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The key to quantum simulations

Hilbert space dimension is huge:
exponentially in the number of spins.

But: The system is governed by a
local Hamiltonian – i.e. it can be 
characterized by a polynomial number of parameters.

● Aim: Simulation of quantum many-body systems

● Requirements on variational ansatz:

● it should capture the states of interest
● it should allow for efficient computation of energies etc.



  

Matrix Product States
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Notation

“Tensor network states”

● Matrix Product States (MPS):

[Hastings, JSTAT '07]
● MPS approximate well the ground states of gapped 1D Hamiltonians



  

Computing expectation values on MPS

● Local observables O:

O〈∣O∣ 〉 =

Ai

Ai

● Computation time  ∝D4  ( D6 ) for OBC (PBC) [can be improved to D3  ( D5 ) ].

D

D2

IOI

● Energies             , corr. functions                      can be computed efficiently.〈∣H∣ 〉 〈∣Oi O j∣ 〉

∣ 〉

〈∣

● On MPS, expectation values can be computed efficiently



  

Variational method with MPS: DMRG

● Idea extends to periodic boundary conditions (scales as     ). 

hi

● Density Matrix Renormalization Group (DMRG) method:
Sweep through the MPS and minimize tensors locally.

∝D3

D5

E X =
〈X∣H∣X 〉
〈X∣X 〉

=
X † M X
X † N X

∣ 〉  is linear in any Ai≡X  : ∣X 〉=∑ tr [An1

1 ⋯X nk
⋯AnL

L ]∣n1,⋯, nL 〉●  

⇒ The energy in state         is

⇒ X which minimizes            can be found efficiently.

[White, PRL '92]

● DMRG algorithm performs extremely well! 
Accuracy is tuned by increasing D (computation time        ).

∣X 〉

E X 



  

Extending DMRG to two dimensions

● The MPS ansatz naturally generalizes to two dimensions.

● PEPS are well suited for ground and
thermal states in higher dimensions.

● PEPS form a complete family.

● Tensor Product States (TPS),
  Projected Entangled Pair States (PEPS)

[Hastings, PRB '06]

[Nishino 90ies]
[Verstraete & Cirac, PRA '04]



  

Extending DMRG to two dimensions

● The MPS ansatz naturally generalizes to two dimensions.

Computing expectation values
on 2D PEPS seems to be hard:
The size of the tensor grows
exponentially in the perimeter!

Problem:

[Schuch, Wolf, Verstraete & Cirac, PRL '07]

D2

● PEPS are well suited for ground and
thermal states in higher dimensions.

● PEPS form a complete family.

● Tensor Product States (TPS),
  Projected Entangled Pair States (PEPS)

[Hastings, PRB '06]

[Nishino 90ies]
[Verstraete & Cirac, PRA '04]



  

PEPS algorithm with truncation

● Solution: proceed column-wise and truncate the bond dimension

≡

D2 D4

≃

● Corresponds to a DMRG-like
optimization

● Works well in practice (due to 
symmetries of the system?)

● Known error
[Verstraete & Cirac, cond-mat/0407066]

D12 ( D18  for PBC)● Computation time scales as – can be reduced to D10 ( D16 )

● Up to D=5 (lattice up to            ).20×20

● Not practical for PBC or higher dim. lattices, or irregular geometries.

● Works very well & outperforms other methods e.g. for frustrated systems

[Murg, Verstraete & Cirac, PRA '07]
[Murg, Verstraete & Cirac '09]

D2



  

The quest for other methods

● DMRG works well in 1D.

● PEPS extend DMRG to 2D and give very good results.

● However: - scaling of PEPS in D is unfavorable, in particular for PBC
- truncation relies on lattice structure – 

not applicable to irregular systems

● PEPS contain the relevant states (ground and thermal states) 

Is it possible to find a smaller/different class of states
- for which expectation values can be computed efficiently
- which has a favorable scaling in the accuracy parameter
- which does not rely on the geometry of the system
- which well approximates the states of interest



  

Variational Monte Carlo

〈∣H∣ 〉=∑
n

〈∣n 〉 〈n∣H∣ 〉=∑
n
∣〈∣n 〉∣

2 〈 n∣H∣ 〉
〈n∣ 〉

∝ pn

n=n1, , nL 

● Given a state      on L spins, how can we sample exp. values?

basis state
in some local basis         
e.g. 0= , 1=

⇒          and              need to be efficiently computable!〈 n∣H∣ 〉〈 n∣ 〉

● H=∑ hi local terms

⇒ 〈 n∣hi=∑
few n '

n '  〈 n '∣ ⇒ 〈 n∣H∣ 〉= ∑
few more n '

n '  〈n '∣ 〉

... the same works for products of Paulis, e.g. 

〈 n∣ 〉  needs to be efficiently computable!

 z⋯ z−

∣ 〉



  

Classes for which this holds

〈 n∣ 〉  needs to be efficiently computable!●   

● Examples of such states:

- Matrix Product States: 〈 n∣ 〉=tr [ An1

1 ⋯AnL

L ]
(note: computation of expectation values scales as      
instead of               – could be used to speed up DMRG or 
PEPS methods; see also Sandvik & Vidal, PRL '07)

D2
[D3

]

D3
[D5

]

- coherent version of classical thermal states:

∣ 〉=∑ e−H n/2∣n 〉 for classical H 

⇒ 〈 n∣ 〉=e−H n/2

Can we find new classes of suitable states
(by extending these classes)?

n1 n2 n3 n4 n5



  

Generalization of “classical” states

●  What is the PEPS structure of “classical” states?
ni

= ⇒

⇒           is product of 0-dimensional objects!〈 n∣ 〉
⇒ It can be computed efficiently!

● Generalize to 1D objects!
ni

=

⇒           product of 1D objects –
can still be efficiently computed!

〈 n∣ 〉

● Generalization of “classical” states (or of Matrix Product States!)
● subclass of PEPS with eff. Monte Carlo sampling

〈 n∣ 〉=

exp [− hij ni , n j/2 ]

ni n j



  

String-bond states (SBS)

〈 n∣ 〉=∏ f in
● defined on string (subset) of spins ni1

, , nik


● efficiently computabe (e.g. matrix product trace)

          is a product of
efficiently computable functions defined on subsets of spins

〈 n∣ 〉

● matrix product traces
● tree tensor networks
● on small subsets:

- arbitrary state
- mini-PEPS

● lines (horiz./vert./diagonal/...)
● 2x2 loops
● plaquettes (blocks) around each site

... and any combination thereof!

● “String-bond states” (SBS)



  

An example: Lines

n11 n12 n13

n21 n22 n23

n31 n32 n33

n11

n21

n31

V 11

V 21

V 31

n11 n12 n13

H 11 H 12 H 13

〈 n∣ 〉=tr [V n11

11 V n21

21 V n31

31 ]⋯tr [H n11

11 H n12

12 H n13

13 ]⋯



  

String-Bond States – Examples

● Any (generalized, weighted) graph state is a SBS:
- the cluster state
- any stabilizer state

{1 for even parity
0 for odd parity

● String-bond states form a
complete family as they
encompass MPS

f ni , n j =−1ni n j

● The toric code state and
the quantum double models
are SBS:



  

String-bond states: Properties

● SBS form a hierarchy of states which can be enlarged by
- increasing D for the matrix products
- adding new strings

● SBS include various common classes of states

● Computational resources scale favorably: D2  (OBC) or D3  (PBC)

● SBS can thus be used for PBC or 3D systems,
and much higher D's can be used

● no underlying geometry/locality necessary:
also suitable for simulation of molecules, 
systems with non-local interactions, etc.

[cf. PEPS:                                                 ]D12  (2D OBC), D18  (2D PBC)

● each SBS is a PEPS, but PEPS-D exponential in #strings/site



  

Variational algorithm

i1 i2 i3 i4

i5

i9

i8

i12

i6 i7

i10 i11

X H 2 H 3 H 4

i1 i2 i3 i4

● Basically as DMRG: pick one string,
one tensor X on the string, and minimize 

E X =
〈X∣H∣X 〉
〈X∣X 〉

=
X † M X
X † N X

● Idea: Determine M and N by MC sampling:

an
†
⋅X :=

〈 n∣H∣X 〉
〈 n∣X 0 〉

bn
†
⋅X :=

〈 n∣X 〉
〈 n∣X 0 〉E X =

∑ 〈X∣n 〉 〈 n∣H∣X 〉
∑ 〈X∣n ' 〉 〈 n '∣X 〉

=
∑ p0 n X

†
⋅bnan

†
⋅X

∑ p0n '  X †
⋅bn '

bn '
†
⋅X

p0 n:=∣〈 n∣X 0 〉∣
2

M=∑ p0 n bnan
†

N=∑ p0nbn
bn
†

 → Reweighting: one distribution samples all



  

However ...

● M and N are very large:           – sampling rel. slow

∝MC sample length

dD22

→ small errors in kernel of N can have
big effect

⇒ method unstable!

M=∑ p0 nbnan
†

N=∑ p0nbn
bn
†

E X =
X † M X
X † N X

find     which minimizesX

However, there are some problems :

● M and N less accurate far from       due to reweightingX 0

● sampling error 



  

Gradient flow

∇ X E X ∣X=X 0
=2 [M−E X 0

N ] X 0

● Solution: Move along gradient (in small steps),
from initial value            :

E X =
X † M X
X † N X

X 0
† N X 0=1

→ well-behaved in N and M

X=X 0

● Gradient can be sampled directly:

∇ X E X ∣X=X 0
=2∑ p0nbn [E n−E X 0

]
En=

〈n∣H∣X 0 〉
〈 n∣X 0 〉

bn
†
⋅X :=

〈 n∣X 〉
〈 n∣X 0 〉

● Gradients indep. to first order:
All tensors can be updated simultaneously
(also allows for more eff. sampling)



  

The full algorithm

● Fix a string pattern & bond dimensions D.
● Choose initial configuration for the strings (random, guess, ...)

● Repeat: 1) Monte Carlo sample gradients (& Energy)
2) Update tensors according to gradient and stepwidth 

3) Stop if energy has converged, otherwise go to 1)

(to this end: normalize gradients)

● Increase precision: either
- decrease stepwidth 
- increase D
- add new strings

and restart algorithm from obtained optimum,
until energy does not improve any more







  

Testing the algorithm

● How can we benchmark SBS?

Quantum Monte Carlo
+ PBC, 3D possible
-  no frustrated systems

PEPS
+ can do frustr. systems
-  only 2D OBC 

● Note: Aim – simulating systems neither QMC nor PEPS can do!



  

Implemented patterns

lines

loops

diagonals



  

Comparison to QMC: transverse Ising model

2D transverse Ising model (PBC):

QMC vs. lines and lines+loops



  

Comparison to PEPS: frustrated systems

● first comparisons: frustrated XX model – 
SBS can outperform PEPS (D = 12 vs. D = 4).

● extensive comparison (and extension to PBC):           model

H=J 1 ∑
i , j

 i⋅ jJ 2 ∑
≪i , j≫

 i⋅ j

J 1

J 2

J 1−J 2

● simulation of 2D frustrated PBC XX model w. transv. field:

2D

m
ag

ne
tiz

at
io

n

field



  

Projected String Bond States

● Can we incorporate symmetries of H in the ansatz?

 There exists ground state        with M∣0 〉=0   (where M=∑
i

 i
z )∣0 〉

● SU(2) invariant Hamiltonian:

● For any candidate        , ∣  0 〉= 0∣ 0 〉 is at least as good!∣0 〉

● Implementation:
(this is a SBS –           can be computed efficiently)

→ enforce by sampling only from the           subspace.M=0

〈 n∣ 〉

● In practice: start from configuration with          
and swap a random pair of spins 

M=0



  

Molecules

● Simulation of molecules:

     (e.g. atomic) orbitals

H=∑
i j s

T ij cis
† c js

1
2 ∑

i j k l s s '

V ijkl c is
† cis '

† cks' cls

● Problem: no natural ordering (geometry) of modes

  modes cis

N e



  

Molecules

● Ansatz: put strings between all pairs of modes

∣ 〉=∏


f  ,n , ncL
†


nL⋯c1
†


n1∣vac 〉

≡∣n1, , nL 〉

● gradient flow optimization of the f  
● possible to include canonical transformations ci=∑Oij c j

in the gradient optimization

● extension: use                                 on quadruples of modesf  n , n , n , n

● results soon!

● Advantages:
- all modes treated on equal footing
- ansatz invariant under relabeling of modes

● And: sample only in subspace with       fermionsN e



  

Speeding up DMRG/PEPS with Monte Carlo

● The computational cost is               times the number of stringsD2  / D3

● This is better than the scaling of DMRG (=a special SBS) –             .

● Reason: We don't have to contract the “sandwich” 
but only

〈∣O∣ 〉

〈 n∣ 〉  and 〈 n∣O∣ 〉  .

Ovs.
n1 n2 n3 n4 n5

DD

O
D

● Monte Carlo sampling can thus be used to speed up DMRG
and, more importantly, the PEPS algorithm ( D6  instead of D12 ).

[see also: Sandvik and Vidal, PRL '07]

(each string can be evaluated by sequence of matrix multiplications)

D3 / D5



  

Summary

[N.Schuch, M. Wolf, F. Verstraete, I. Cirac, PRL '08]
[A. Sfondrini et al., in preparation]

● Monte Carlo sampling can help in tensor contraction

● String pattern can reflect geometry/ent. structure of system
● Enlarge family by larger D or more strings 
● Cost of contraction: D3×#strings
● SBS allow for efficient simulation of frustrated systems

also with 2D PBC and in 3D
● Monte Carlo can speed up any tensor network based method
● Current & future direction:

- better understand & characterize class of SBS
- simulate molecules
- string patterns using plaquettes
- (imag.) time evolution
- smarter sampling

● String-bond states:           prod. of eff. computable “local” objects〈 n∣ 〉
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