DIAGRAMMATIC MONTE CARLO: WHAT HAPPENS TO THE SIGN-PROBLEM

Nikolay Prokofiev, Umass, Amherst

work done in collaboration with

Boris Svistunov
UMass, Amherst

Kris van Houcke
UMass, Amherst,
Univ. Gent

Evgeny Kozik
UMass, Amherst,
ETH, Zurich

QS 2009, IPAM
Outline

Ising spins vs Feynman Diagrams: Is there any difference from the Monte Carlo perspective?

Acceptable solution to the sign problem?

Polarons in Fermi systems

Yes! (so far ...)

Many-body implementation for the Fermi-Hubbard model
Feynman Diagrams: graphical representation for the high-order perturbation theory

\[H = H_0 + H_{\text{int}} \]

\[\langle A \rangle = \sum \frac{\langle \Psi_n | A e^{-H/T} | \Psi_n \rangle}{\sum_n \langle \Psi_n | e^{-H/T} | \Psi_n \rangle} = \langle A \rangle_0 + \langle AB \rangle_0 + \langle AC \rangle_0 + \ldots \]

\[\propto H_{\text{int}} \quad \propto H_{\text{int}}^2 \]

explicit graphical representation for all terms and easy rules to convert graphs to math

Diagrammatic technique: explicit summation of geometric series “on-the-go” with self-consistent re-formulation of the diagrams
\[H = \sum_{k,\sigma} (\varepsilon_k - \mu) a_{k\sigma}^\dagger a_{k\sigma} + \sum_{k\delta q, \sigma\sigma'} \mathcal{U}_q a_{k-q\sigma}^\dagger a_{p+q\sigma}^\dagger a_{p\sigma} a_{k\sigma}, \]

Configuration space = (diagram order, topology and types of lines, internal variables)
Standard Monte Carlo setup:

- configuration space (depends on the model and its representation)

- each cnf. has a weight factor

- quantity of interest $\langle A \rangle = \frac{\sum_{cnf} A_{cnf} W_{cnf}}{\sum_{cnf} W_{cnf}}$

Monte Carlo configurations generated from the prob. distribution W_{cnf}
\[A(y) = \sum_{n=0}^{\infty} \sum_{\xi} \int \int \int \cdots d x_1 d x_2 K d x_n W_n(\xi; x_1, x_2, K x_n, y) = \sum_{\nu} W_{\nu} \]

Monte Carlo (Metropolis-Rosenbluth-Teller) cycle:

\[R_{acc} \sim \frac{|W_{\nu'}|}{|W_{\nu}|} \frac{1}{P_{\nu \rightarrow \nu'}(\text{new } \{x\})} \]

Collect statistics: \[A_{\text{counter}}(y) = A_{\text{counter}}(y) + \text{sign}(\nu) \]

sign problem and potential trouble!, but ...
Sign-problem

Variational methods
- universal
- often reliable only at T=0
- systematic errors
- finite-size extrapolation

Determinant MC
- "solves" $n_{i\sigma} + n_{i-\sigma} = 1$ case
- CPU expensive
- not universal
- finite-size extrapolation

Cluster DMFT/DCA methods
- universal
- diagram size extrapolation

Computational complexity
Is exponential: $\exp\{\# \xi\}$

Cluster DMFT
$\xi = \left(\frac{E_F}{T} \right)^L L^D$
linear size

Diagrammatic MC
$\xi = N$
diagram order

for irreducible diagrams
Further advantages of the diagrammatic technique

Calculate **irreducible** diagrams for \(\Sigma \), \(\Pi \), ... to get \(G \), \(\bar{U} \), from Dyson equations

\[
G(p, \tau) = \sum G_0(p, \tau) + \cdots
\]

\[
\bar{U} = \pi + \cdots
\]

\[
\Gamma = \Gamma^{(0)} + \cdots + \Gamma^{(0)} G^{(0)}
\]

Make the entire scheme **self-consistent**, i.e. all internal lines in \(\Sigma \), \(\Pi \), ... are “bold”
Polaron problem:

\[H = H_{\text{particle}} + H_{\text{environment}} + H_{\text{coupling}} \rightarrow \text{quasiparticle} \]

\[E(p = 0), \, m_*, \, G(p, t), \, ... \]

Electrons in semiconducting crystals (electron-phonon polarons)

\[H = \sum_p \varepsilon(p) a_p^+ a_p + \sum_q \omega(p) (b_q^+ b_q + 1/2) + \sum_{pq} (V_{pq} a_{p-q}^+ a_p b_q^+ + h.c.) \]
Fermi-polaron problem:

\[H = \frac{p^2}{2m} + H_{\text{Fermi sea}} + \int V(r - r') \, n(r') \, dr' \]

Particle dressed by interactions with the Fermi sea:
cold Fermi gases with population strong imbalance
orthogonality catastrophe, X-ray singularities, heavy fermions,
quantum diffusion in metals, ions in He-3, etc.
Examples:

Electron-phonon polarons (e.g. Frohlich model) = particle in the bosonic environment.

Too “simple”, no sign problem, $N : 10^2$

Fermi–polarons (polarized resonant Fermi gas) = particle in the fermionic environment.

Sign problem! $N_{\text{max}} = 11$
Fermi-Hubbard model:

\[H = -t \sum_{<ij>,\sigma} a_{i\sigma} \text{a}_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow} - \mu \sum_{i,\sigma} n_{i\sigma} \]

Self-consistency in the form of Dyson, RPA

\[G = G^{(0)} + \Sigma \]

\[\overline{U} = U + \Pi \]

Extrapolate to the \(N \rightarrow \infty \) limit.
1D

\[U/t = 4 \]
\[\mu/t = -0.5 \]
\[T/t = 0.3 \]

![Graph showing energy versus inverse number of particles for 1D system with different resummation methods.

3D

\[U/t = 4 \]
\[\mu/t = 1.5 \]
\[T/t = 0.5 \]

![Graph showing density versus inverse number of particles for 3D system with different resummation methods.

Better quality than in 1D!
In 3D temperatures are low enough $T/zt < 0.03$ to claim Fermi-liquid properties (using bare propagators so far)
3D: $U=4.0$, $\mu=1.5$

Energy E_σ/tV vs. T/t for $T/t = 0$ to 12.

- Red squares: energy
- Green line: 2nd order high-T series
- Blue line: 8th order high-T series
- Brown line: 10th order high-T series
- Black line: $\propto T^2$ (Fermi-liquid), $\rho(\varepsilon_F)=0.087(3), \rho'(\varepsilon_F)=-0.0113(3)$
Conclusions/perspectives

• **Bold-line Diagrammatic series can be efficiently simulated.**
 - combine analytic and numeric tools
 - thermodynamic-limit results
 - sign-problem tolerant (relatively small configuration space)

• **Work in progress:** bold-line implementation for the Hubbard model and the resonant Fermi-gas (\(G \Gamma \) version) and the continuous electron gas, or jellium model (screening version).

• **Next step:** Effects of disorder, broken symmetry phases, additional correlation functions, etc.