

Weak-Coupling CT-QMC: projective schemes and applications to retarded interactions.

F.F. Assaad (IPAM January 26-30, 2009)

<u>Outline</u>

> Weak coupling CT-QMC (Rubtsov et al. PRB 05).

Projective schemes.

Retarded interactions: phonon degrees of freedom.

> Application to the 1D quarter filled Holstein model.

Conclusions.

lius-Maximilians

F.F. Assaad and T.C. Lang Phys. Rev. B 76, 035116 (2007), Phys. Rev. B 78 155124 (2008) I. The method. Anderson Model (Rubtsov et. al PRB (05))

$$S = \underbrace{-\int d\tau \, d\tau' \, d_{\sigma}^{+}(\tau) \, \mathcal{G}_{0}^{-1}(\tau - \tau') \, d_{\sigma}(\tau')}_{S_{0}} + U \int_{0}^{\beta} d\tau \underbrace{d_{\uparrow}^{+}(\tau) \, d_{\uparrow}(\tau)}_{n_{\uparrow}(\tau)} d_{\downarrow}^{+}(\tau) \, d_{\downarrow}(\tau)$$

Dyson. Expansion around U=0.

$$\frac{\operatorname{Tr}\left[e^{-\beta H}\right]}{\operatorname{Tr}\left[e^{-\beta H_{0}}\right]} = \sum_{n} \int_{0}^{\beta} d\tau_{1} \cdots \int_{0}^{\tau_{n-1}} d\tau_{n} \left(-U\right)^{n} \left\langle n_{\uparrow}(\tau_{1})n_{\downarrow}(\tau_{1})\cdots n_{\uparrow}(\tau_{n})n_{\downarrow}(\tau_{n})\right\rangle_{0}$$

Weight / Sign.

$$H_U \rightarrow \frac{U}{2} \sum_{s=\pm 1} \left(n_{\uparrow}^{d} - \left[1/2 - s\delta \right] \right) \left(n_{\downarrow}^{d} - \left[1/2 + s\delta \right] \right) = -\frac{K}{2\beta} \sum_{s} e^{s\alpha \left(n_{\uparrow}^{d} - n_{\downarrow}^{d} \right)}$$

$$K = U\beta (\delta^2 - 1/4), \ \cosh(\alpha) - 1 = \frac{1}{2(\delta^2 - 1/4)}, \qquad \delta > 1/2$$

→ New dynamical variable s. Exact mapping onto CT-Hirsch-Fye (K. Mikelsons et al. preprint) (Rombouts et al. PRL 99, Gull et. al EPL 08)

→Sign problem behaves as in Hirsch-Fye. (Absent for one-dimensional chains, particle-hole symmetry, impurity models)

$$\frac{\operatorname{Tr}\left[e^{-\beta H}\right]}{\operatorname{Tr}\left[e^{-\beta H_{0}}\right]} = \sum_{n} \int_{0}^{\beta} d\tau_{1} \cdots \int_{0}^{\tau_{n-1}} d\tau_{n} \quad (-U)^{n} \operatorname{det}\left[M_{n}\left(\tau_{1}, \cdots, \tau_{n}\right)\right]$$

Sum with Monte Carlo Weight

Weight / Sign.

$$H_U \rightarrow \frac{U}{2} \sum_{s=\pm 1} \left(n_{\uparrow}^d - \left[\frac{1}{2} - s\delta \right] \right) \left(n_{\downarrow}^d - \left[\frac{1}{2} + s\delta \right] \right) = -\frac{K}{2\beta} \sum_s e^{s\alpha \left(n_{\uparrow}^d - n_{\downarrow}^d \right)}$$

$$K = U\beta(\delta^2 - \frac{1}{4}), \ \cosh(\alpha) - 1 = \frac{1}{2(\delta^2 - \frac{1}{4})}, \qquad \delta > \frac{1}{2}$$

$$H_U = U \left(n_{\uparrow}^d - \left[\frac{1}{2} - \delta \right] \right) \left(n_{\downarrow}^d - \left[\frac{1}{2} + \delta \right] \right) + \underbrace{U\delta(n_{\uparrow}^d - n_{\downarrow}^d)}_{\text{Absorb in } H_0}$$

> Particle-Hole symmetry $\delta = 0$ and only even powers of n occur in expansion.

Sampling.

Configuration C: set of n-vertices at imaginary times $[\tau_1, s_1][\tau_2, s_2] \cdots, [\tau_n, s_n]$

$$\frac{\operatorname{Tr}\left[e^{-\beta H}\right]}{\operatorname{Tr}\left[e^{-\beta H_{0}}\right]} = \underbrace{\sum_{n} \int_{0}^{\beta} d\tau_{1} \sum_{s_{1}} \cdots \int_{0}^{\tau_{n-1}} d\tau_{n} \sum_{s_{n}} \left(-\frac{U}{2}\right)^{n} \operatorname{det}\left[M_{n}\left(\tau_{1}, s_{1} \cdots, \tau_{n}, s_{n}\right)\right]}_{Sum \text{ with Monte Carlo}}$$
Weight

Measurements.

$$G^{\sigma}_{C}(\tau,\tau') = \frac{\left\langle T H_{U}[\tau_{1},s_{1}]\cdots H_{U}[\tau_{n},s_{n}] \hat{d}_{\sigma}^{+}(\tau)\hat{d}_{\sigma}(\tau') \right\rangle_{0}}{\left\langle T H_{U}[\tau_{1},s_{1}]\cdots H_{U}[\tau_{n},s_{n}] \right\rangle_{0}} = G^{\sigma}_{0}(\tau,\tau') - \sum_{\alpha,\beta=1}^{n} G^{\sigma}_{0}(\tau,\tau_{\alpha}) \left(M^{\sigma}_{n}^{-1} \right)_{\alpha\beta} G^{\sigma}_{0}(\tau_{\beta},\tau')$$

Wick theorem applies for each configuration C of vertices.

Direct calculation of Matsubara Green functions.

$$G^{\sigma}_{C}(i\omega_{m}) = G^{\sigma}_{0}(i\omega_{m}) - G^{\sigma}_{0}(i\omega_{m})\sum_{\alpha,\beta=1}^{n} e^{-i\omega_{m}\tau_{\alpha}} \left(M^{\sigma}_{n}\right)_{\alpha\beta} G^{\sigma}_{0}(\tau_{\beta},0)$$

$$\frac{\mathrm{Tr}\left[e^{-\beta H}\right]}{\mathrm{Tr}\left[e^{-\beta H_{0}}\right]} = \underbrace{\sum_{n} \int_{0}^{\beta} d\tau_{1} \sum_{s_{1}} \cdots \int_{0}^{\tau_{n-1}} d\tau_{n} \sum_{s_{n}} \underbrace{\left(-\frac{U}{2}\right)^{n} \det\left[M_{n}\left(\tau_{1}, s_{1} \cdots, \tau_{n}, s_{n}\right)\right]}_{Sum \text{ with Monte Carlo}}$$
Weight

Average Expansion parameter.

$$\langle n \rangle = -\beta U \left\langle \left(n^{d} + \frac{1}{2} \right) \left(n^{d} + \frac{1}{2} \right) - \delta^{2} \right\rangle$$

>CPU time scales as $<n>^3$ \rightarrow same scaling as Hirsch-Fye.

> <n> is minimal at particle-hole symmetric point, $\delta = 0$

Histogram of expansion parameter.

Examples.

a) Particle-hole symmetric Anderson Model, U/t=4.

$$\langle n \rangle = 270$$

Hirsch-Fye: $L_{\text{Trot}} = 400 / 0.2 \quad (\Delta \tau t = 0.2)$
Speedup: $(2000 / 270)^3 \approx 400$

b) Off particle-hole Symmetry, U/t=4 β t=40.

Weak-Coupling CT-QMC: projective schemes and applications to retarded interactions.

F.F. Assaad (IPAM January 26-30, 2009)

> Weak coupling CT-QMC (Rubtsov et al. PRB 05).

Projective schemes. (M. Feldbacher, K Held, FFA PRL 2004)

Retarded interactions: phonon degrees of freedom.

> Application to the 1D quarter filled Holstein model.

Conclusions.

lius-Maximilians

F.F. Assaad and T.C. Lang Phys. Rev. B 76, 035116 (2007), Phys. Rev. B 78 155124 (2008)

II) Projective Schemes

Formulation.

$$\frac{\left\langle \boldsymbol{\psi}_{T} \left| e^{-\boldsymbol{\theta} H} \left| \boldsymbol{\psi}_{T} \right\rangle \right\rangle}{\left\langle \boldsymbol{\psi}_{T} \left| \boldsymbol{\psi}_{T} \right\rangle \right\rangle} = \sum_{n} \int_{0}^{\boldsymbol{\theta}} d\tau_{1} \sum_{s_{1}} \cdots \int_{0}^{\tau_{n-1}} d\tau_{n} \sum_{s_{n}} \left(-\frac{U}{2} \right)^{n} \det \left[M_{n} \left(\tau_{1}, s_{1} \cdots, \tau_{n}, s_{n} \right) \right]$$
Replace $G_{0}^{\sigma}(\tau_{2}, \tau_{1}) = \left\langle T \hat{d}_{\sigma}^{+}(\tau_{2}) \hat{d}_{\sigma}(\tau_{1}) \right\rangle$ by $\frac{\left\langle \boldsymbol{\psi}_{T} \left| T \hat{d}_{\sigma}^{+}(\tau_{2}) \hat{d}_{\sigma}(\tau_{1}) \right| \boldsymbol{\psi}_{T} \right\rangle}{\left\langle \boldsymbol{\psi}_{T} \left| \boldsymbol{\psi}_{T} \right\rangle}$ in determinant.

Note: $|\psi_T
angle$ has to be a Slater determinant !

Question:

$$G(\tau)$$
 for $\tau \in [-\theta_M, \theta_M]$, $\rightarrow G(i\omega_m) = \int_{-\infty}^{\infty} d\tau \ e^{i\omega_m \tau} G(\tau)$?

MaxEnt.

$$G(\tau) = \int d\omega \ K(\tau, \omega) A(\omega)$$

DMFT: self-consistency cycle.

$$G(i\omega_m) = \int d\omega \ \frac{A(\omega)}{i\omega_m - \omega}$$

 \rightarrow MaxEnt as a fitting procedure.

Example: Mott transition.

Hamiltonian:

$$\hat{H} = -t \sum_{\langle i,j \rangle} \hat{c}^{\dagger}_{i,\sigma} \hat{c}^{}_{j,\sigma} + U \sum_{i} \hat{n}^{}_{i,\uparrow} \hat{n}^{}_{i,\downarrow}$$

Bethe-DOS: bandwidth W=4

Phase diagram:

Simulations at $\theta t \approx 20-30$ give good estimate of ground state properties.

Weak-Coupling CT-QMC: projective schemes and applications to retarded interactions.

F.F. Assaad (IPAM January 26-30, 2009)

> Weak coupling CT-QMC (Rubtsov et al. PRB 05).

Projective schemes. (M. Feldbacher, K Held, FFA PRL 2004)

Retarded interactions: phonon degrees of freedom. (Hybridization expansion Werner & Millis PRL 99 07)

Application to the 1D quarter filled Holstein model.

Conclusions.

lius-Maximilians

F.F. Assaad and T.C. Lang Phys. Rev. B 76, 035116 (2007), Phys. Rev. B 78 155124 (2008) **<u>III</u>**) Phonons. Integrate out phonons in favor of a retarded interaction.

Hubbard-Holstein:

$$\hat{H} = \sum_{i,j,\sigma} t_{i,j} \, \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow} + g \sum_{i} \hat{Q}_{i} (\hat{n}_{i} - 1) + \sum_{i} \frac{\hat{P}_{i}^{2}}{2M} + \frac{k}{2} \hat{Q}_{i}^{2}$$

Integrate out the phonons

$$Z = \int \left[dc^+ dc \right] \exp \left[-S_0 - U \int_0^\beta d\tau \ n_{i\uparrow}(\tau) n_{i\downarrow}(\tau) + \int_0^\beta d\tau \int_0^\beta d\tau' \sum_{i,j} [n_i(\tau) - 1] D^0(i - j, \tau - \tau') [n_j(\tau') - 1] \right] \right]$$

$$D^{0}(i - j, \tau - \tau') = \delta_{i,j} \frac{g^{2}}{2k} P(\tau - \tau')$$
$$P(\tau) = \frac{\omega_{0}}{2(1 - e^{-\beta\omega_{0}})} \Big[e^{-|\tau|\omega_{0}} + e^{-(\beta - |\tau|)\omega_{0}} \Big], \quad \omega_{0} = \sqrt{k/M}$$

Attractive, retarded interaction (time scale $1/\omega_0$).

Antiadiabatic limit: $\lim_{\omega_0 \to \infty} P(\tau) = \delta(\tau) \rightarrow \text{Attractive Hubbard.}$

<u>III) Phonons.</u> Integrate out phonons in favor of a retarded interaction.

$$Z = \int \left[dc^{+} dc \right] \exp \left[-S_{0} - U \int_{0}^{\beta} d\tau \ n_{i\uparrow}(\tau) n_{i\downarrow}(\tau) + \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{i,j} [n_{i}(\tau) - 1] D^{0}(i - j, \tau - \tau') [n_{j}(\tau') - 1] \right] \right]$$

DDQMC. Expand both in Hubbard and retarded phonon interaction.

Vertices:

Weak-Coupling CT-QMC: projective schemes and applications to retarded interactions.

F.F. Assaad (IPAM January 26-30, 2009)

> Weak coupling CT-QMC (Rubtsov et al. PRB 05).

Projective schemes. (M. Feldbacher, K Held, FFA PRL 2004)

Retarded interactions: phonon degrees of freedom. (Hybridization expansion Werner & Millis PRL 99 07)

> Application to the 1D quarter filled Holstein model.

Conclusions.

lius-Maximilians

F.F. Assaad and T.C. Lang Phys. Rev. B 76, 035116 (2007), Phys. Rev. B 78 155124 (2008)

One-dimensional quarter filled Holstein model.

$$\hat{H} = \sum_{k,\sigma} \varepsilon(k) \hat{c}_{k,\sigma}^{\dagger} \hat{c}_{k,\sigma} + g \sum_{i} \hat{Q}_{i}(\hat{n}_{i}-1) + \sum_{i} \frac{\hat{P}_{i}^{2}}{2M} + \frac{k}{2} \hat{Q}_{i}^{2}$$

<u>1/4 Filled Holstein model @ $\omega_0 = 0.1t$ </u>

Obtained from:

- Static and dynamical spin and charge structure factors, and optical conductivity (Lattice simulations; L=20, 28, T/t=1/40).
- Temperature dependence of the single particle spectral function (CDMFT, $L_c=8-12$).

Static properties. Lattice simulations. $\omega_0 = 0.1t$

Dominant $2k_F$ charge correlations, at $\lambda \sim 0.35$

Static properties. Lattice simulations. $\omega_0 = 0.1t$

Pairing
$$P(r) = \left\langle \hat{\Delta}^{\dagger}(r) \hat{\Delta}(0) \right\rangle, \quad \hat{\Delta}^{\dagger}(r) = \hat{c}_{r,\uparrow}^{\dagger} \hat{c}_{r,\downarrow}^{\dagger}$$

Short ranged pairing correlations grow \rightarrow Two electrons with opposite spin share the same potential well (Bipolarons).

Long range pairing correlations drop \rightarrow Bipolarons tend to localize.

Static properties. Lattice simulations. $\omega_0 = 0.1t$

Pairing suppresses spin response.

Insulator or metal?

Optical Conductivity.

Continuity equation:

$$\sigma'(\mathbf{q},\omega) = \frac{\omega}{\mathbf{q}^2} \left(1 - e^{-\beta\omega}\right) N(\mathbf{q},\omega)$$

Long wavelength limit:

$$N(\mathbf{q}, \omega) \approx N(\mathbf{q}) \delta (v_c \mathbf{q} - \omega)$$
 with $N(\mathbf{q}) \approx \alpha \mathbf{q}$

$$\Rightarrow \ \sigma'(\omega) = \lim_{\mathbf{q} \to 0} \sigma'(\mathbf{q}, \omega) \approx \alpha v_c \delta(\omega) \quad \text{at T=0.}$$

[→] λ =0.35 is a metallic state!

Spin dynamical structure factor. DDQMC lattice simulations. $\omega_0 = 0.1t$

$$\left| S(q,\omega) = \frac{1}{Z} \sum_{n,m} e^{-\beta E_m} \left| \langle n | \hat{S}_z(q) | m \rangle \right|^2 \delta(E_n - E_m - \omega) \right| \quad \beta t = 40, \ \rho = 0.5$$

\rightarrow Two particle data is consistent with:

Luttinger Liquid.		Peierls phase. Bipolaronic CDW.	
Gapless spin Gapless charge.	~ 0.3	Gapfull spin Gapless charge. \rightarrow Luther-Emery.	λ

 \rightarrow Confirmation with single particle spectral function.

0.01

0.001

 $\Sigma(i\omega_m) =$

b) Single particle spectral function. Peierls phase insulating phase. CDMFT $L_c=12$.

Luttinger Liquid, $\lambda = 0.15, 0.25$

$$\langle n(\boldsymbol{r})n(\boldsymbol{0})\rangle = \frac{K_{\rho}}{(\pi\boldsymbol{r})^2} + A_1 \cos(2\boldsymbol{k}_f \boldsymbol{r})\boldsymbol{r}^{-1-K_{\rho}} + \cdots + A_2 \cos(4\boldsymbol{k}_f \boldsymbol{r})\boldsymbol{r}^{-4K_{\rho}} \langle \boldsymbol{S}(\boldsymbol{r})\boldsymbol{S}(\boldsymbol{0})\rangle = \frac{1}{(\pi\boldsymbol{r})^2} + B_1 \cos(2\boldsymbol{k}_f \boldsymbol{r})\boldsymbol{r}^{-1-K_{\rho}} + \cdots \langle \Delta^{\dagger}(\boldsymbol{r})\Delta(\boldsymbol{0})\rangle = C\boldsymbol{r}^{-1-1/K_{\rho}} + \cdots$$

$$K_{\rho} = \pi \lim_{\boldsymbol{q} \to 0} \frac{\mathrm{d}N(\boldsymbol{q})}{\mathrm{d}\boldsymbol{q}}$$

Luther-Emery Liquid, $\lambda = 0.35$

$$\langle n(\boldsymbol{r})n(\boldsymbol{0})\rangle = \frac{A_0}{\boldsymbol{r}^2} + A_1 \cos(2\boldsymbol{k}_f \boldsymbol{r}) \boldsymbol{r}^{-K_{\rho}} + \cdots + A_2 \cos(4\boldsymbol{k}_f \boldsymbol{r}) \boldsymbol{r}^{-4K_{\rho}} \langle \Delta^{\dagger}(\boldsymbol{r})\Delta(\boldsymbol{0})\rangle = C \boldsymbol{r}^{-1/K_{\rho}} + \cdots$$

Dominant $2k_f$ charge $\rightarrow K_{\rho} < 1$

Pairing correlations fall of quicker than $1/r^2 \rightarrow K\rho < 1/2$

Summary.

Weak-coupling CT-QMC.

- > Simple and flexible method. Perfectly suited for cluster methods (DCA, CDMFT)
- Allows to acces "large" clusters.
- Projective schemes
- > Generalization to include phonons.

1/4 Filled Holstein model .

Charge, spin and single particle spectral functions, and temperature dependence thereof.