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The valence bond basis for S=1/2 spins

* Dates back to the 1930s (Pauling, Romer, Hulthen...)
* Spans the singlet space (generalizations for triplets, etc)

* Consider N (even) spins

* Divide into two groups A,B A o
- e.g., sublattices (but not necessarily) )

* Bonds between A and B sites; singlets

(i) = (1 1alg) = | Li13)/ V2
Basis states; pair up all spins
N/2
Vo) = | Grosdire), 7 =1,...(N/2)!
b=1

The valence bond basis is overcomplete and non-orthogonal
 expansion of arbitrary singlet is not unique
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Some useful properties

All valence bond states overlap with each other

Vi|Vy) = oNo=N/2 " N_ = number of loops in overlap graph

Vi) V) Vi[V:)

Spin correlations are related to the loop structure

<‘/”§z : gj’Vr> - { %( 1)wi_$«7+y73_y9’ (i,j in same loop)
ViV 0

(i,j in different loops)

More complicated matrix elements are also related to loops
[K.S.D. Beach and A.W.S., Nucl. Phys.B 750, 142 (2006)]




Projector Monte Carlo
Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)

(C-H)" projects out the ground state from an arbitrary state
(C—H)"|¥) = (C—H)" Y _cili) = co(C — Eo)"|0)

)

S$=1/2 Heisenberg model
H=3% 5;-5=-) Hj, Hyj=(;—5-"5))
(1,9) (4,9)
Project with string of bond operators

Z H H’i(p)j(p) ‘\IJ> — T‘O> (r = unknown normalization)

_"-—~
- -

{H;;} p=1 ,/'/ (a,d) \\\\
. ¥ -
Action of bond operators m ANV
Haplo(a,b).(c,d).) = |o(asb) (e d)) 2 B o d
A B A B

1
Hycl...(a,0)...(¢,d)...) = 5.6, b)-(a, ).} (id) = (1 Tady) = | Ll )/ V2

Simple reconfiguration of bonds (or no change; diagonal)
* no minus signs for A—B bond ‘direction’ convetion
* sign problem does appear for frustrated systems




Sampling the wave function

Simplifed notation for operator strings

)3 HHup)g(p) —ZPk, k=1,... N E
{Hi;} r=1 | ( ( (
\

6-site chain

e
—

Simplest trial wave functlon. a basis state |1/) (

Pk‘vr> — Wkr‘vr(k»

The weight Wi, of a path is given by the number ¢ Py
of off-diagonal operations (‘bond flips’) nsip

1 "ip Hepl..(a,0)...(c,d)...) = |...(a,D)...(c,d)...)
Wi = 5 N = Ndia T NAip Hyel...(a,b)...(c,d)...) = %|...(c,b)...(a,d)...>
Note: all paths contribute - no ‘dead’ (VW=0) paths

Sampling: Trivial way: Replace m (m = 2-4) operators at random

new old

1 Neip nflp
Paccept — (5)

The state has to be re-propagated with the full operator string
* Loop updates can also be used




Calculating the energy

Using a state which has equal overlap with all VB basis states

¢ e.g., the Neel state | V) (N|V2) = (V)72
(N|H|0) > . (N|HP|V;) 1
E — p—
= - saomvs L e 4\
H acts on the projected state, giving : ﬁ ( (
* nf = number of bond flips ( ( ]
* ng = number of diagonal operations i 7 ( ( H (

y4
N\

T |

Eo = —(nqg+nyg/2)
Py
This energy estimator is not variational
* The energy can be below the true ground state energy
* But becomes exact in the limit of large n

* <0|H|0> can also be calculated and is variational




Estimator for the singlet-triplet gap
The original VB basis spans the singlet space
* with one triplet bond, one can obtain the lowest triplet state

(i,5) = (| Tals) — | LiT5))/V2

i3] = (| Tals) +11i15))/ V2
Under propagation, the triplet flips like a singlet
* but a diagonal operation on a triplet kills it

1
Hpl...[a, b]...(c,d)...) = 5\...(0, b)...la,d]...) ( I ( ‘
* Partial error cancellations in the gap (
A = FE — Ey Py

Hupl...la, bl...(c,d)...) =0
The initial triplet can be placed anywhere
The ability to generate singlet and triplet states in the
same run is a unique feature of VB projector Monte Carlo

" )

* N/2 different triplet propagations (
* Those that survive contribute to E;
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General expectation values
We have to project bra and ket states (A) = (0| A[0)

S PulVi) = Wie (% = Fo)"eol0)
k

> VilPy = OleoWah — Bo)"
g

(A) = Zg,k<Vl|Pg*APk|Vr> B Zg,k WoWir(Vi(9)|A|V:(k))

Zg,k<‘/l|Pg*Pk3|V’l“> B Zg,k ngWkrO/Z(g)H/r(k»
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Sampling a bond-amplitude product state

A better trial state leads to faster n convergence
* bond-amplitude product state [Liang, Doucot, Anderson, 1990]

N/2 -
‘\IJO> — Z H h(wrby yrb)‘Vk> Yk.b
ko b=1
Update state by reconfiguring two bonds . L
a Xk,b

H Pacce —
D d ot h(xaaya)h(xbvyb

)
)
If reconfiguration accepted ) I ) § § | ( ( I ( (
* calculate change in projection weight ) ( I ( (
* used for final accept/reject prob.
(
v

S. Liang [PRB 42, 6555 (1990)] ) )
* used parametrized state amplitudes
* determined parameters variationally
* improved state by projection Z




Variational wave function (2D Heisenberg)

All amplitudes h(x,y) can be optimized [J. Lou and A WS., PRB 2007]

e variational energy error <0.1% (50% smaller than previously best)
* spin correlations deviate by less than 1% from exact values

e amplitudes ~r-3

h(L/2,1./2-1)
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Self-optimized wave function

Projector method can access the 2D Heisenberg

bond-length probability P(x,y) ;

« related to the amplitude h(x.y) 'f s L=64

o for wave function with h(x,y) 10° — P=034/x"
P(x,y) ~ h(x,y) imz

P(x,y) can be used to construct h(x,y) 1

almost as good as the variational h 0k

Definitions 10—

* h(x,y) = bond amplitude of the trial state
* P,(x,y) = bond probability of the trial state
* P (x,y) = bond probability of the H" projected state

For large enough n, P_(x,y) is the exact ground-state distribution
o if Py(x,y) > P_(X,y), then reduce h(x,y)

o if Py(x,y) <P,(X,y), then increase h(x,y)

* repeat until P,(x,y)=P (x,y) for all x,y

« fast method to obtain almost optimal h(x,y)

e can be generalized to include bond correlations
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Momentum dependence of triplet excitations
Creating a triplet corresponds to acting with Sz operators

S@Is(0)) = [Ur(q))  S%(q) = > TS5 (x)

Triplets with arbitrary momentum can be created

e but phases cause problems in sampling

e in practice q close to (0,0) and (7t,;t) are accessible
® no phases factors corresponds to (i)

Singlet propagation Triplet propagation T+ 11)/vV2
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TEST: Dispersion w(q) for 2D Heisenberg antiferromagnet
* Singlet-triplet gap: A = Er (7, 7) — E5(0,0)
 Dispersion close to q=(mt,m): w(q) = Er(q) — A
q1 = (w,7m) — (27 /L,0)
4 X 4 latltice

16 x 16 lattice
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Loop updates in the valence-bond basis
AWS and H. G. Evertz, ArXi1v:0807.0682

Put the spins back in a way compatible with the valence bonds

(ai,0i) = (Taly — Li15)/V2

and sample in a combined space of spins and bonds
A

'(((( O]OO E 0)
|j)) el 1

( ]
W e T

(W] ——> — 1)
H" H"

O ®

)
)
!

Loop updates similar to those in finite-T methods
(world-line and stochastic series expansion methods)

Larger systems accessible




A challenging problem: frustrated quantum spins

What is the ground state for Jo2/J1=1/27?
* Most likely a Valence-bond-solid (crystal)

* No spin (magnetic) order
* Broken translational symmetry
aa = (| 11l2) — | 1i12))/V2

Quantum phase transition between Neel
and VBS state expected at J2/J1=0.45

- but difficult to study in this model

- exact diagonalization only up to 40 spins
- QMC sign problems

- tensor-network methods promising

N \ N \
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Frustrated systems

Consider the full valence-bond basis, including
e normal bonds, connecting A,B spins (sublattices)
e frustrated bonds, connecting A,A or B,B

For a non-frustrated system
 projection eliminates frustarted bonds
X

frustrated bonds normal bonds

For a frustrated system
e frustrated bonds remain and cause a sign problem
e frustrated bonds can be eliminated using over-completeness

a b ¢ d = a b ¢ d a b ¢ d

In a simulation, one of the branches can be randomly chosen

 but there is a sign problem
The over-completeness allows for a reduction of the sign problem

[Kevin Beach; next talk]




Is there a sigh-free model with similar physics?
2D Heisenberg model with 4-spin term

H= JZS S; —Q > (Si-S;— 1)(Sk-Si— 1)
(ijkl) ie !

| io—ej
i® 1@

> No sign problems in QMC simulations
> Turns out to have a Neel-VBS transition for J/Q=0.04

AWS, PRL 98, 227202 (2007)

» Is the transition continuous?

e deconfined quantum-criticality?
Senthil et al., Science 303, 1490 (2004)

e good scaling seen in QMC
AWS, PRL 07, Melko & Kaul, PRL 08

e weakly 1st order argued by
Jiang et al., JISTAT 08
Kuklov et al., PRL 08

N

order parameter

e plaquette or columnar?
e emergent U(1) symmetry?

» What is the nature of the VBS state?




VBS phase in the J-Q model

= VBS order parameter

columnar dimer-dimer correlations
N N
1

D= (D2+D2), Dp= Y (-1)"Si Siss Dy= > (~1)"S; Sy

1=1 1=1
> AF (Néel) order parameter
sublattice magnetization
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Singlet-triplet gap scaling = Dynamic exponent z

z relates length and time scales:
~ |q|* finite size = A~ L7

Finite-size scaling of LA

Cc—© J/Q=0.00

7.0 @ J/0=0.04 The gap at J=0 is small;
A/Q=0.07
The VBS is near-critical
®6.0
3
~

! ! ! | ! | !
0 0.05 0.1 0.15 0.2 0.25
1/L

Critical gap scaling: A(L) = fl + ﬁ + - = z=1




Exponents; finite-size scaling

Correlation lengths (spin, dimer): &4

Binder ratio (for spins): gs.=<M*>/<M?>*
long-distance spin and dimer correlations: Cs 4(L/2,L/2)

All scale with a single set of

critical exponents at g.~0.04
(with subleading corrections)

1 = 078(3), n = 0.26(3)
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z=1,1n=0.3: consistent with deconfined quantum-criticality
e z=1 field theory and ”large” n predicted (Senthil et al.)




What kind of VBS; columnar or plaquette?
< look at joint probability distribution P(Dx,Dy)

The simulations sample the ground state;

0) = > crlVi)

k

Graph joint probability distribution P(D,, D)

<Vk’%ZN( 1)*S; - Sigz|Vp)

e = ViV
LVl SN (1S Sl
v ViV

critical

= 4 peaks expected; Z4-symmetry unbroken in finite system




VBS fluctuations in the theory of deconfined quantum-critical points
> plaquette and columnar VBS “degenerate” at criticality
> Z4 “lattice perturbation” irrelevant at critical point
— and in the VBS phase for L<A~&23, a>1
> emergent U(1) symmetry
> ring-shaped distribution expected for L<A

J=0, L=32




SU(N) generalization of the J-Q model

Heisenberg model with SU(N) spins has VBS state for large N

e Hamiltonian projecting on SU(N) singlets

e In large-N mean-field theory Nc=5.5 (Read & Sachdev, PRL 1988)
e QMC gives Nc=4.5 (Tanabe & Kawashima, PRL 2007)

The valence-bond loop projector QMC has a simple generalization
e Each loop has N “orientations”

e Stronger VBS order expected in SU(N) J-Q model

SU(3), spin and dimer correlation lengths
0.4

v~ 0.65

T)spin ~ Tldimer ~ 0.40

J. Lou, R. Kaul, N. Kawashima, AWS
(manuscript in preparation)




Order parameter histograms
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Symmetry cross-over

Dy = / rdr / 6P (r, 8) cos(4)

Finite-size scaling gives length-scale
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Summary & Conclusions

Simulation methods in the valence bond basis

o May be the most efficient tools for studying ground state of many
unfrustrated quantum spin models

Unfrustrated multi-spin interactions
e J-Q model and wide range of generalizations
e Give unprecedented access to VBS states and transitions




