

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo

N. Schuch¹, A. Sfondrini^{1,2}, F. Mezzacapo¹, J. Cerrillo^{1,3}, M. Wolf^{1,4}, F. Verstraete⁵, I. Cirac¹

¹ Max-Planck-Institute for Quantum Optics, Garching, Germany
 ² University of Padua, Italy
 ³ University of Barcelona, Spain
 ⁴ Niels-Bohr-Instititute, Copenhagen, Denmark
 ⁵ University of Vienna, Austria

The key to quantum simulations

• Aim: Simulation of quantum many-body systems

- Requirements on variational ansatz:
 - it should capture the states of interest
 - it should allow for efficient computation of energies etc.

Matrix Product States

- Matrix Product States (MPS): $|\psi\rangle = \sum_{n_1,...,n_L} \operatorname{tr} \left[A_{n_1}^1 A_{n_2}^2 \cdots A_{n_L}^L \right] |n_1,...,n_L \rangle$
- Alternatively:

MPS approximate well the ground states of gapped 1D Hamiltonians
 [Hastings, JSTAT '07]

Computing expectation values on MPS

- On MPS, expectation values can be computed efficiently
- Local observables *O*:

• Computation time $\propto D^4$ (D^6) for OBC (PBC) [can be improved to D^3 (D^5)].

• Energies $\langle \psi | H | \psi \rangle$, corr. functions $\langle \psi | O_i \otimes \tilde{O}_j | \psi \rangle$ can be computed efficiently.

Variational method with MPS: DMRG

• $|\psi\rangle$ is linear in any $A^{i} \equiv X : |\psi_{X}\rangle = \sum \operatorname{tr} \left[A_{n_{1}}^{1} \cdots X_{n_{k}} \cdots A_{n_{L}}^{L}\right] |n_{1}, \cdots, n_{L}\rangle$ \Rightarrow The energy in state $|\psi_{X}\rangle$ is $E(\psi_{X}) = \frac{\langle \psi_{X} | H | \psi_{X} \rangle}{\langle \psi_{X} | \psi_{X} \rangle} = \frac{\vec{X}^{\dagger} M \vec{X}}{\vec{X}^{\dagger} N \vec{X}}$

 \Rightarrow X which minimizes $E(\psi_X)$ can be found efficiently.

 Density Matrix Renormalization Group (DMRG) method: [White, PRL '92] Sweep through the MPS and minimize tensors locally.

- DMRG algorithm performs extremely well! Accuracy is tuned by increasing D (computation time $\propto D^3$).
- Idea extends to periodic boundary conditions (scales as D^5).

Extending DMRG to two dimensions

• The MPS ansatz naturally generalizes to two dimensions.

 Tensor Product States (TPS), Projected Entangled Pair States (PEPS) [Nishino 90ies]

[Nishino 90ies] [Verstraete & Cirac, PRA '04]

- PEPS form a complete family.
- PEPS are well suited for ground and thermal states in higher dimensions.

[Hastings, PRB '06]

Extending DMRG to two dimensions

- The MPS ansatz naturally generalizes to two dimensions.
 - D^2
 - **Problem:**

Computing expectation values on 2D PEPS seems to be hard: The size of the tensor grows exponentially in the perimeter!

[Schuch, Wolf, Verstraete & Cirac, PRL '07]

 Tensor Product States (TPS), Projected Entangled Pair States (PEPS)

[Nishino 90ies] [Verstraete & Cirac, PRA '04]

- PEPS form a complete family.
- PEPS are well suited for ground and thermal states in higher dimensions.

[Hastings, PRB '06]

PEPS algorithm with truncation

Solution: proceed column-wise and truncate the bond dimension

- Corresponds to a DMRG-like optimization
- Works well in practice (due to symmetries of the system?)
- Known error

[Verstraete & Cirac, cond-mat/0407066] [Murg, Verstraete & Cirac, PRA '07] [Murg, Verstraete & Cirac '09]

- Works very well & outperforms other methods e.g. for frustrated systems
- Computation time scales as $D^{12}(D^{18} \text{ for PBC})$ can be reduced to $D^{10}(D^{16})$
- Up to D=5 (lattice up to 20×20).
- Not practical for PBC or higher dim. lattices, or irregular geometries.

The quest for other methods

MPQ

- DMRG works well in 1D.
- PEPS extend DMRG to 2D and give very good results.
- PEPS contain the relevant states (ground and thermal states)
- However: scaling of PEPS in *D* is unfavorable, in particular for PBC
 - truncation relies on lattice structure not applicable to irregular systems

Is it possible to find a smaller/different class of states

- for which expectation values can be computed efficiently
- which has a favorable scaling in the accuracy parameter
- which does not rely on the geometry of the system
- which well approximates the states of interest

Variational Monte Carlo

• Given a state $|\psi
angle$ on *L* spins, how can we sample exp. values?

$$\langle \psi | H | \psi \rangle = \sum_{n} \langle \psi | n \rangle \langle n | H | \psi \rangle = \sum_{n} \underbrace{|\langle \psi | n \rangle|^{2}}_{\propto p(n)} \frac{\langle n | H | \psi \rangle}{\langle n | \psi \rangle}$$

 $n = (n_{1,}..., n_L)$ basis state in some local basis e.g. $0 = \uparrow$, $1 = \downarrow$

 $\Rightarrow \langle n | \psi \rangle$ and $\langle n | H | \psi \rangle$ need to be efficiently computable!

•
$$H = \sum h_i^{-1}$$
 local terms

$$\Rightarrow \langle \boldsymbol{n} | \boldsymbol{h}_{i} = \sum_{\text{few } \boldsymbol{n}'} \boldsymbol{\phi}(\boldsymbol{n}') \langle \boldsymbol{n}' | \qquad \Rightarrow \langle \boldsymbol{n} | \boldsymbol{H} | \boldsymbol{\psi} \rangle = \sum_{\text{few more } \boldsymbol{n}'} \boldsymbol{\phi}(\boldsymbol{n}') \langle \boldsymbol{n}' | \boldsymbol{\psi} \rangle$$

 $\langle n | \psi \rangle$ needs to be efficiently computable!

... the same works for products of Paulis, e.g. $\sigma^+ \sigma^z \cdots \sigma^z \sigma^-$

Classes for which this holds

- $\langle \pmb{n} | \pmb{\psi}
 angle$ needs to be efficiently computable!
- Examples of such states:
 - Matrix Product States: $\langle \boldsymbol{n} | \psi \rangle = \operatorname{tr} \left[A_{n_1}^1 \cdots A_{n_L}^L \right]$

(note: computation of expectation values scales as D^2 [D^3] instead of D^3 [D^5] – could be used to speed up DMRG or PEPS methods; see also Sandvik & Vidal, PRL '07)

- coherent version of classical thermal states:

$$|\psi
angle = \sum e^{-eta H(m{n})/2} |m{n}
angle$$
 for classical H

$$\Rightarrow \langle \boldsymbol{n} | \boldsymbol{\psi} \rangle = e^{-\beta H(\boldsymbol{n})/2}$$

Can we find new classes of suitable states (by extending these classes)?

Generalization of "classical" states

What is the PEPS structure of "classical" states?

$$\underbrace{\stackrel{n_i}{\not}}_{\not} = - \underbrace{\sigma_{\not}}_{\not} \underbrace{\sigma_{-}}_{\not} \Rightarrow \langle n | \psi \rangle =$$

⇒ $\langle \boldsymbol{n} | \psi \rangle$ is product of **0-dimensional** objects! ⇒ It can be computed efficiently!

Generalize to 1D objects!

 $\Rightarrow \langle \mathbf{n} | \psi \rangle \text{ product of } \mathbf{1D} \text{ objects} - \\ \text{can still be efficiently computed!}$

- Generalization of "classical" states (or of Matrix Product States!)
- subclass of PEPS with eff. Monte Carlo sampling

 $\exp\left[-\beta h_{ii}(n_i, n_i)/2\right]$

String-bond states (SBS)

<u>"String-bond states" (SBS)</u>

 $\langle \boldsymbol{n} | \boldsymbol{\psi} \rangle = \prod f_i(\boldsymbol{n})$

• defined on string (subset) of spins $(n_{i_1}, ..., n_{i_k})$ • efficiently computabe (e.g. matrix product trace)

$\langle n | \psi \rangle$ is a product of efficiently computable functions defined on subsets of spins

- matrix product traces
- tree tensor networks
- on *small* subsets:
 - arbitrary state
 - mini-PEPS

- lines (horiz./vert./diagonal/...)
- 2x2 loops
- plaquettes (blocks) around each site
- ... and any combination thereof!

An example: Lines

String-Bond States – Examples

MPQ

 String-bond states form a complete family as they encompass MPS

- Any (generalized, weighted) graph state is a SBS:
 - the cluster state
 - any stabilizer state

 The toric code state and the quantum double models are SBS:
 I for one of the state and one of the state and the quantum double models
 I for one of the state and one of the state an

for even parity for odd parity

String-bond states: Properties

- SBS form a hierarchy of states which can be enlarged by
 - increasing *D* for the matrix products
 - adding new strings
- SBS include various common classes of states
- Computational resources scale favorably: D^2 (OBC) or D^3 (PBC) [cf. PEPS: D^{12} (2D OBC), D^{18} (2D PBC)]
- SBS can thus be used for PBC or 3D systems, and much higher *D*'s can be used
- no underlying geometry/locality necessary: also suitable for simulation of molecules, systems with non-local interactions, etc.
- each SBS is a PEPS, but PEPS-D exponential in #strings/site

Variational algorithm

• Idea: Determine M and N by MC sampling:

$$E(\psi_{X}) = \frac{\sum \langle \psi_{X} | n \rangle \langle n | H | \psi_{X} \rangle}{\sum \langle \psi_{X} | n' \rangle \langle n' | \psi_{X} \rangle} = \frac{\sum p_{0}(n) \vec{X}^{\dagger} \cdot \vec{b}_{n} \vec{a}_{n}^{\dagger} \cdot \vec{X}}{\sum p_{0}(n') \vec{X}^{\dagger} \cdot \vec{b}_{n'} \cdot \vec{b}_{n'}^{\dagger} \cdot \vec{X}} \qquad \vec{b}_{n}^{\dagger} \cdot \vec{X} := \frac{\langle n | \psi_{X} \rangle}{\langle n | \psi_{X_{0}} \rangle}$$
$$\vec{a}_{n}^{\dagger} \cdot \vec{X} := \frac{\langle n | H | \psi_{X} \rangle}{\langle n | \psi_{X_{0}} \rangle}$$
$$\vec{a}_{n}^{\dagger} \cdot \vec{X} := \frac{\langle n | H | \psi_{X} \rangle}{\langle n | \psi_{X_{0}} \rangle}$$
$$\vec{a}_{n}^{\dagger} \cdot \vec{X} := \frac{\langle n | H | \psi_{X} \rangle}{\langle n | \psi_{X_{0}} \rangle}$$
$$p_{0}(n) := |\langle n | \psi_{X_{0}} \rangle|^{2}$$

 \rightarrow Reweighting: one distribution samples all

However ...

$$M = \sum p_0(\boldsymbol{n}) \vec{b}_n \vec{a}_n^{\dagger}$$

$$N = \sum p_0(\boldsymbol{n}) \vec{b}_n \vec{b}_n^{\dagger}$$
find \vec{X} which minimizes $E(\psi_X) = \frac{\vec{X}^{\dagger} M \vec{X}}{\vec{X}^{\dagger} N \vec{X}}$

However, there are some **problems** :

- *M* and *N* are **very large**: $(dD^2)^2$ sampling rel. slow
- *M* and *N* less accurate far from \vec{X}_0 due to reweighting
- sampling error $\propto \sqrt{MC}$ sample length

 \rightarrow small errors in kernel of N can have **big effect**

 \Rightarrow method **unstable!**

Gradient flow

• Solution: Move along gradient (in small steps), from initial value $X = X_0$:

$$\nabla_{X} E(\psi_{X}) \Big|_{X=X_{0}} = 2 [M - E(\psi_{X_{0}})N] \vec{X}_{0}$$

- \rightarrow well-behaved in N and M
- Gradient can be **sampled directly**:

$$\nabla_{X} E(\psi_{X}) \Big|_{X=X_{0}} = 2 \sum p_{0}(\mathbf{n}) \vec{b}_{\mathbf{n}} [E_{n} - E(\psi_{X_{0}})]$$

• Gradients indep. to first order: All tensors can be updated simultaneously (also allows for more eff. sampling)

$$E(\psi_{X}) = \frac{\vec{X}^{\dagger} M \vec{X}}{\vec{X}^{\dagger} N \vec{X}}$$
$$\vec{X}_{0}^{\dagger} N \vec{X}_{0} = 1$$

$$E_{n} = \frac{\left\langle n \left| H \right| \psi_{X_{0}} \right\rangle}{\left\langle n \right| \psi_{X_{0}} \right\rangle}$$
$$\vec{b}_{n}^{\dagger} \cdot \vec{X} := \frac{\left\langle n \left| \psi_{X_{0}} \right\rangle}{\left\langle n \right| \psi_{X_{0}} \right\rangle}$$

$$E_{n} = \frac{\langle n | H | \psi_{X_{0}} \rangle}{\langle n | \psi_{X_{0}} \rangle}$$
$$\vec{b}^{\dagger} \cdot \vec{X} \cdot = \frac{\langle n | \psi_{X} \rangle}{\langle n | \psi_{X} \rangle}$$

The full algorithm

- Fix a string pattern & bond dimensions *D*.
- Choose initial configuration for the strings (random, guess, ...)
- Repeat: 1) Monte Carlo sample gradients (& Energy)
 2) Update tensors according to gradient and stepwidth *ε* (to this end: normalize gradients)

3) Stop if energy has converged, otherwise go to 1)

- Increase precision: either
 - decrease stepwidth ϵ
 - increase D
 - add new strings

and restart algorithm from obtained optimum, until energy does not improve any more

Testing the algorithm

• How can we benchmark SBS?

Quantum Monte Carlo

- + PBC, 3D possible
- no frustrated systems

PEPS

- + can do frustr. systems
- only 2D OBC

• Note: Aim – simulating systems neither QMC nor PEPS can do!

Implemented patterns

Comparison to QMC: transverse Ising model

QMC vs. lines and lines+loops

Comparison to PEPS: frustrated systems

- first comparisons: frustrated XX model SBS can outperform PEPS (D = 12 vs. D = 4).
- simulation of 2D frustrated PBC XX model w. transv. field:

• extensive comparison (and extension to PBC): $J_1 - J_2$ model

Projected String Bond States

- Can we incorporate symmetries of *H* in the ansatz?
- SU(2) invariant Hamiltonian:

There exists ground state $|\psi_0
angle$ with $\hat{M}|\psi_0
angle$ =0 (where \hat{M} = $\sum_i \sigma_i^z$)

- For any candidate $|\Psi_0\rangle$, $|\bar{\Psi}_0\rangle = \Pi_0 |\Psi_0\rangle$ is at least as good!
- Implementation:

(this is a SBS – $\langle \pmb{n} | \pmb{\psi} \rangle$ can be computed efficiently)

 \rightarrow enforce by sampling only from the M = 0 subspace.

• In practice: start from configuration with M=0and swap a random pair of spins

Molecules

• Simulation of molecules:

• Problem: no natural ordering (geometry) of modes

Molecules

• Ansatz: put strings between all pairs of modes

$$|\psi\rangle = \prod_{\alpha>\beta} f_{\alpha,\beta}(n_{\alpha}, n_{\beta}) \underbrace{(c_{L}^{\dagger})^{n_{L}} \cdots (c_{1}^{\dagger})^{n_{1}} |\operatorname{vac}\rangle}_{\equiv |n_{1}, \dots, n_{L}\rangle}$$

- And: sample only in subspace with N_e fermions
- Advantages:
 - all modes treated on equal footing
 - ansatz invariant under relabeling of modes
- gradient flow optimization of the $f_{\alpha\beta}$
- possible to include canonical transformations $\tilde{c}_i = \sum O_{ij} c_j$ in the gradient optimization
- extension: use $f_{\alpha\beta\gamma\delta}(n_{\alpha}, n_{\beta}, n_{\gamma}, n_{\delta})$ on quadruples of modes
- results soon!

Speeding up DMRG/PEPS with Monte Carlo

- The computational cost is D^2 / D^3 times the number of strings (each string can be evaluated by sequence of matrix multiplications)
- This is better than the scaling of DMRG (=a special SBS) D^3 / D^5 .
- <u>Reason</u>: We don't have to contract the "sandwich" $\langle \psi | O | \psi \rangle$ but only $\langle n | \psi \rangle$ and $\langle n | O | \psi \rangle$.

• Monte Carlo sampling can thus be used to speed up DMRG and, more importantly, the PEPS algorithm (D^6 instead of D^{12}).

[see also: Sandvik and Vidal, PRL '07]

Summary

- Monte Carlo sampling can help in tensor contraction
- String-bond states: $\langle \pmb{n} | \pmb{\psi} \rangle$ prod. of eff. computable "local" objects
- String pattern can reflect geometry/ent. structure of system
- Enlarge family by larger D or more strings
- Cost of contraction: $D^3 \times \#$ strings
- SBS allow for efficient simulation of frustrated systems also with 2D PBC and in 3D
- Monte Carlo can speed up any tensor network based method
- <u>Current & future direction:</u>
 - better understand & characterize class of SBS
 - simulate molecules
 - string patterns using plaquettes
 - (imag.) time evolution
 - smarter sampling

[N.Schuch, M. Wolf, F. Verstraete, I. Cirac, PRL '08] [A. Sfondrini *et al.*, in preparation]

