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Diagonalization: Present Day Limits
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Fractional guantum hall effect
different filling fractions v, up to 16-20 electrons
up to 300 million basis states, up to 1 billion in the near future

Spin S=1/2 models:

40 spins square lattice, 39 sites triangular, 42 sites star lattice at S%=0
64 spins or more In elevated magnetization sectors
up to 1.5 billion(=10) basis states with symmetries, up to 4.5 billion without

t-d models:
32 sites checkerboard with 2 holes
32 sites square lattice with 4 holes
up to 2.8 billion basis states

Hubbard models
20 sites square lattice at half filling, 20 sites quantum dot structure
22-25 sites in ultracold atoms setting

up to 80 billion basis states

low-lying eigenvalues, not full diagonalization
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® Exact Diagonalization:

numerically determine the low-lying eigenstates of the full many-body
Schrodinger equation using Krylov-space techniques.

® Ground state at different total S? obtained by the Lanczos method

® Dynamical correlations by the continued fraction method
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Numerical Approaches (in 2D)

® Quantum Monte Carlo:

Highly efficient sampling of the partition function for unfrustrated
guantum magnets using e.g. Stochastic Series Expansion (SSE) Sandvik 91,799

MC Measurements Stochastic Analytical Continuation

® Measures correlation functions T —
in imaginary time : '
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o
Correlation C(Q,w)

® Analytical continuation to
real frequency needed
(inverse Laplace transform):
Maximum Entropy,
Stochastic Analytical Continuation
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® Quantum Monte Carlo:

Highly efficient sampling of the partition function for unfrustrated

guantum magnets using e.g. Stochastic Series Expansion (SSE) Sandvik 91,799

4

® Measures correlation functions
IN imaginary time

® Analytical continuation to
real frequency needed
(inverse Laplace transform):
Maximum Entropy,
Stochastic Analytical Continuation

Jarrell & Gubernatis '96,
Sandvik ‘98, Beach '04

AML, Capponi, Assaad, JSTAT 08 &

E 1.4
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Square Lattice Heisenberg Antiferromagnet

weak (zero) field finite field

A. LUscher, AML, arXiv:0812.3420
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® In a magnetic field the situation is much less clear:

® Theory: two conflicting predictions:
M.E. Zhitomirsky & A.L. Chernyshev (PRL 99)
Interacting spin wave theory = magnons decay above a threshold field
of approximately 3/4 of the saturation field.

O. Syljuasen & PA. Lee (PRL 02)

1 - flux state mean-field calculations = no evidence for magnon decay,
however low energy spectral weight in a region where spin wave theory
predicts none.

® Experiments: not yet performed (or on the way ?) ...

® Numerical simulation can help to settle this issue




Dynamical Spin Correlations in a Field

® In a magnetic field the SU(2) symmetry is reduced to U(1)
® The relevant spin correlators are
® The longitudinal response:  S**((), w)

® The transverse response:

57(Quw) = §7(Qw) = 1 [ST7(Qw) + 57 (@)

® In the present case the transverse response is to a very good approximation
equal to the longitudinal response shifted by (7, ).




Predicted INS Spectra as a function of field
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Square Lattice AFM
QMC + Analytical Continuation results
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Kagome Antiferromagnet




Kagome AFM
Static Structure Factor

Ring of enhanced
scattering at the

extended BZ
boundary

No magnetic order!




Kagome AFM

f |

Dynamical Spin Structure Factor (~ INS)

ED, 306 sites

AML, C. Lhuillier, arXiv:0901.1065




Kagome AFM
Local Dimer Autocorrelations (~ Raman)

N=36, Kagome
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3
(dp]
O
&
(qv]
(-
>
A
o
£
a
S
@)

]

0

ED. 36 sites o/ AML C. Lhuillier, arXiv:0901.1065
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“Tower of States” spectroscopy

® What are the finite size manifestations of a continuous symmetry breaking ?

® Low-energy dynamics of the order parameter
Theory: PW. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -

® Dynamics of the free order
Continuum parameter is visible in the finite size
spectrum. Depends on the continuous
symmetry group.

':'3\3

gnons !

® U(1): (59?2 SU(2): S(S+1)

Tower of

States : .
® Symmetry properties of levels in the

Tower states are crucial and constrain

the nature of the broken symmetries.
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Tower of States
S=1 on triangular lattice

® Bilinear-biguadratic S=1 model on the triangular lattice (model for NiGaSa).

AML, F. Mila, K. Penc, PRL ‘06



Tower of States
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® Bilinear-biguadratic S=1 model on the triangular lattice (model for NiGaSa).

H =) cos(d) S;-S;+sin() (S;-S,;)’

AML, F. Mila, K. Penc, PRL ‘06



Tower of States
S=1 on triangular lattice: Antiferromagnetic phase

SU(3)

i ® 93=0: coplanar magnetic

& order,

120 degree structure

® Breaks translation symmetry. Tree site unit cell
= nontrivial momenta must appear in TOS

® non-collinear magnetic structure
= SU(2) is completely broken,

number of levels in TOS increases with S

® Quantum number are identical to the S=1/2 case




Tower of States
S=1 on triangular lattice: Ferroquadrupolar phase

SU(3)

v ® S5=-1/2 : ferroquadrupolar phase, finite
guadrupolar moment, no spin order

® No translation symmetry breaking.
= only trivial momentum appears in TOS

® Ferroquadrupolar order parameter, only even S

® all directors are collinear
= SU(2) is broken down to U(1),

number of states in TOS is independent of S.




Tower of States
S=1 on triangular lattice: Antiferroquadrupolar phase

® Breaks translation symmetry. Tree site unit cell
= nontrivial momenta must appear in TOS

® Antiferroquadrupolar order parameter, complicated
S dependence. Can be calculated using group
theoretical methods.

G/ S, 0=3m/8-
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The correlation density matrix (CDM)

4 )

V>
S e

® |s there a systematic way to detect important correlations between
parts A and B of a larger system ?

® The correlation density matrix:

PAB = PAB — PA R pB

contains all the required information




The correlation density matrix (C

PAB = PAB — PA @ PB

\_

® Contains all information on any connect correlation function between
A and B: LA A ~ o~ ~ ~
Tr(p550a08) = (Oa0B) — (Oa)(O8)
® The key step is to perform a singular value decomposition
c RVZAVAI
PAB — Z i X, Y/
=1

where the 0; give the strength of the correlation i and the Xi and Vi are the
operators of the correlator acting in A and B.

S.-A. Cheong, C. Henley, arXiv:0809.0075




CDM
J1-Jo frustrated Heisenberg Chain (all AF)

o ® Benchmark on
Dimerized existing phase
dimerization diagrams.
N J

® singular values
respect SU(2)
symmetry in S=0 GS

005 0 (multiplicities).

=
critical

singular values

F correlation§ [
| polynomial fit

twist | ~ _ ® works very well for the

AF correlations : =_
KR DB |- & well understood
> .’(4'4.'-‘4":' D W :

A s Majumdar-Ghosh

= .,.,:..r:’: ~vhaoonaoam

. ,-.-,-,-vvvvvv" . Chaln.

J2/J quadrupolar correlations
1

Sudan & AML, unpublished




CDM
J1-Jo frustrated Heisenberg Chain (F-AF)

J N,

-3.75 -3.5 -3 -2.5 -2 -1.5

: ]

® vector chiral phase
at low m
8

hexa- [o  octupolar quadrupolar
A decupolar

0

S @ spin multipolar liquids
SDW (p=2) at high m

CDM helped us under-
stand that spin
multipolar phases are
generically imprinted in
Vector Chiral Order close-by magnetically

| T B | ordered states
02! 02 030 039 A%05

J /J. |
o' Y4
J. Sudan, A. Luscher, AML, arXiv:0807.1923 ED/DMRG

F. Heidrich-Meisner et al. PRB ‘06
T. Hikihara et al., PRB ‘08




Conclusions

® Exact Diagonalization has an obvious disadvantage (finite size limitation),
but when combined with physical concepts and ideas the method becomes a
powerful Quantum Mechanics Toolbox, and can access systems which
are difficult or impossible to solve otherwise.

® Dynamical correlation functions gave evidence for decay of spin waves Iin
the square lattice antiferromagnet in a field, while the dynamical spin response
of the kagome lattice is very incoherent, with possibly some VBC-triplon
remnants at low energy.

® Tower of states spectroscopy is powerful tool to study continuous symmetry
breaking.

® Correlation Density Matrices are a novel tool to study correlations (or the
absence thereof) in unified framework. First applications to frustrated spin
chains revealed new mechanisms for the appearance of spin nematic phases.
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Thank you !



