
Model Reduction using localized bases and DMRG

DMRG methods for model 
Hamiltonians describing 
superconductivity and magnetism

I work primarily in two different areas

DMRG applied to electronic 
structure (local bases)

Garnet’s talk gave an excellent explanation for why these focuses are linked.  
This talk is primarily about the second topic, but let me show one slide on the 

first topic to show the connection



Phase diagram of t-t’-J 
model 

Jiang,Scalapino,White, 
PNAS 2021

J/t=0.4, based on width-8 cylinders

Compared to the actual materials, we 
capture many of the properties very nicely

— except superconductivity!  The hole 
doped side should have much stronger SC, 
but we find all the SC is on the electron 

side.  Conclusion:  the model needs fixing, 
but we are not sure how!



Collaborators:  Miles Stoudenmire and Yiheng Qiu (Gausslets) 
Kieron Burke, Tom Baker, Lucas Wagner, Randy Sawaya, Yiheng Qiu, Simons 

Collaboration—sliced basis and related 

Thanks to the Simons Foundation, the NSF, and the DOE 

DMRG calculations done using ITensor  (itensor.org) 
Integral codes and MPO compression in Julia.

Outline 

1. Weaknesses of Gaussian bases for use with DMRG 
2. Sliced Bases 
3. Derivation of extended Hubbard models for 

Hydrogen chains using sliced basis DMRG 
4. Gausslet Bases

http://itensor.org


Entanglement and Wavefunction Compression

•A standard way to compress a matrix works if it has low rank, meaning its SVD has a 
small number of significant singular values λ

= =

•A wavefunction of spins or electrons in Fock space in a basis can be written as a 
matrix:        do the SVD on this

•The von Neumann entanglement entropy (with respect to the given bipartition) is 

Small S means the wavefunction is compressible.   The “Area Law” says that for most 
sensible H, S for the ground state grows with the area of the cut between the two 
sides rather than either volume.   Key ingredient:  local H,  also gaps   (Hastings) 
If you repeatedly cut the system in two in this way, you get a Matrix Product State 
(MPS) or tensor train.  This is the reason DMRG works—DMRG is a low 
entanglement approximation.

ψ(s1, s2, …, sN) = ψ((s1 . . sl), (sl+1, …, sN)) = ψij

SVN = − ∑
k

λ2
k ln λ2

k



Quantum chemistry DMRG (White and Martin, 1999, much improved since — esp by Garnet’s group)

•White and Martin:  ~25 Gaussians, transformed basis to HF molecular orbitals, to 
treat one stretched water molecule

•Progress in two decades: ~100 active orbitals, selected from bigger Gaussian basis

Key technical issue:  there are N4 
interaction terms

1
2 ∑

ijkl

Vijklc†
i c†

j ckcl

This is in contrast to Hubbard-like models, where calculation time scales as N, so 
N~103 is fine for a chain
Gaussians are highly optimized to reduce N—not the number of Ham terms, nor the 
entanglement. For example, simple grids have N2 interactions 1

2 ∑
ij

Vijninj
Much 

larger N



Area Law and continuum problems in a basis

•The Area law is the key to the success of DMRG in lattice models (spin)

•What about in a basis?  k-space has no locality,  
•Exception:  noninteracting/Hartree Fock, S=0 if basis=HF orbs

Mostly localized basis:
Expect: (theory?)

             

Core orbs are well treated by HF,  so we might want to switch from HF orbs for 
some degrees of freedom to localized orbs for others…

S ∝ V

S ∼ Aλ

S ∝ A
DMRG: matrix size m ∼ eαS



What is the best basis to use with DMRG?
•Area Law (localized in real space) versus HF determinant (energy-localized)

•An approach developed by Garnet’s group: localize separately within “occupied basis 
space” and “unoccupied space”.   Alternatively, Legeza has developed on-the-fly basis 
rotations to reduce entanglement.   Both much better than pure HF orbs.

Computational issues:  any standard basis gives a two electron integral         
which greatly worsens computational scaling.  
Why not use a grid, which gives a diagonal    even if the number of 

grid points is larger?    

Vijkl

̂V = 1/2∑
ij

Vijninj



Grid based DMRG, 1D

• Along with Kieron Burke’s group we developed 1D grids and associated DMRG for 
1D continuum models, with soft Coulomb or expontial interactions, to understand 
DFT 

• Grid gives interactions as the favorable ,  which we further compressed into a 
matrix produc operator:  Result:    , linear scaling!
• Up to 100 pseudoatoms—4000 lattice sites, essentially exact results

• This is a great approach to 1D continuum problems!

Vij
N2 → N

Miles Stoudenmire, Kieron 
Burke, Lucas Wagner, …



Grid representations for 3D Electronic Structure?

•A naive 3D grid would give millions of points, but 
what about a grid in only one direction?? 

This is just as good as a 3D grid in terms of 
entanglement, and, it gives block sparsity for Vijkl

In Sliced Basis DMRG (Stoudenmire & SRW) we 
use a grid in the z direction, 2D Gaussians in x 
and y directions.  The Gaussians are slices of 
standard Gaussian basis sets

a

Transverse S functions



To DMRG, a sliced basis looks like a long 
multi-leg ladder Hubbard model, and 
our standard software (ITensor) can be 
used with little change. 

xn "slice"

orbital # j Standard sweeping 
(snake)

Application:  Hydrogen Chains 

Near-neighbor distance
0 0.02 0.04 0.06 0.08 0.1

1/Natom

-0.488

-0.486

-0.484

-0.482

E 
/ N

 (H
ar

tre
e)

0 500 1000
Natom

0

2000

4000

t sw
ee

p 
(s

ec
)

STO6

SB-STO6

Computation time:
Linear scaling, starting at 
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1000 atoms on a desktop, 
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Comparison with QCDMRG
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Model reduction: deriving Hubbard models for the H Chain

• Typical model derivations start with DFT, which is inaccurate for a 
stretched H-chain.  What if we had the exact H-chain solution:  how 
would we derive an effective model?

• Wannier functions:  instead of DFT or HF occupied orbitals, use the 
lowest Natural orbitals to define Wannier functions (Koch&Boedecker)  
While truncation to N/2 NOs is terrible, truncation to N omits 
only about  in the occupancy. [State-averaged RDM too]

• Defining the Wannier functions:  localize the N NOs by diagonalizing 
the z-coordinate matrix 

• In comparison with a conventional HF approach, the Wannier 
functions are almost identical (even though HF gives a poor ground 
state)!  Reassuring to conventional approaches.

• Generates fairly short range hoppings (evaluate integrals with WFs).  

• Coulomb integrals:  the very low occupancy of the omitted NOs 
tells us they can’t screen much.  Verification:  quantitative agreement 
between the original sliced basis and WF basis.

• Truncation to  interaction:  a simple truncation was very accurate

10−3

⟨j |z | j′ ⟩

Vij

Randy Sawaya and SRW, PRB



Deriving Hubbard models for the H Chain
• “Strong” model reduction:  

• Note that the half-filled Hubbard model is natural for the H-chain

(at larger R—interesting diffuse band occupancy at small R)

The Mott-Hubbard gap should make the long-range Coulomb 
interaction “removable” (?)

General strong reduction approach:  define the suitability of a 
Hamiltonian by the low lying states it generates, e.g. , and 
minimize:   .

This assumes the two H’s live in the same space, or we have a map 
between them (Lucas Wagner; Schuler et al PRL 2013)

Reducing all the way to a Hubbard model is OK (with the right 
parameters) but for very high accuracy, it is better to extend the 
Coulomb interaction a few atoms.  The onsite Hubbard term is 
completely different if you extend the interaction. 

Final checks: the models do an excellent job at long-range correlations 
and spin excitation energies.

|ψgr(Heff)⟩
⟨ψgr(Heff) |Hfull |ψgr(Heff)⟩



Going beyond sliced basis sets:  Factoring, DVR, etc?

• Sliced basis have poor scaling in the number of transverse functions M, 
,    terms 

• Need a more compact representation.  What about factoring  ?

- A factored relationship disappears once you make a compressed 
MPO,  so we don’t know how to make use of factoring in DMRG.

• Discrete variable representations (DVR):  gives a diagonal interaction! 
(e.g. sinc basis)  But, DVRs seem too delocalized for DMRG, worry 
about volume law entanglement

Wavelets were designed for achieving locality, completeness and 
orthogonality.  Can they help?

M ⪅ 15 N2
slM

4

Vijkl



Wavelet inspired approach
• Let’s go back to a grid: suppose we could use a very coarse grid, in fact 

with variable spacing (small at nucleus), so that only a modest number 
of grid points were needed, but we still had the diagonal Vij form for 
the el-el term?? This would be ideal for DMRG or tensor networks, 
and perhaps many other approaches.

• The first step:  instead of an ordinary grid, use a grid of special local 
basis functions.  Our wish list for these functions:

• Minimal width (“uncertainty”) in x and p2

• Orthonormal

• Complete (exact fit to any polynomial up to a specific order)

• Integrates like a delta function up to some polynomial order

Remarkably, if our functions satisfy these requirements, then they give a 
diagonal representation,                  as an approximation which converges 
rapidly with decreasing grid spacing

“Gausslet”

∫ dx G(x)xn = δn,0
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Vijkl → Vij

Trying to get 
the best 

properties of 
a grid and 

basis at the 
same time!
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Diagonal Approximations from the delta-function property

Assume  where  is the center of 

basis function , for smooth functions f.  Then the 
expansion coefficient (orthonormality) of f at point j is also 

.  Given a potential  and wavefunction , the 
expansion coeffient of  is .   Thus the 
diagonal matrix  acts as the potential energy matrix.

The same property holds for the two electron interaction, 

∫ d3r Sj( ⃗r)f( ⃗r) = f( ⃗rj) ⃗rj

Sj

f( ⃗rj) V( ⃗r) ψ( ⃗r)
Vψ V( ⃗rj)ψ( ⃗rj) = Vjψj

Vj

Vijkl → Vij



Gausslets
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1• How do we find local, orthogonal, complete functions satisfying the 
delta-function property?
• Standard orthogonal wavelet-scaling functions (Daubechies) 

satisfy compactness, orthogonality, completeness
• One specific set(coiflets) also have the delta-function property.
• These standard functions are not symmetric, with no closed 

form for the functions.  Integrals require unfamiliar wavelet tricks
• What are gausslets?  Glen Evenbly and I used a close relationship 

between wavelets and tensor networks (MERA) to develop 
symmetric ternary wavelets.  These are better than standard 
wavelets (see Glen’s IPAM talk).

• Gausslets are based on those, but I was able to construct them as 
a contraction over a grid of constant-width Gaussians, for easy 
integrals and a simple analytic closed form.

• 3D:  G(x)G(y)G(z), which is a sum of 3D Gaussians:  integrals are 
easy.  Easy to combine with standard Gaussian bases

“Gausslet”

G(x) =
X

j

bj exp[�
1

2
(3x� j)2]



1D tests of Gausslets
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using a diagonal approx to get the 
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a = spacing of the gausslets

Why are a grid of gausslets better 
than a grid?  You can add extra 

basis fns adapted to a singularity.
So far this makes a great 1D basis—need a few 
more improvements to make 3D really practical
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 Variable Resolution—more basis fns near nuclei

• How can we get resolution which varies in space while 
maintaining orthogonality and diagonal approximations?

• Coordinate transformation:  Let                be a smooth, 
one-to-one function.  Let Si(x) be a set of orthonormal 
gausslets.  Define a distorted gausslet

Then

If Si(u) integrates like a δ-function, so does

For this to be effective, the mapping must be very smooth.  
A simple analysis suggests the “inverse sinh” transformation

u ! x(u)

S̃i(x) = Si(u(x))
p

u0(x)

Z

x
S̃i(x)S̃j(x) =

Z

u
[u0(x)]�1S̃i(x(u))S̃j(x(u)) =

Z

u
Si(u)Sj(u) = �ij

Z

x
S̃i(x)P (x) =

Z

u
[u0(x)]�1S̃i(x(u))P (x(u)) = [x0(ui)]

1/2P (x(ui))

S̃i(x)

u(x) =
1

s
sinh�1(x/a)

Single atom transformation

a sets core size, s sets overall scale
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3D variable-grid gausslet bases
•  3D gausslets:  

• These live on a 3D distorted grid.  Spacings: near nuclei, ~0.5 Bohr, 
edges of atoms: ~4 Bohr

• Add to the gausslet basis a standard Gaussian basis, which is very good 
near the nucleus.   Othogonalize the Gaussians to the gausslets, and 
you can maintain a diagonal form for the interactions

G3D(x, y, z) = G(x)G(y)G(z)
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Simplest type of 
coordinate transformation

Multislicing Adding in GaussiansIntegrals still easy



Results:  Gausslet-DMRG, H10 chain
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 Hybrid gausslet-Gaussian basis-DMRG (Qiu & White,…)

Errors ~ 10-5 a.u.



 Convergence:  two electron cusp

Full CI on He atom
Easy to get below chemical accuracy, 

but also the el-el cusp slows 
convergence

• Cusp corrections: can we correct for the el-el 
cusp?   The local nature of gausslets makes this 
easier.  A substantial part of the cusp appears 
when two electrons are on the same gausslet. 

    with   

In a complete gausslet basis, .   What 
about a   correction?  In the spirit of 
density functional theory (LDA), we could try 
to find a local correction 

After studying the scaling behavior in simple 
cases we concluded the leading behavior was 

, and that the asymptotic behavior looked 
like a power law

Eonsite = ∑
i

Viidi di = ⟨ni↑ni↓⟩

di → 0
ΔVii

ΔVii(ni, di, Vii)

ΔVii(di)
ΔE = e0 ∑

i

dα
i (ansatz!)



Results:  Cusp corrections

ΔE = e0 ∑
i

dα
i

e0 = − 0.005078 α = 0.79

Universal values? (optimized 
over several two-electron systems)

He atom

Same  parametersΔE



Conclusions

• How you set up the Hamiltonian has a big impact on DMRG 
calculations, and Gaussian basis sets are not ideal 

• Sliced basis sets offer substantial advantages over Gaussians in 
chain systems like the H chain. 

• We tested ideas about model reduction when one has fully 
interacting calculations available.

• Gausslets are local, smooth, orthogonal bases which give 
diagonal interactions

• The can be combined with ordinary Gaussians to deal with 
cores.

• The local nature appears to allow good el-el cusp corrections



G(x) =
X

j

bj exp[�
1

2
(3x� j)2]

limited range approximate 
orthogonalizer

Uniform array of gaussians

Gausslets—a variation on our ternary wavelets with analytic integrals

To use them, all you 
need is the array of bj

Instead of using the scale-invariant functions, apply the wavelet transform once to a array of 
Gaussians, with an extra “orthogonalizer” layer in between [White, J. Chem. Phys. 147, 244102 (2017)]
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Exactly orthonormal
Polynomial completeness to 10th order

Integrates like a -function to 20th orderδ

Put one gausslet 
on each grid 

point.  Can form 
the bottom layer 
for further MERA

Weeks of 
nonlinear 

optimization


