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Outline

• Introducing context: high-throughput calculations

• General considerations
M. Reiher, Isr. J. Chem. 62 2021, e202100101; arXiv: 2109.03732

• Selection of a few specific examples
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Imagine Unsupervised High-Throughput
Calculations such as Reaction Networks

J. Unsleber, M. Reiher, Annu. Rev. Phys. Chem. 71, 2020, 121

G. N. Simm, A. Vaucher, M. Reiher, J. Phys. Chem. A 123, 2019, 385
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Fully Automated Explorations
• Invest (cheap) computer time by massively searching for new

intermediates, transition states, elementary steps, side
reactions, degradation reactions ...

• Benefits from our new developments: fast semi-empirical
methods, new transition-state search engines, stable orbital
optimization, ...
A. C. Vaucher, M. Reiher, J. Chem. Theory Comput., 2018, 14, 3091–3099.

A. C. Vaucher, M. Reiher, J. Chem. Theory Comput., 2017, 13, 1219.

A. H. Mühlbach, A. C. Vaucher, M. Reiher, J. Chem. Theory Comput., 2016, 12, 1228.

T. Husch, M. Reiher, J. Chem. Theory Comput., 2018, 14, 5169.

T. Husch, A. C. Vaucher, M. Reiher, Int. J. Quantum Chem., 2018, e25799

• Big data problem (no manual inspection possible!)
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Chemoton: Autonomous Exploration Framework

G. N. Simm, M. Reiher, J. Chem. Theory Comput., 2017 13, 6108-6119.
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Demonstration Example – Formose Reaction
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• Prebiotic polymerization reaction

• Initiator (e.g., glycolaldehyde) required

• Autocatalytic mechanism likely

A. Butlerow, Justus Liebigs Ann. Chem. 120 (1861) 295; R. Breslow, Tetrahedron Lett. 1 (1959) 22.

has been subject of exploration studies: e.g., A. Aspuru-Guzik and co-workers
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Formose Reaction – Computational Details

• DFT: PBE / double-ζ basis
• Exploration statistics

– 150 000 calculations
– 1000 unique molecular

configurations
– 10 000 transition states

• Largest network obtained so
far for this reaction — but still
small and chemically
incomplete

G. N. Simm, M. Reiher, J. Chem. Theory Comput., 2017 13, 6108-6119.
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Automated Mechanism Generation – Subnetwork:

formaldehyde, glycolaldehyde

triose

tetrose

1 - 4 carbon atoms

virtual flask containing water

virtual flask

G. N. Simm, M. Reiher, J. Chem. Theory Comput., 2017 13, 6108-6119.
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Formation of D-Erythrose
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formaldehyde, glycolaldehyde

triose

tetrose

1 - 4 carbon atoms

virtual flask containing water

virtual flask

G. N. Simm, M. Reiher, J. Chem. Theory Comput., 2017 13, 6108-6119.
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Reaction Network for Propylene and Dioxygen

Stable and general explorations 
but suffering from combinatorial explosion

9

Compounds as nodes colored according to their order of discovery
from purple to yellow

Steiner M., Reiher M., Top. Catal. 2022, 65, 6-39

Brute-force exploration with approximative DFT methods (tight binding) 

starting from propylene + oxygen

Settings:

• No conformers, barrier <200 kJ/mol, size limit C10H22O7

Resulting Network

• 4,200 compounds connected by 6,300 reactions

Computational Cost:

• 109 individual energy calculations

• 5,000 days of CPU time
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Complex network generated by automated
exploration

⇒ now dock to kinetic modeling

... but what about accuracy?

(Recall: energy differences enter an exponential in a
rate expression)
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Uncertainty Quantification: Overview

• Quantum chemical methods rely on a range of approximations

• The effect of these approximations is usually difficult to assess

• Therefore, the uncertainty of a quantum chemical result is often
not known

• However, knowledge of this (systematic) error is important to
assess the reliability of any given method

Markus Reiher May 6, 2022 12



Traditional Approaches to Determine Uncertainty

• Compare to very accurate reference calculations (only
affordable for comparatively small systems)
G. N. Simm, J. Proppe, M. Reiher, Chimia, 2017, 71, 202.

• Rely on benchmark studies
(not transferable across chemical space)
T. Weymuth, M. Reiher, arXiv:2204.06659
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General Remarks on Quantum Chemical Methods

M. Reiher, Isr. J. Chem. 62 2021, e202100101; arXiv: 2109.03732

Statement 1: The theoretical foundations of electronic structure
theory are very well established and understood.
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General Remarks on Quantum Chemical Methods

M. Reiher, Isr. J. Chem. 62 2021, e202100101; arXiv: 2109.03732

Statement 2: The quantum mechanical Coulomb interaction of two
electrons is the crucial challenge for accurate approximations.
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General Remarks on Quantum Chemical Methods

M. Reiher, Isr. J. Chem. 62 2021, e202100101; arXiv: 2109.03732

Statement 3: While the discretization error introduced by orbital
and geminal basis sets – as well as any other error that results from

the technical implementation of solution procedures – may be
systematically reduced, its value in an actual calculation is usually

not precisely known.
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General Remarks on Quantum Chemical Methods

M. Reiher, Isr. J. Chem. 62 2021, e202100101; arXiv: 2109.03732

Statement 4: The individual absolute error of a specific quantum
chemical result is usually very hard, if not impossible, to assess

accurately.
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General Remarks on Quantum Chemical Methods

M. Reiher, Isr. J. Chem. 62 2021, e202100101; arXiv: 2109.03732

Observation: Electronic structure models are affected by some
error that is usually not assessed in a specific application.

Instead one often relies on experience and intuition gained with
some approach.

(Most approximations rely on error compensation that leads to more
reliable results for relative quantities, but their precise accuracy for a

specific case under study is typically not known either.)
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General Remarks on Quantum Chemical Methods

M. Reiher, Isr. J. Chem. 62 2021, e202100101; arXiv: 2109.03732

Conclusion 1: While we have a very good understanding of what
approximations in electronic structure theory are feasible and
efficient, they are, in all cases, affected by an error that will be

unknown for a specific molecular structure under consideration,
even if this error is expected to be small for certain approaches.
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General Remarks on Quantum Chemical Methods

M. Reiher, Isr. J. Chem. 62 2021, e202100101; arXiv: 2109.03732

Corollary: Transferability of benchmark results to a specific case
under investigation cannot be guaranteed in a rigorous manner.
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General Remarks on Quantum Chemical Methods

M. Reiher, Isr. J. Chem. 62 2021, e202100101; arXiv: 2109.03732

Conclusion 2: Bayesian uncertainty quantification is a way out of
the error-assessment problem, but requires continuous

benchmarking – ideally with error assignment for the reference data
themselves. This benchmarking needs to be adjusted to the specific

systems under study.

Reference data point calculations must be selected on the basis of
confidence intervals taken, for instance, from an underlying machine

learning model.

Its accuracy will depend on the measure with which one strides
across the parameter space.
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General Remarks on Quantum Chemical Methods

M. Reiher, Isr. J. Chem. 62 2021, e202100101; arXiv: 2109.03732

Conclusion 3: One needs to know how accurate a computed result
will be for a specific application.

Bayesian error estimation can be the key to provide this information,
also weeding models of similar type and accuracy, hence reducing

the number of models that will be required.
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General Remarks on Quantum Chemical Methods
M. Reiher, Isr. J. Chem. 62 2021, e202100101; arXiv: 2109.03732

Conclusion 4: Generalist electronic structure models cannot be
accurate and fast at the same time (for large molecules or molecular

aggregates).

System-focused models can be made fast and accurate, but their
transferability, i.e., their accuracy for related structures, must be
monitored because they have not been tested on some arbitrary

reference data.

Having system-focused models requires autonomy regarding
parametrization and uncertainty quantification, and therefore,

efficient automated procedures are needed in order to be practical.
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Examples

• Error-controlled reaction network exploration

• Improved semi-classical dispersion interactions
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Gaussian Processes (GPs)

A Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution (a distribution
over functions). It is defined by a mean function and a covariance
function (kernel).

i

X i

Mean
Confidence
Sample

E [Xi ] = 0

cov(Xi , Xj ) = exp
(
− 1

2`2 |i − j|2
)

+ δi ,jσ
2

σ2 = 1, `2 = 1
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Error Estimation with Gaussian Processes

Training: Optimization of hyperparameters (σ2 and `2) with
(training) data.

i

X i
Truth
Data
Mean
Confidence
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Error Estimation with Gaussian Processes

Training: Optimization of hyperparameters (σ2 and `2) with
(training) data.

i

X i
Truth
Data
Mean
Confidence
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Part 1:

• Error-controlled reaction network exploration
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Error-Controlled Exploration of Reaction Networks

• Obtain the observable of interest (e.g., energies) from a
statistical model which is fast to evaluate (e.g., via
machine-learning using Gaussian processes)

• Obtain error estimate from this statistical model

• If error is above a given threshold, add the corresponding point
to the training set and retrain the model

G. N. Simm, M. Reiher, J. Chem. Theory Comput., 2018, 14, 5238.
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Gaussian Process (GP) regression
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• mean of GP interpolates between reference data

• variance is constructed from similarity measure

• get new reference point where variance is high
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Distance Metric in Chemical Space

0.1
0.2

0.3
0.4

0.5
0.6

• Application of ML to chemical
systems requires an adequate
kernel→ distance d in chemical
space as Input (e.g., SOAP by
Csanyi et al.)

• Distance metric introduced by the
kernel demonstrated at the example
of a reaction subnetwork

• Contour lines represent distance
d(x, x′) between reactant in the
center (x) and products (x′).
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Error-Controlled Exploration of Reaction Networks

G. N. Simm, M. Reiher, J. Chem. Theory Comput., 2018, 14, 5238.
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How Obtain Reference Data in Rolling Fashion?

• Explicitly correlated coupled cluster, if single-reference

see work by Tenno, Klopper, Werner, Neese, ...

Black-box multi-configuration SCF: DMRG

shown to work also for transition metal compounds:

K. H. Marti, I. Malkin Ondik, G. Moritz, M. Reiher, J. Chem. Phys. 128 (2008) 014104

see also work by Yanai, Kurashige, Chan, Legeza, Wouters, Van Neck, ...
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DMRG with Matrix Product States (MPS) and
Matrix Product Operators (MPO)

Our new MPO-based DMRG program: QCMaquis
Download: http://www.reiher.ethz.ch/software/maquis.html
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∑
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Ŵ =
∑
σ,σ′

wσσ′ |σ〉〈σ′| →
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S. Keller, M. Dolfi, M. Troyer, M. Reiher, J. Chem. Phys. 143, 244118 (2015)
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How to choose active orbitals in an
automated way if multi-configuration
calculations must be launched in an

automated way?
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Entanglement Measures
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Automated Orbital Selection Algorithm
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Black-Box DMRG Calculations: autoCAS

QCMaquis
autoCAS – Graphical	User	Interface

scenarios	with	individual	 flowcharts:
• static	molecules
• several	excited	states
• reactions
• dynamics?

OpenMolcas

initial	orbitals	(e.g.	SCF,	CASSCF	with	small	CAS)

DMRG	calculation

orbital	entanglement

OpenMolcas
orbital	optimization

DMRG-SCF

final	calculation	including	dynamical	correlation

OpenMolcas

autoCAS:	http://www.reiher.ethz.ch/software/autoCAS

OpenMolcas:	https://gitlab.com/Molcas/OpenMolcas

Software: C. J. Stein, M. Reiher, J. Comput. Chem. 40, 2019, 2216
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Part 2:

• Improved semi-classical dispersion interactions
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Physical descriptor for disperion

From the atom pair-wise DFT-D3(BJ) correction1

ED3(BJ)
IJ =

∑
n=6,8

sn
CIJ

n

Rn
IJ +

(
a1

√
CIJ

8 /CIJ
6 + a2

)n ∀I 6= J, 0 else

with RIJ : distance I to J, CIJ
{6,8}: dispersion coefficients, and parameters s{6,8}, a{1,2}

we took – in analogy to the Coulomb matrix2 – the sorted
eigenvalues of the resulting matrix as descriptor.3

1S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
2M. Rupp, A. Tkatchenko, K.-R. Müller, Phys. Rev. Lett. 2012, 108, 058301
3J. Proppe, S. Gugler, M. Reiher, J. Chem. Theory Comput. 2019, 15, 6046.
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The target variable

Our target variable: dispersion energies.1

• result of the reference calculation, y ref

• ∆-ML: difference between reference
calculation and cheap method,
∆y = y ref − ycheap

In our example:
ref ≡ DLPNO-CCSD(T)/CBS
cheap ≡ PBE-D3(BJ)/ma-def2-QZVPP

P
B

E

ycheapyre
f

D
3

GP

1J. Proppe, S. Gugler, M. Reiher, J. Chem. Theory Comput. 2019, 15, 6046.
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Similarity measures

Gaussian kernel:

k
(
x i , x j

)
= exp

(
− 1

2`2

(
x i − x j

)2) (1)

• For two descriptors x i and x j (here, the eigenvalues of the D3
correction above) that are the same, the kernel yields unity.

• Similarity decays exponentially with the tunable length
parameter `.
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Data sets1

Set # Description

S13x8 104 dispersion-dominated subset of S66x8
ROTA 1,100 ethyne–pentane dimers; varying relative ori-

entations; centroid distances dc = 3.5–10 Å
CONF 44 ethyne–pentane dimers; varying relative ori-

entations; pentane conformations; dc = 5.2 Å
TOTAL 1,248 all molecular reference systems (dimers)

1J. Proppe, S. Gugler, M. Reiher, J. Chem. Theory Comput. 2019, 15, 6046.
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Electronic-structure calculations1

• ORCA 4.0.1. and CP-corrected.

• PBE: ma-def-QZVPP basis set, def2-QZVP auxiliary basis set

• DLPNO-CCSD(T): aug-cc-pVT⁄QZ basis sets, aug-cc-pVQ⁄5Z
aux. basis sets

• TZ and QZ DLPNO-CCSD(T) energies extrapolated to CBS.

• D3 with Becke–Johnson (BJ) damping.

1J. Proppe, S. Gugler, M. Reiher, J. Chem. Theory Comput. 2019, 15, 6046.
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Batchwise variance based sampling (BVS)

Instead of sampling randomly, L new points at maximum variance
are added to train set1:

• L = 40 as good
as L = 1 but
much less ref.
data needed
• Faster than

random
sampling.

1J. Proppe, S. Gugler, M. Reiher, J. Chem. Theory Comput. 2019, 15, 6046.
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Workflow overview1

Benchmark
DLPNO-CCSD(T) (very slow)

Approximation
PBE-D3(BJ)-GP

Training Set

Query Set

Initial reference data
(from existing DB, user-selected, etc.)

On-the-fly reference data
(from BVS-guided active learning)

Pool of new molecular systems
(from collaborators, literature, molecular

dynamics, chemical-space exploration, etc.)

GP (fast)
Gaussian process

D3(BJ) (fast)

PBE (slow)

system-focused
(hyper-)parameters:

↵0, ↵1, ↵2

1 optimize

4 re-optimize (update)

3 if V > threshold

2 predict

global parameters:
a1, a2, s8

E[Edisp] (mean)
V[Edisp] (variance)

1J. Proppe, S. Gugler, M. Reiher, J. Chem. Theory Comput. 2019, 15, 6046.
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Related work on uncertainty quantification

• Bootstrapping and jacknifing for physico-chemical models such
as those for 57Fe Mössbauer isomer shifts prediction.1

• Quantification of parameter dependence of Grimme’s
semiclassical D3 dispersion correction with bootstrap analysis.2

• ∆-machine learning to improve on system-focused
self-parametrizing atomistic models. 3 , 4

1J. Proppe, M. Reiher, J. Chem. Theory Comput. 2017, 13, 3297.
2T. Weymuth, J. Proppe, M. Reiher, J. Chem. Theory Comput. 2018, 14, 2480.
3C. Brunken, M. Reiher, J. Chem. Theory Comput. 2020, 16, 1646.
4C. Brunken, M. Reiher, J. Chem. Theory Comput. 2021, 17, 3797.
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Conclusions

• Traditional ways of benchmarking quantum chemical methods
are not necessarily reliable because of a lack of transferability

• GPR delivers error estimates, exploited to identify need for
system-specific reference data on the fly

• We obtained system-focused, self-improving models
equipped with confidence intervals (at examples: reaction
network exploration and dispersion interactions)
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