Quantum dynamics in ultracold atoms

Corinna Kollath (Ecole Polytechnique Paris, France)

T. Giamarchi (University of Geneva)
A. Läuchli (MPI Dresden)
I. McCulloch (Queensland)
A. Kleine, U. Schollwöck (RWTH Aachen)

Quantum dynamics

Nanostructures

Quantum processing

Spintronics

Quantum gases

Preparing ultracold atoms

laser cooling T~100 μK evaporative cooling T~100nK

magnetic trap

Boson (⁸⁷Rb, F=2, m_F=2)
 Fermion (⁴⁰K, F=9/2, m_F=9/2)

Bose-Einstein condensate

Dilute gases: n $\approx 10^{14} \text{ cm}^{-3}$

Ultracold: $T_{degeneracy} \approx 100 \text{ nK}$

Weak interactions: $n^{1/3}a << 1$

Strong interactions in quantum gases

Optical lattices

standing wave laser field -> periodic potential for atoms

intensity of laser -> strength of potential
wavelength/2 -> lattice spacing
different geometries possible

2D lattice:

Bosons in an optical lattice

Jaksch et al. (1998)

U and J related to lattice height U tunable by Feshbach resonances

Cold gases as quantum simulators

superfluid

well tunable in time

well decoupled from environment

Mott-insulator

DN

-> quantum dynamics in isolated system

time-of-flight imac ~ momentum distribution

Greiner et al (2001)

Quantum dynamics in a closed system

time evolution by Schrödinger equation

small time step:

$$\left|\psi(t+\Delta t)\right\rangle \approx e^{-i\Delta tH(t)}\left|\psi(t)\right\rangle = \sum_{n} e^{-i\Delta tE_{n}}c_{n}\left|n\right\rangle$$

ex: quench across superfluid to Mott-insulator transition

methods: exact diagonalization and time-dependent DMRG

idea: time-dependent DMRG

static:

breakdown after short time

(Cazalilla, Marston)

enlarged:

numerically very expensive

(Luo,Xiang,Wang; Schmitteckert)

adaptive:

numerically cheap long times

(Vidal; Daley,CK,Schollwöck,Vidal; White,Feiguin)

Algorithm: time-step

time-evolution (Schrödinger eq)

$$\left| \psi(t) \right\rangle_{eff} \rightarrow \left| \psi(t + \Delta t) \right\rangle_{eff}$$
$$H(t)_{eff} \rightarrow H(t + \Delta t)_{eff}$$

Suzuki Trotter decomposition

$$U \approx \prod_{l \in odd} U_{l,l+1} \prod_{l \in even} U_{l,l+1} \qquad blowskip$$
with

$$U_l \approx \exp(-ih_{l,l+1}\Delta t) \qquad blowskip$$

errors:

- Trotter-Suzuki error
- truncation error

Trotter error $\sim L\Delta t^n$

dominating at short time

 \bullet well controlled by Δt

Gobert, CK, et al PRE (2004)

S_z

Truncation error

runaway time: crossover between Trotter error and truncation error errors well controlled

Experiment: abrupt change from superfluid to Mott-insulator

time-of-flight images

~ momentum distribution

Greiner et al. Nature (2002)

Theoretical description

Total revival of the wave function

only interaction term:

time evolution operator

$$\exp\left[-\frac{it}{\hbar}U_{f}\sum_{j}\frac{1}{2}\hat{n}_{j}(\hat{n}_{j}-1)\right]$$

integer value

all Fock states revive latest at T=h/U

-> wave function evolves periodically in time

T=h/U

e

Relaxation with finite hopping

C. Kollath, A. Läuchli, E. Altman, PRL 98, 180601 (2007)

Light-cone like evolution to quasi-steady state

density-density correlations

 $\langle n_0 n_r \rangle (t) - \langle n_0 \rangle \langle n_r \rangle (t)$

light cone like evolution in different models:

•Lieb and Robinson (1972) spin models

Igloi and Rieger

D. Gobert, CK, U. Schollwoeck, G. Schütz (2005)

 Calabrese and Cardy (2006) conformal field theory

specific exactly solvable models...

Speed of correlations

position of dip in density-density correlation

Speed of correlations

Entanglement evolution

 $\stackrel{l}{\longleftarrow}$ block A

von Neuman entropy of block A $S_{A} = -Tr_{A}\rho_{A}\log\rho_{A}$

saturation after different times
 t~ v I (open boundary conditions)

A. Läuchli and C. Kollath (2008)

Summary: quench

- what determines speed of light-cone?
- deviations from light-cone?
- general understanding of speed?
- Long-time limit?

S. Manmana et al. (2007) non-integrable fermionic model
specific exactly solvable models (Luttinger model, Ising model, ...)
M. Rigol et al. PRL 98, 50405 (2007),
M. Cazalilla PRL (2007), P. Calabrese and
Cardy PRL (2006), Barthel and Schollwöck (2008), Roux(2008), Flesch et al (2008)...

Dynamic of local excitations

single particle excitations

density perturbations

•characteristics of systems

•transport through nanostructures

•information transfer

here: spin-charge separation in real time

Dynamics of single particle excitations

3D Fermi liquid

 quasi-particle with spin and charge

1D Luttinger liquid ■ separation of spin and charge wey feature

Spin-charge separation: simple sketch

one-dimension

two-dimensions

are held together

Condensed matter physics

 $\mathsf{H} = \mathsf{H}_{\downarrow} + \mathsf{H}_{\uparrow} + \mathsf{H}_{\mathsf{interation}}$

introducing charge: $\rho(x) \sim \rho_{\pm}(x)$ -bosonization valid at low energy and spin: $\sigma(x) \sim \rho_{\pm}(x) - \rho_{\pm}(x)$

using bosonic (amplitude and phase) fields \Rightarrow H = H_o + H_o short times?

no interaction

short times? strong perturbations? interfaces?

Single particle excitation two component fermions

Single particle excitation

C.Kollath, U. Schollwöck, and W. Zwerger PRL 95, 176401

Single particle excitation and entropy growth

- separation of spin and charge
- strong growth of entropy with time
- contribution of spin and charge part

two component bosons

A. Kleine, CK, I. McCulloch, U. Schollwöck (2008)

Density excitation and its entropy growth

Comparison of maximum entropy growth

- separation of spin and charge
- strong growth of entropy with time for single particle excitation (numerically difficult)
- slow growth of entropy with time for density excitation

Experimental observations

condensed matter:

Auslaender et al. (2005)

tunneling between parallel wires

cold atoms:

 detection in real time measure of density average over several lattice sites

 Raman spectroscopy spectral function

Dao et al. PRL 98, 240402 (2007) Stewart et al. Nature 454 (2008)

Spectral function

two component mixture of bosons in one-dimension

A. Kleiner, C.Kollath, I.McCulluoch, T. Giamarchi, U. Schollwöck, (2008)

Applications of DMRG variants

•non-equilibrium situations dynamics across quantum phase transition

A. Laeuchli and CK (2008)

•finite temperature thermodynamics in spin-ladders

 local excitations & dynamic properties spin-charge separation

•higher dimensions

•...

Postdoc position available

