
Typical quantum states at finite temperature

• How should one think about “typical quantum states” at 
finite temperature?
– Density Matrices versus pure states
– Why eigenstates are not “typical”
– Measuring the heat bath to get a pure state

• Ancilla/Purification methods for finite T (DMRG)
• Typical States:  properties and examples
• Bypassing ancilla for more efficient finite T calcs
• Real time evolution and entropy growth



Typical states for the Ising model

• Ising model:  classical state = eigenstate = typical state
• Heisenberg model:  classical state has high energy, not 

typical of low T.  At T=0, typical state should be ground 
state



What is a typical state at finite T?

• Pure states versus mixed states

Rest of the  
Universe: |j>

System |i>

Density Matrices—Review

Reference: R.P. Feynman, Statistical Mechanics: A Set of
Lectures

Let |i〉 be the states of the block (the system), and |j〉 be
the states of the rest of the lattice (the rest of the universe).
If ψ is a state of the entire lattice,

|ψ〉 =
∑

ij

ψij |i〉|j〉

The density matrix is

ρii′ =
∑

j

ψ∗

ijψi′j

If operator A acts only on the system,

〈A〉 =
∑

ii′

Aii′ρi′i = TrρA

Let ρ have eigenstates |vα〉 and eigenvalues wα ≥ 0
(
∑

α wα = 1). Then

〈A〉 =
∑

α

wα〈vα|A|vα〉

If for a particular α, wα ≈ 0, we make no error in 〈A〉 if we
discard |vα〉. One can also show we make no error in ψ.

If the rest of the universe is regarded as a “heat bath” at
inverse temperature β to which the system is weakly cou-
pled,

ρ =
1

Z
exp(−βH).

In this case the eigenstates of ρ are the eigenstates of H.
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In this case the eigenstates of ρ are the eigenstates of H.

• Mixed state:  think of a set of states |α> with 
probability wα ,  or just use ρ.

• Key principle of statistical mechanics:  ρ = e-β H



How does ρ = e-β H arise?

•  Purely by quantum entanglement with a heat bath
– Under idealized assumptions, recent work has shown e-β H 

arises naturally  (see, e.g., P. Reimann, PRL 101, 190403 (2008))

• Infinite size heat bath
• Infinitesimal interaction for infinite time
• No decoherence 

• An ensemble of pure states |i>, probs P(i)

– Just because you can write this and get the right ρ doesn’t 
mean the |i> are typical!

• An ensemble of slightly mixed states 

ρ =
∑

i

P (i)|i〉〈i|

ρ =
∑

i

ρi



Energy eigenstates as typical states
• Is an eigenstate of H a typical finite T state?

– Schrodinger: “...the attitude is altogether wrong.”
– “this assumption is irreconcilable with the very foundations 

of quantum mechanics”

– “We yet decided to adopt it ...  very convenient ... same 
results ...”

– Modern textbooks:  skip the warnings, sweep it under the 
rug

• Why is it so wrong?
– No mechanism in thermalization to go to a definite 

eigenstate (heat bath or “ergodic” time evolution)
– Level spacing is exponentially small, would take exponentially 

long to get to one eigenstate  (exp(-1023)...)
– Exponentially small spacings mean even tiny perturbations (e.g. 

coupling to vacuum E&M fields) completely change states-- 
Exact highly excited eigenstates physically meaningless

(1946, 1952)



measurement and Measurement

• measurement, theoretical or numerical: calculate 
– Nothing happens to 

• Physical Measurement:

– wavefunction projected into measured state, 
• Decoherence:  think of continual slight Measurement of 

each spin  (mostly local)
– Rapidly destroys non-local entanglement
– Stronger at higher T
– Nearly unavoidable
– Classical states most robust against decoherence

〈ψ|Sz|ψ〉
|ψ〉

P (↑) = 〈Sz〉 +
1
2

|ψ〉 →
{

P (↑)− 1
2 | ↑〉〈↑ | ψ〉 prob P (↑)

P (↓)− 1
2 | ↓〉〈↓ | ψ〉 prob P (↓)



Preparation of a pure typical state

• Couple system to a heat bath, wait ...
• Gradually eliminate coupling.  Even with no coupling, 

system still entangled with heat bath
• Induce strong decoherence/measurement on heat 

bath, putting heat bath and system into pure states

• I will show: equilibrium props of system not damaged 
by Measurement on heat bath

• Local Measurement induces maximally classical typical 
states

• The states are robust against decoherence, intuitive, 
and computational convenient!



Perfect Heat Bath for current finite T DMRG
Ancilla and finite temperature
DMRG gets its efficiency because the basis is specialized for the state. Infinite
temperature seems infinitely hard from this point of view.

Ancilla are artificial auxilliary sites paired with the real sites.

They can make a perfect heat bath (Suzuki, ..., Verstraete and Cirac). Let the state
of each site-ancilla pair be a perfectly entangled state

|Ei〉 =
∑

s

|s〉|s〉a

Then

|ψ〉 =
∏

i

|Ei〉

is a perfect representation of the T = ∞ ensemble, but requires a local DMRG basis
of size m = 1!

Evolve in imaginary time to get |ψ(t)〉 = exp(−βH/2)|ψ〉, then any finite temperature

Heat Bath

System

(Purification approach)



β observable can be obtained:

< A >=
〈ψ(t)|A|ψ(t)〉
〈ψ(t)|ψ(t)〉

The partition function, free energy, Cv, etc, as well as real-time finite temperature
dynamics are easily obtained.

J1 − J2 model at finite temperature
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Difficulty at low T:  
1) Long time evolution to 1/T
2) At T=0, two copies of g.s, 
interspersed.  Entanglement 
entropy doubled, m → m2

Feiguin & White, PRB 72, 220401 (2005)



Typical states from perfect heat bath

• Now Measure entire state i of B  (same P(i) as for A)

• After Measurement,

• Conclusion:  Typical state is

• Local spin config i chosen by 

|ψ(β = 0)〉 =
∑

i1

. . .
∑

iN

|i1〉A|i1〉B . . . |iN 〉A|iN 〉B

|ψ(β)〉 = exp(−βH/2)|ψ(0)〉 TrB |ψ(β)〉〈ψ(β)| = exp(−βH)

P (i) = 〈i| exp(−βH)|i〉

|i〉B〈i|Bψ(β)〉 = |i〉B exp(−βH/2)|i〉A

|φ(i)〉 = P (i)−1/2 exp(−βH/2)|i〉

P (i) = 〈i| exp(−βH)|i〉



First Recipe for generating typical states

• Do heat bath/ancilla DMRG to get |ψ(β)>
• Perform a Measurement of all ancilla to get spin 

configuration i (Monte Carlo through QM Measurement)

• Resulting state of system is typical state 

• Repeat Measurement to get as many typical states as 
desired with little effort

• Correct density matrix, ensemble averages

P (i) = 〈i| exp(−βH)|i〉

|φ(i)〉 = P (i)−1/2 exp(−βH/2)|i〉
with

〈O〉φ =
∑

i

P (i)〈φ(i)|O|φ(i)〉 = Tr{e−βHO}
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Typical States for Heisenberg Chains

L=200, central portion

on each bond〈!S · !S〉

〈!Sx〉, 〈!Sy〉, 〈!Sz〉

Orientation for each Measurement on a 
site chosen at random

(〈!Sx〉2 + 〈!Sy〉2 + 〈!Sz〉2)1/2 ≡ S̃

For an unentangled spin in any state,       is 1/2.  It provides a good 
measure of how classical a spin is.
The primary origin of the finite correlation length appears to be 
twisting of the order parameter--dimerization is slight.

S̃
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Second Recipe for generating typical states

• No heat bath/ancilla
• Generate a purely random classical spin configuration i
• * Evolve |i> in imaginary time to β/2
• Measure all the spins using any set of local operators 

to get a new spin configuration |i>
• Go to *
• After an equilibration period, just before Measurement 

you have a typical state
• Advantages:  no ancilla to evolve;  no doubling of the 

entropy at low temperatures
• Equilibration and correlation time seems to be very 

short, fluctuations small, but still need MC averaging
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Solid lines:  heat bath/ancilla 
method

xyz:  Measurements at 
random angles
Sz:  Measurements in z dir

Heisenberg:  xyz slightly 
better

Near-Ising:  Sz preferred
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Real time evolution, growth of entanglement

0

L=40 Heisenberg

Entanglement entropy 
measured in center

Systems rapidly evolve away 
from the classical regime to 
highly entangled states

Entanglement grows much 
faster at higher temperatures,
as seen earlier in ancilla 
method

Decoherence would drive 
them back towards classical 
regime



Physical Consequences

• Maybe None:
– No cloning theorem means the only way we can find out 

the wavefunction of a system is if we can create the same 
state repeatedly by identical preparation

– Thermal states are inherently unrepeatable
– Experimental predictions give standard stat mech

• Theoretical and computational consequences
– Hopefully new insight into system properties
– Easier approach to finite T in hard systems, e.g. 2D


