Vidal, Phys. Rev. Lett. 99, 220405 (2007)

• entanglement in 2D: boundary law $S(\rho_{L \times L}) \sim L$

Entanglement Renormalization

Vidal, Phys. Rev. Lett. 99, 220405 (2007)

Local operators

Ascending superoperator

• RG transformation

Entanglement Renormalization

(Multi-scale Entanglement Renormalization Ansatz)

Applications

MERA (Multi-scale entanglement renormalization ansatz)

Vidal, Phys. Rev. Lett. 101, 110501 (2008)

$$\left|\Psi\right\rangle = \sum_{i_{1}i_{2}...i_{18}} \Psi_{i_{1}i_{2}...i_{18}} \left|i_{1}\otimes i_{2}\otimes...\otimes i_{18}\right\rangle$$

MERA (Multi-scale entanglement renormalization ansatz)

• Optimization algorithms (Evenbly, Vidal, arXiv:0707.1454v3)

H local Hamiltonian $\min_{u,w} \langle \Psi | H | \Psi \rangle \implies (u,w)$

• RG transformation for ground states

• scaling superoperator:

 \cdot scaling superoperator S is a fixed point RG map What are the scaling operators/dimensions of the theory?

• scaling operators
$$\phi_{\alpha}$$

• scaling dimensions Δ_{α} $\Delta_{\alpha} \equiv -\log_3 \lambda_{\alpha}$

$$\phi_{\alpha} \Rightarrow 3^{-\Delta_{\alpha}} \phi_{\alpha} \Rightarrow 3^{-2\Delta_{\alpha}} \phi_{\alpha} \Rightarrow \cdots$$

• From spectral decomposition of the scaling superoperator: Giovannetti, Montangero, Fazio, Phys. Rev. Lett. 101, 180503 (2008) Pfeifer, Evenbly, Vidal, arXiv:0810.0580

 $\mathcal{S}(\phi_{\alpha}) = \lambda_{\alpha}\phi_{\alpha}$

all critical exponents

• local observables:
$$\langle \phi_{\alpha}(x) \rangle = \delta_{\alpha \mathbb{I}}$$

• two-point correlator: $\langle \phi_{\alpha}(x)\phi_{\alpha}(y)\rangle = (\lambda_{\alpha})^{2\log_3|x-y|}\langle \phi_{\alpha}(1)\phi_{\alpha}(0)\rangle = \frac{\langle \phi_{\alpha}(1)\phi_{\alpha}(0)\rangle}{|x-y|^{2\Delta_{\alpha}}}$

Pfeifer, Evenbly, Vidal, arXiv:0810.0580

Quantum Criticality

two-point correlator

$$\left\langle \phi_{\alpha}(x)\phi_{\beta}(y)\right\rangle = \frac{C_{\alpha\beta}}{\left|x-y\right|^{\Delta_{\alpha}+\Delta_{\beta}}}$$

$$C_{\alpha\beta} = \left\langle \phi_{\alpha}(0)\phi_{\beta}(1) \right\rangle$$
$$= tr\left(\rho^{(2)}(\phi_{\alpha}\otimes\phi_{\beta})\right)$$

three-point correlator

Given a critical hamiltonian on the lattice

Topological Order

Exact MERA representation for

• quantum double models

Aguado, Vidal, Phys. Rev. Lett. 100, 070404 (2008)

• Levin-Wen's string net models

Koenig, Reichardt, Vidal, arXiv:0806.4583

Koenig, Reichardt, Vidal, arXiv:0806.4583

Topological Order

• Exact MERA representation for Levin-Wen's string net models

Levin, Wen, Phys. Rev. B71 (2005) 045110

- string types $i = \{1, 2, \dots, N\}$
- fusion rules $\delta_{_{i\,j\,k}}$
- 6-j symbols
- $F_{k\,l\,n}^{i\,j\,m}$
- fixed-point Hamiltonian

• Exact MERA representation for Levin-Wen's string net models

The tensor $F_{k \mid n}^{i j m}$ can be used to define an "F-move"

Topological Order

• Exact MERA representation for Levin-Wen's string net models

Topological Order

• MERA for ground states with topological order

degenerate ground states Topological information $\left|\Psi_{gr}^{(1)}\right\rangle \left|\Psi_{gr}^{(2)}\right\rangle \left|\Psi_{gr}^{(3)}\right\rangle \left|\Psi_{gr}^{(4)}\right\rangle$ is stored in the top tensor of the MERA top tensor $|\Psi_{gr}^{(1)}\rangle |\Psi_{gr}^{(2)}\rangle |\Psi_{gr}^{(3)}\rangle$ $\left|\Psi_{gr}^{(4)}\right\rangle$

• AF Heisenberg Model on Kagome Lattice

• Favours antiferromagnetic alignment

• Geometrically frustrated

Glen Evenbly

- AF Heisenberg Model on Kagome Lattice What is the ground state? Open guestion...
- Valence Bond Crystal

Marston, Zeng (1991), Syromyatnikov, Maleyev (2002) Nikolic, Senthil (2003), Budnik, Auerbach (2004)

Rajiv R. P. Singh, David A. Huse, Phys. Rev. B 76, 180407 (2007): series expansion

- Spin Liquid

Hermele, Senthil, Fisher (2005)

- Y. Ran, M. Hermele, P. A. Lee, X. Wen, Phys. Rev. Lett. 98, 117205 (2007) Gutzwiller ansatz
- H. C. Jiang, Z. Y. Weng, D. N. Sheng, Phys. Rev. Lett. 101, 117203 (2008) DMRG

• AF Heisenberg Model on Kagome Lattice What is the ground state? Open question...

- Valence Bond Crystal

Marston, Zeng (1991), Syromyatnikov, Maleyev (2002) Nikolic, Senthil (2003), Budnik, Auerbach (2004)

Rajiv R. P. Singh, David A. Huse, Phys. Rev. B 76, 180407 (2007):

series expansion

Order	VBC (∞ system)	36-site VBC
0	-0.375	-0.375
1	-0.375	-0.375
2	-0.42187	-0.42187
3	-0.42578	-0.42578
4	-0.43155	-0.43400
5	-0.43208	-0.43624
∞	-0.433±0.001	

- AF Heisenberg Model on Kagome Lattice
- H. C. Jiang, Z. Y. Weng, D. N. Sheng, Phys. Rev. Lett. **101**, 117203 (2008) - Spin Liquid (DMRG)
- Y. Ran, M. Hermele, P. A. Lee, X. Wen, Phys. Rev. Lett. 98, 117205 (2007)
 Spin Liquid (Gutzwiller ansatz)

DMRG (Jiang)

N	E ₀ /N
48	-0.43591
108	-0.43111

Gutzwiller (Ran)

Ν	E ₀ /N	
192	-0.42866(2)	
432	-0.42863(2)	

• AF Heisenberg Model on Kagome Lattice

Series Expansion (Singh)

Order	VBC (∞ system)	36-site VBC
0	-0.375	-0.375
1	-0.375	-0.375
2	-0.42187	-0.42187
3	-0.42578	-0.42578
4	-0.43155	-0.43400
5	-0.43208	-0.43624
8	-0.433±0.001	

DMRG (Jiang)

N	E ₀ /N
48	-0.43591
108	-0.43111

Gutzwiller (Ran)

Ν	E ₀ /N
192	-0.42866(2)
432	-0.42863(2)

Entanglement Renormalization

Ν	E ₀ /N
8	-0.4315

36-site Exact Diag (Leung)

Ν	E ₀ /N
36	-0.43837

• AF Heisenberg Model on Triangular Lattice

• AF Heisenberg Model on Triangular Lattice

(from W. Zheng, J. Fjaerestad, R. Singh, R. McKenzie, R. Coldea, Phys. Rev. B 74, 224420 (2006))

Method	E _o /N	Mag
DMRG	-0.5442	
GFQMC	-0.5458(1)	41%
VQMC, RVB	-0.5357	0%
Series Expansion	-0.5502(4)	39%
VQMC, BCS+Neel	-0.532(1)	72%
SWT + 1/S	-0.5466	50%
Entanglement Renormalization	-0.5451	60%

• ER gives *exact upper bound* for ground energy of the infinite system (not based upon finite size scaling)

• Multiple spin exchange (MSE) on Triangular Lattice

$$H = J_2 \sum_{ij} P_{ij} + J_4 \sum_{ij} \left(P_{ijkl} + P_{lkji} \right)$$

G. Misguich, C. Lhuillier, B. Bernu, and C. Waldtmann, Phys. Rev. B 60, 1064 (1999)
 – exact diagonalization (36 sites)

Ν	E ₀ /N
∞	-3.84

Foundations

Entanglement Renormalization

(Multi-scale Entanglement Renormalization Ansatz)

Applications

Quantum	Topological	Frustrated
Criticality	Order	Antiferromagnets
•MERA ↔ CFT	• Exact MERA for quantum double and string-net models	• Kagome lattice • Triangular lattice

Foundations

Entanglement Renormalization

(Multi-scale Entanglement Renormalization Ansatz)

Applications

Quantum	Topological	Frustrated	Fermions ?
Criticality	Order	Antiferromagnets	
•MERA \leftrightarrow CFT	• Exact MERA for quantum double and string-net models	Kagome latticeTriangular lattice	