

Exact Diagonalization: A Smart Tool to Study New States of Quantum Matter

Andreas Läuchli, "New states of quantum matter" MPI für Physik komplexer Systeme - Dresden

http://www.pks.mpg.de/~aml laeuchli@comp-phys.org

IPAM QS2009 Workshop, January 27, 2009

Outline

- Exact Diagonalization
- Dynamical Spin Correlations
 - Square Lattice AFM in a field
 - Kagome AFM
- "Tower of States" spectroscopy (continuous symmetry breaking)
 - Conventional magnetic vs spin nematic order
- Correlation Density Matrices
 - Concept
 - Applications to spin chains and the Kagome AFM

Outline

- Exact Diagonalization
- Dynamical Spin Correlations
 - Square Lattice AFM in a field
 - Kagome AFM
- "Tower of States" spectroscopy (continuous symmetry breaking)
 - Conventional magnetic vs spin nematic order
- Correlation Density Matrices
 - Concept
 - Applications to spin chains and the Kagome AFM

 $\mathcal{H}|\psi\rangle = E|\psi\rangle$

Solve the Schrödinger equation of a quantum many body system numerically

 $\mathcal{H}|\psi\rangle = E|\psi\rangle$

Solve the Schrödinger equation of a quantum many body system numerically

$$\mathcal{H}|\psi\rangle = E|\psi\rangle$$

Sparse matrix, but for quantum many body systems the vector space dimension grows exponentially!

Solve the Schrödinger equation of a quantum many body system numerically

$$\mathcal{H}|\psi\rangle = E|\psi\rangle$$

Sparse matrix, but for quantum many body systems the vector space dimension grows exponentially!

But if you want to get a maximum of physical information out of a finite system there is a lot more you can do, and the reward is a powerful:

Solve the Schrödinger equation of a quantum many body system numerically

$$\mathcal{H}|\psi\rangle = E|\psi\rangle$$

Sparse matrix, but for quantum many body systems the vector space dimension grows exponentially!

But if you want to get a maximum of physical information out of a finite system there is a lot more you can do, and the reward is a powerful:

Quantum Mechanics Toolbox

 Quantum Magnets: nature of novel phases, critical points in 1D, dynamical correlation functions in 1D & 2D

- Quantum Magnets: nature of novel phases, critical points in 1D, dynamical correlation functions in 1D & 2D
- Fermionic models (Hubbard/t-J): gaps, pairing properties, correlation exponents, etc

- Quantum Magnets: nature of novel phases, critical points in 1D, dynamical correlation functions in 1D & 2D
- Fermionic models (Hubbard/t-J): gaps, pairing properties, correlation exponents, etc
- Fractional Quantum Hall states: energy gaps, overlap with model states, entanglement spectra

- Quantum Magnets: nature of novel phases, critical points in 1D, dynamical correlation functions in 1D & 2D
- Fermionic models (Hubbard/t-J): gaps, pairing properties, correlation exponents, etc
- Fractional Quantum Hall states: energy gaps, overlap with model states, entanglement spectra
- Quantum dimer models or other constrained models:

 → following talk by D. Poilblanc

- Quantum Magnets: nature of novel phases, critical points in 1D, dynamical correlation functions in 1D & 2D
- Fermionic models (Hubbard/t-J): gaps, pairing properties, correlation exponents, etc
- Fractional Quantum Hall states: energy gaps, overlap with model states, entanglement spectra
- Quantum dimer models or other constrained models:
 following talk by D. Poilblanc

Full Configuration Interaction in Quantum Chemistry

- Quantum Magnets: nature of novel phases, critical points in 1D, dynamical correlation functions in 1D & 2D
- Fermionic models (Hubbard/t-J): gaps, pairing properties, correlation exponents, etc
- Fractional Quantum Hall states: energy gaps, overlap with model states, entanglement spectra
- Quantum dimer models or other constrained models:
 following talk by D. Poilblanc

Full Configuration Interaction in Quantum Chemistry

Fractional quantum hall effect
 different filling fractions ν, up to 16-20 electrons
 up to 300 million basis states, up to 1 billion in the near future

Fractional quantum hall effect
 different filling fractions ν, up to 16-20 electrons
 up to 300 million basis states, up to 1 billion in the near future

Spin S=1/2 models:

40 spins square lattice, 39 sites triangular, 42 sites star lattice at S^z=0 64 spins or more in elevated magnetization sectors up to 1.5 billion(=10⁹) basis states with symmetries, up to 4.5 billion without

Fractional quantum hall effect
 different filling fractions ν, up to 16-20 electrons
 up to 300 million basis states, up to 1 billion in the near future

Spin S=1/2 models:

40 spins square lattice, 39 sites triangular, 42 sites star lattice at S^z=0 64 spins or more in elevated magnetization sectors up to 1.5 billion(=10⁹) basis states with symmetries, up to 4.5 billion without

t-J models:
 32 sites checkerboard with 2 holes
 32 sites square lattice with 4 holes
 up to 2.8 billion basis states

Fractional quantum hall effect
 different filling fractions ν, up to 16-20 electrons
 up to 300 million basis states, up to 1 billion in the near future

Spin S=1/2 models:

40 spins square lattice, 39 sites triangular, 42 sites star lattice at S^z=0 64 spins or more in elevated magnetization sectors up to 1.5 billion(=10⁹) basis states with symmetries, up to 4.5 billion without

t-J models: 32 sites checkerboard with 2 holes 32 sites square lattice with 4 holes up to 2.8 billion basis states

Hubbard models

20 sites square lattice at half filling, 20 sites quantum dot structure 22-25 sites in ultracold atoms setting

up to 80 billion basis states

Frequency Dynamics (in 2D)

Exact Diagonalization:

numerically determine the low-lying eigenstates of the full many-body Schrödinger equation using Krylov-space techniques.

- Ground state at different total S^z obtained by the Lanczos method
- Dynamical correlations by the continued fraction method $S(Q,\omega)_{\eta} = -\frac{1}{\pi} \text{Im} \langle GS | S(Q)^{\dagger} \frac{1}{\omega - H + E_{GS} + i\eta} S(Q) | GS \rangle$ $S(Q,\omega) = \sum_{n} |\langle \psi_{n} | S(Q) | GS \rangle|^{2} \delta(\omega - E_{n})$
- Typical dimensions dim=10⁸ states, i.e. 64 sites and 200-500 iterations give a good spectrum

Frequency Dynamics (in 2D)

• Exact Diagonalization:

numerically determine the low-lying eigenstates of the full many-body Schrödinger equation using Krylov-space techniques.

- Ground state at different total S^z obtained by the Lanczos method
- Dynamical correlations by the continued fraction method

Frequency Dynamics (in 2D)

• Exact Diagonalization:

numerically determine the low-lying eigenstates of the full many-body Schrödinger equation using Krylov-space techniques.

- Ground state at different total S^z obtained by the Lanczos method
- Dynamical correlations by the continued fraction method

$$S(Q, \omega)_{\eta} = -\frac{1}{\pi} \operatorname{Im} \langle GS|S(Q)^{\dagger} \frac{1}{\omega - H + E_{GS} + i\eta} S(Q)|GS \rangle$$

$$S(Q, \omega) = \sum_{\substack{n \\ n \\ n \\ (a)}} \langle \psi_{\pi}|S(Q)|GS \rangle \langle \psi_{\pi}|S(Q)|GS \rangle \langle \psi_{\pi}|S(Q)|GS \rangle$$

Typical dimensions dim=10⁸ states, i.e. 64 sites and 200-500 iterations give a good spectrum of the states is the states in the states is the states

Numerical Approaches (in 2D)

Quantum Monte Carlo:

Highly efficient sampling of the partition function for unfrustrated quantum magnets using e.g. Stochastic Series Expansion (SSE) Sandvik '91,'99

Stochastic Analytical Continuation MC Measurements Measures correlation functions in imaginary time ⁵⁰ Correlation C(Q,ω) Correlation $C(Q, \tau)$ 0. Analytical continuation to real frequency needed (inverse Laplace transform): 0.01 Maximum Entropy, Stochastic Analytical Continuation Jarrell & Gubernatis '96, Sandvik '98, Beach '04 0.001<u></u>∟ 6⁰ 0 2 Imaginary time τ

Frequency ω

Numerical Approaches (in 2D)

Quantum Monte Carlo:

Highly efficient sampling of the partition function for unfrustrated quantum magnets using e.g. Stochastic Series Expansion (SSE) Sandvik '91,'99

- Measures correlation functions in imaginary time
- Analytical continuation to real frequency needed (inverse Laplace transform): Maximum Entropy, Stochastic Analytical Continuation Jarrell & Gubernatis '96, Sandvik '98, Beach '04

AML, Capponi, Assaad, JSTAT 08

Outline

- Exact Diagonalization
- Dynamical Spin Correlations
 - Square Lattice AFM in a field
 - Kagome AFM
- "Tower of States" spectroscopy (continuous symmetry breaking)
 - Conventional magnetic vs spin nematic order
- Correlation Density Matrices
 - Concept
 - Applications to spin chains and the Kagome AFM

Square Lattice Heisenberg Antiferromagnet

A. Lüscher, AML, arXiv:0812.3420

 The zero field case is well understood both theoretically and experimentally (Series Expansions; QMC + MaxEnt; Experiments on CTFD, Ronnow '02/Christensen '07)

- The zero field case is well understood both theoretically and experimentally (Series Expansions; QMC + MaxEnt; Experiments on CTFD, Ronnow '02/Christensen '07)
- In a magnetic field the situation is much less clear:

- The zero field case is well understood both theoretically and experimentally (Series Expansions; QMC + MaxEnt; Experiments on CTFD, Ronnow '02/Christensen '07)
- In a magnetic field the situation is much less clear:
 - Theory: two conflicting predictions:
 M.E. Zhitomirsky & A.L. Chernyshev (PRL 99)
 interacting spin wave theory → magnons decay above a threshold field of approximately 3/4 of the saturation field.
 - O. Syljuåsen & P.A. Lee (PRL 02)
 - π flux state mean-field calculations \rightarrow no evidence for magnon decay, however low energy spectral weight in a region where spin wave theory predicts none.

 The zero field case is well understood both theoretically and experimentally (Series Expansions; QMC + MaxEnt; Experiments on CTFD, Ronnow '02/Christensen '07)

In a magnetic field the situation is much less clear:

Theory: two conflicting predictions:
 M.E. Zhitomirsky & A.L. Chernyshev (PRL 99)
 interacting spin wave theory → magnons decay above a threshold field of approximately 3/4 of the saturation field.

O. Syljuåsen & P.A. Lee (PRL 02)

 π - flux state mean-field calculations \rightarrow no evidence for magnon decay, however low energy spectral weight in a region where spin wave theory predicts none.

Experiments: not yet performed (or on the way ?) ...

- The zero field case is well understood both theoretically and experimentally (Series Expansions; QMC + MaxEnt; Experiments on CTFD, Ronnow '02/Christensen '07)
- In a magnetic field the situation is much less clear:
 - Theory: two conflicting predictions:
 M.E. Zhitomirsky & A.L. Chernyshev (PRL 99)
 interacting spin wave theory → magnons decay above a threshold field of approximately 3/4 of the saturation field.
 - O. Syljuåsen & P.A. Lee (PRL 02)
 - π flux state mean-field calculations \rightarrow no evidence for magnon decay, however low energy spectral weight in a region where spin wave theory predicts none.
 - Experiments: not yet performed (or on the way ?) ...
 - Numerical simulation can help to settle this issue

Dynamical Spin Correlations in a Field

In a magnetic field the SU(2) symmetry is reduced to U(1)

The relevant spin correlators are

- The longitudinal response: $S^{zz}(Q,\omega)$
- The transverse response:

$$S^{xx}(Q,\omega) = S^{yy}(Q,\omega) = \frac{1}{4} \left[S^{+-}(Q,\omega) + S^{-+}(Q,\omega) \right]$$

In the present case the transverse response is to a very good approximation equal to the longitudinal response shifted by (π, π) .

Predicted INS Spectra as a function of field

Field dependence: Finite size pole structure

Field dependence: Finite size pole structure

Field dependence: Finite size pole structure

 $S^{zz}(\omega, \mathbf{k})$ Longitudinal dynamical structure factors 2 2 3 2 3 0 3 4 Λ 4 n **4** P 3 З 2ω_(π/4,π/4) з 2 З З zoom 1 1 (π,π) (π,π) (π,π) **k**=(π/2,π/2) **k**=(π,0) **k**=(π,π) • (0,0)(0,0) (0,0) 0 0 0.1 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0 0 0.1 0 m m m 0 2 3 0 2 3 3 n 4 4 4 3 3 3 з 2 з 2 З 1 1 (π,π) (π,π) (π,π) $\mathbf{k} = (3\pi/4, 3\pi/4)$ $k = (\pi/2.0)$ $k = (\pi/4, \pi/4)$ (0,0) (0,0)(0,0) 0 0 h 0 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.4 0.5 0.3 m m m

Sites

32

36

40

50

52

58

64

1.5

1

0.5

0.1

0.01

 \bigcirc

0

 S^{zz}

Kagome Antiferromagnet

$$H = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

AML & C. Lhuillier, arXiv:0901.1065

Kagome AFM Static Structure Factor

Kagome AFM Dynamical Spin Structure Factor (~ INS)

ED, 36 sites

AML, C. Lhuillier, arXiv:0901.1065

Kagome AFM Local Dimer Autocorrelations (~ Raman)

Outline

- Dynamical Spin Correlations
 - Square Lattice AFM in a field
 - Kagome AFM
- "Tower of States" spectroscopy (continuous symmetry breaking)
 Conventional magnetic vs spin nematic order
- Correlation Density Matrices
 - Concept
 - Applications to spin chains and the Kagome AFM

"Tower of States" spectroscopy

- What are the finite size manifestations of a continuous symmetry breaking ?
- Low-energy dynamics of the order parameter
 Theory: P.W. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -

- Dynamics of the free order parameter is visible in the finite size spectrum. Depends on the continuous symmetry group.
- U(1): $(S^z)^2$ SU(2): S(S+1)
- Symmetry properties of levels in the Tower states are crucial and constrain the nature of the broken symmetries.

Tower of States S=1 on triangular lattice

• Bilinear-biquadratic S=1 model on the triangular lattice (model for NiGaS₄).

AML, F. Mila, K. Penc, PRL '06

Tower of States S=1 on triangular lattice

 \bullet Bilinear-biquadratic S=1 model on the triangular lattice (model for NiGaS₄).

$$H = \sum_{\langle i,j \rangle} \cos(\theta) \, \mathbf{S}_i \cdot \mathbf{S}_j + \sin(\theta) \, \left(\mathbf{S}_i \cdot \mathbf{S}_j\right)^2$$

AML, F. Mila, K. Penc, PRL '06

Tower of States S=1 on triangular lattice: Antiferromagnetic phase

- 9=0 : coplanar magnetic order,
 - 120 degree structure
- Breaks translation symmetry. Tree site unit cell
 ⇒ nontrivial momenta must appear in TOS
- non-collinear magnetic structure
 \Rightarrow SU(2) is completely broken,

number of levels in TOS increases with S

Quantum number are identical to the S=1/2 case

Tower of States S=1 on triangular lattice: Ferroquadrupolar phase

 $9=-\pi/2$: ferroquadrupolar phase, finite quadrupolar moment, no spin order

- No translation symmetry breaking.
 ⇒ only trivial momentum appears in TOS
- Ferroquadrupolar order parameter, only even S
- all directors are collinear
 - \Rightarrow SU(2) is broken down to U(1),

number of states in TOS is independent of S.

Tower of States S=1 on triangular lattice: Antiferroquadrupolar phase

 $\pi/2$

 $9=3\pi/8$: antiferroquadrupolar phase, finite quadrupolar moment, no spin order, three sublattice structure.

- Breaks translation symmetry. Tree site unit cell ⇒ nontrivial momenta must appear in TOS
- Antiferroquadrupolar order parameter, complicated S dependence. Can be calculated using group theoretical methods.

Outline

- Dynamical Spin Correlations
 - Square Lattice AFM in a field
 - Kagome AFM
- "Tower of States" spectroscopy (continuous symmetry breaking)
 - Conventional magnetic vs spin nematic order
- Correlation Density Matrices
 - Concept
 - Applications to spin chains and the Kagome AFM

The correlation density matrix (CDM)

- Is there a systematic way to detect important correlations between parts A and B of a larger system ?
- The correlation density matrix:

$$\rho_{AB}^{c} = \rho_{AB} - \rho_{A} \otimes \rho_{B}$$

contains all the required information

The correlation density matrix (CDM)

$$\rho_{AB}^{c} = \rho_{AB} - \rho_{A} \otimes \rho_{B}$$

- Contains all information on any connect correlation function between A and B: $Tr(\rho_{AB}^{c}\widehat{O}_{A}\widehat{O}_{B}) = \langle \widehat{O}_{A}\widehat{O}_{B} \rangle - \langle \widehat{O}_{A} \rangle \langle \widehat{O}_{B} \rangle$
- The key step is to perform a singular value decomposition

$$\rho_{AB}^{c} = \sum_{i=1}^{c} \sigma_i X_i' Y_i'^{\dagger}$$

where the σ_i give the strength of the correlation i and the X_i and Y_i are the operators of the correlator acting in A and B.

S.-A. Cheong, C. Henley, arXiv:0809.0075

CDM J₁-J₂ frustrated Heisenberg Chain (all AF)

- Benchmark on existing phase diagrams.
- singular values
 respect SU(2)
 symmetry in S=0 GS
 (multiplicities).
- works very well for the well understood Majumdar-Ghosh chain.

Sudan & AML, unpublished

CDM J₁-J₂ frustrated Heisenberg Chain (F-AF)

- vector chiral phase at low m
- spin multipolar liquids at high m
- CDM helped us understand that spin multipolar phases are generically imprinted in close-by magnetically ordered states

F. Heidrich-Meisner et al. PRB '06 T. Hikihara et al., PRB '08

Conclusions

- Exact Diagonalization has an obvious disadvantage (finite size limitation), but when combined with physical concepts and ideas the method becomes a powerful Quantum Mechanics Toolbox, and can access systems which are difficult or impossible to solve otherwise.
- Dynamical correlation functions gave evidence for decay of spin waves in the square lattice antiferromagnet in a field, while the dynamical spin response of the kagome lattice is very incoherent, with possibly some VBC-triplon remnants at low energy.
- Tower of states spectroscopy is powerful tool to study continuous symmetry breaking.
- Correlation Density Matrices are a novel tool to study correlations (or the absence thereof) in unified framework. First applications to frustrated spin chains revealed new mechanisms for the appearance of spin nematic phases.

Collaborators

Dynamical Correlation Functions:

A. Lüscher (Lausanne), C. Lhuillier (Paris)

Tower of states spectroscopy

K. Penc (Budapest), F. Mila (Lausanne)

Correlation density matrices

J. Sudan, A. Lüscher (Lausanne), C. Henley (Cornell)

Thank you !