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• The valence bond basis for S=1/2 spins
• Projector Monte Carlo
• Variational and self-optimized trial states
• Projecting triplet states at finite momentum
• Combining loop updates and valence bonds
• Application: Neel-VBS transition in “J-Q” model 

- new results for SU(N) generalization
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(i, j) = (| ↑i↓j〉 − | ↓i↑j〉)/
√

2

|Ψ〉 =
∑

r

fr|Vr〉

|Vr〉 =
N/2∏

b=1

(irb, jrb), r = 1, . . . (N/2)!

The valence bond basis for S=1/2 spins
• Dates back to the 1930s (Pauling, Romer, Hulthen...)
• Spans the singlet space (generalizations for triplets, etc)

• Consider N (even) spins
• Divide into two groups A,B  
  - e.g., sublattices (but not necessarily)
• Bonds between A and B sites; singlets

A

B

Basis states; pair up all spins

The valence bond basis is overcomplete and non-orthogonal
• expansion of arbitrary singlet is not unique



〈Vl|Vr〉|Vr〉|Vl〉

Some useful properties 
All valence bond states overlap with each other

〈Vl|Vr〉 = 2N◦−N/2 N◦ = number of loops in overlap graph

〈Vl|!Si · !Sj |Vr〉
〈Vl|Vr〉

=
{

3
4 (−1)xi−xj+yi−yj

0
(i,j in same loop)

(i,j in different loops)

Spin correlations are related to the loop structure

More complicated matrix elements are also related to loops
[K.S.D. Beach and  A.W.S.,  Nucl. Phys. B 750, 142 (2006)]



(C-H)n projects out the ground state from an arbitrary state
(C −H)n|Ψ〉 = (C −H)n

∑

i

ci|i〉 → c0(C − E0)n|0〉

H =
∑

〈i,j〉

!Si · !Sj = −
∑

〈i,j〉

Hij , Hij = (1
4 − !Si · !Sj)

S=1/2 Heisenberg model

Project with string of bond operators

Hab|...(a, b)...(c, d)...〉 = |...(a, b)...(c, d)...〉

Hbc|...(a, b)...(c, d)...〉 =
1
2

|...(c, b)...(a, d)...〉

∑

{Hij}

n∏

p=1

Hi(p)j(p)|Ψ〉 → r|0〉 (r = unknown normalization)

Action of bond operators

Simple reconfiguration of bonds (or no change; diagonal)
• no minus signs for A→B bond ‘direction’ convetion 
• sign problem does appear for frustrated systems

A BAB

(a,b)

(a,d)

(c,d)(c,b)

(i, j) = (| ↑i↓j〉 − | ↓i↑j〉)/
√

2

Projector Monte Carlo
Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)



∑

{Hij}

n∏

p=1

Hi(p)j(p) =
∑

k

Pk, k = 1, . . . Nn
b

Sampling the wave function
Simplified notation for operator strings

The weight Wkr of a path is given by the number 
of off-diagonal operations (‘bond flips’) nflip

|Ψ〉

Hab|...(a, b)...(c, d)...〉 = |...(a, b)...(c, d)...〉

Hbc|...(a, b)...(c, d)...〉 =
1
2

|...(c, b)...(a, d)...〉

Simplest trial wave function: a basis state |Vr〉

Wkr =
(

1
2

)nflip

n = ndia + nflip

Note: all paths contribute - no ‘dead’ (W=0) paths
Sampling: Trivial way: Replace m (m ≈ 2-4) operators at random

Paccept =
(

1
2

)nnew
flip −nold

flip

The state has to be re-propagated with the full operator string
• Loop updates can also be used

6-site chain

Pk|Vr〉 = Wkr|Vr(k)〉



Calculating the energy
Using a state which has equal overlap with all VB basis states
• e.g., the Neel state |N〉 〈N |Vr〉 = (

√
2)−N/2

H acts on the projected state, giving
• nf = number of bond flips
• nd = number of diagonal operations 

H

E0 =
〈N |H|0〉
〈N |0〉 =

∑
k〈N |HPk|Vr〉∑
k〈N |Pk|Vr〉

E0 = −〈nd + nf/2〉

 This energy estimator is not variational
• The energy can be below the true ground state energy
• But becomes exact in the limit of large n
• <0|H|0> can also be calculated and is variational



Estimator for the singlet-triplet gap
The original VB basis spans the singlet space
• with one triplet bond, one can obtain the lowest triplet state

(i, j) = (| ↑i↓j〉 − | ↓i↑j〉)/
√

2

[i, j] = (| ↑i↓j〉+ | ↓i↑j〉)/
√

2

Hbc|...[a, b]...(c, d)...〉 =
1
2

|...(c, b)...[a, d]...〉

Hab|...[a, b]...(c, d)...〉 = 0

Under propagation, the triplet flips like a singlet
• but a diagonal operation on a triplet kills it

The initial triplet can be placed anywhere
• N/2 different triplet propagations
• Those that survive contribute to E1
• Partial error cancellations in the gap

∆ = E1 − E0

The ability to generate singlet and triplet states in the 
same run is a unique feature of  VB projector Monte Carlo



General expectation values
We have to project bra and ket states 〈A〉 = 〈0|A|0〉

∑

k

Pk|Vr〉 → Wkr( 1
4 − E0)nc0|0〉

∑

g

〈Vl|P ∗
g → 〈0|c0Wgl( 1

4 − E0)n

|Vr〉〈Vl| A

〈A〉 =
∑

g,k〈Vl|P ∗
g APk|Vr〉∑

g,k〈Vl|P ∗
g Pk|Vr〉

=
∑

g,k WglWkr〈Vl(g)|A|Vr(k)〉
∑

g,k WglWkr〈Vl(g)|Vr(k)〉



Sampling a bond-amplitude product state
A better trial state leads to faster n convergence
• bond-amplitude product state [Liang, Doucot, Anderson, 1990] 

|Ψ0〉 =
∑

k

N/2∏

b=1

h(xrb, yrb)|Vk〉

Update state by reconfiguring two bonds

d

c

b

a

Paccept =
h(xc, yc)h(xd, yd)
h(xa, ya)h(xb, yb)

If reconfiguration accepted
• calculate change in projection weight
• used for final accept/reject prob. 

|Vr〉〈Vl| A∑ ∑

S. Liang [PRB 42, 6555 (1990)]
• used parametrized state amplitudes
• determined parameters variationally
• improved state by projection



Variational wave function (2D Heisenberg)
All amplitudes h(x,y) can be optimized [J. Lou and A.W.S., PRB 2007]

• variational energy error <0.1% (50% smaller than previously best)
• spin correlations deviate by less than 1% from exact values
• amplitudes ∼r-3



Self-optimized wave function

2D Heisenberg



Convergence: 16×16 lattice (Heisenberg model) 



Long-distance spin correlations



Momentum dependence of triplet excitations

Singlet propagation

|ΨS〉 |ΨT 〉

Triplet propagation

(| ↑↓〉 − | ↓↑〉)/
√

2

(| ↑↓〉 + | ↓↑〉)/
√

2

=

=

Creating a triplet corresponds to acting with Sz operators

S
z(q) =

∑

r

eiq·r
S

z(r)S
z(q)|ΨS(0)〉 = |ΨT (q)〉

Triplets with arbitrary momentum can be created
• but phases cause problems in sampling
• in practice q close to (0,0) and (π,π) are accessible
• no phases factors corresponds to (π,π) 



TEST: Dispersion ω(q) for 2D Heisenberg antiferromagnet
• Singlet-triplet gap: 
• Dispersion close to q=(π,π):

∆ = ET (π, π) − ES(0, 0)

ω(q) = ET (q) − ∆

q1 = (π, π) − (2π/L, 0)

4 × 4 lattice

P=2n/L2

projecting with Hn

16 × 16 lattice



Loop updates in the valence-bond basis
AWS and H. G. Evertz, ArXiv:0807.0682

(ai, bi) = (↑i↓j − ↓i↑j)/
√

2

Put the spins back in a way compatible with the valence bonds

and sample in a combined space of spins and bonds

Loop updates similar to those in finite-T methods
(world-line and stochastic series expansion methods)

Larger systems accessible

|Ψ〉〈Ψ|

A



What is the ground state for J2/J1≈1/2?
• Most likely a Valence-bond-solid (crystal)

= (| ↑1↓2〉 − | ↓1↑2〉)/
√

2

• No spin (magnetic) order
• Broken translational symmetry

H =
∑

〈i,j〉

Jij
!Si · !Sj

= J1

= J2

A challenging problem: frustrated quantum spins

Quantum phase transition between Neel 
and VBS state expected at J2/J1≈0.45
- but difficult to study in this model
- exact diagonalization only up to 40 spins
- QMC sign problems
- tensor-network methods promising



The over-completeness allows for a reduction of the sign problem
[Kevin Beach; next talk]



➣ No sign problems in QMC simulations
➣ Turns out to have a Neel-VBS transition for J/Q≈0.04

AWS, PRL 98, 227202 (2007)

= 〈!Si · !Sj〉

H = J
∑

〈ij〉

Si · Sj − Q
∑

〈ijkl〉

(Si · Sj −
1

4
)(Sk · Sl −

1

4
)

2D Heisenberg model with 4-spin term

Is there a sign-free model with similar physics?

‣ Is the transition continuous?
• deconfined quantum-criticality?

        Senthil et al., Science 303, 1490 (2004)
• good scaling seen in QMC 
    AWS, PRL 07, Melko & Kaul, PRL 08
• weakly 1st order argued by
    Jiang et al., JSTAT 08
    Kuklov et al., PRL 08

‣ What is the nature of the VBS state?
• plaquette or columnar?
• emergent U(1) symmetry?



VBS phase in the J-Q model
➭ VBS order parameter
    columnar dimer-dimer correlations

➭ AF (Nèel) order parameter
   sublattice magnetization

➤ J/Q=0.0 → VBS       ➤ J/Q=0.1 → antiferromagnet

D2 = 〈D2
x + D2

y〉, Dx =
1
N

N∑

i=1

(−1)xiSi · Si+x̂, Dy =
1
N

N∑

i=1

(−1)yiSi · Si+ŷ

!M =
1
N

∑

i

(−1)xi+yi !SiM2 = 〈 !M · !M〉



Singlet-triplet gap scaling → Dynamic exponent z
z relates length and time scales:
ωq ∼ |q|z finite size → ∆ ∼ L−z

Finite-size scaling of L∆

∆(L) =
a1

L
+

a2

L2
+ · · ·Critical gap scaling: ⇒ z = 1

The gap at J=0 is small;
    Δ/Q=0.07
The VBS is near-critical



Exponents; finite-size scaling
Correlation lengths (spin, dimer): ξs,d
Binder ratio (for spins): qs=<M4>/<M2>2

long-distance spin and dimer correlations: Cs,d(L/2,L/2)
All scale with a single set of 

critical exponents at gc≈0.04
(with subleading corrections)

ν = 0.78(3), η = 0.26(3)

z=1,η≈0.3: consistent with deconfined quantum-criticality 
•  z=1 field theory and ”large” η predicted (Senthil et al.)



What kind of VBS; columnar or plaquette?
➭ look at joint probability distribution P(Dx,Dy)

Dx Dx

Dy Dy

|0〉 =

∑

k

ck|Vk〉

The simulations sample the ground state;

Graph joint probability distribution                      P (Dx, Dy)

Dx =
〈Vk| 1

N

∑N
i=1(−1)xiSi · Si+x̂|Vp〉

〈Vk|Vp〉

Dy =
〈Vk| 1

N

∑N
i=1(−1)yiSi · Si+ŷ|Vp〉

〈Vk|Vp〉

➭ 4 peaks expected; Z4-symmetry unbroken in finite system

critical



VBS fluctuations in the theory of deconfined quantum-critical points
➣ plaquette and columnar VBS “degenerate” at criticality
➣ Z4 “lattice perturbation” irrelevant at critical point
    - and in the VBS phase for L<Λ∼ξa, a>1
➣ emergent U(1) symmetry
➣ ring-shaped distribution expected for L<Λ

Dx Dx

Dy Dy

J=0, L=32



SU(N) generalization of the J-Q model
Heisenberg model with SU(N) spins has VBS state for large N
• Hamiltonian projecting on SU(N) singlets 
• In large-N mean-field theory Nc≈5.5 (Read & Sachdev, PRL 1988)
• QMC gives Nc≈4.5 (Tanabe & Kawashima, PRL 2007)
The valence-bond loop projector QMC  has a simple generalization
• Each loop has N “orientations”
• Stronger VBS order expected in SU(N) J-Q model

SU(3), spin and dimer correlation lengths

q=Q/(J+Q)

ν ≈ 0.65
ηspin ≈ ηdimer ≈ 0.40

J. Lou, R. Kaul, N. Kawashima, AWS
(manuscript in preparation)



Order parameter histograms 

L = 16, q = 0.4

L = 16, q = 0.6

D4 =
∫

rdr

∫
dφP (r,φ) cos(4φ)

Symmetry cross-over

Λ ∼ ξa ∼ q−aν

Finite-size scaling gives length-scale

a ≈ 1.5



Summary & Conclusions

Simulation methods in the valence bond basis
• May be the most efficient tools for studying ground state of many     

unfrustrated quantum spin models

Unfrustrated multi-spin interactions
• J-Q model and wide range of generalizations
• Give unprecedented access to VBS states and transitions


