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Electron density in equilibrium
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Magnetic Thomas-Fermi theory for 2d quantum dots

Lieb, Solovej, Yngvason 1995
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The N-particle Hilbert space for such a system is
hX,N — 62(X,CS)AN
s|X|
and it is convenient to work on Fock space §x = @ hx.n -
N=0
The algebra £(Fx) of bounded operators on Fx is generated by the
fermionic creation and annihilation operators a} ; and ay ;.

By Ax C L(Fx) we denote the sub-algebra of operators that
commute with the number operator X := Y~ _, a% ;a. ;.

Since for Y C X we have Ay C Ay, one can define the algebra of
local obsevarbles as

Aloe 1= U Ax .
Xczd | |X|<oo

The quasi-local algebra is the C*-algebra A := HH'”,
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the thermodynamic limit of a sequence of finite systems e.g. on cubes
A i={—k,....,k}¥ CZ9 ke N.

We consider also sequences of Hamiltonians that are sums of local
terms (“SLT operator families'),

Hot = D &(X),
XCAk
where the map

®:Po(Z9) = Ao, X = d(X) € Ax
is called an interaction.

A typical interaction for a physical Hamiltonian is of the form
ax T(x—y)ay + hc. +aja W(x—y)aja, if X={x,y}
(X) = 22(6(x) — 1)ax i X = {x}
0 otherwise

Then [|Hy*|| ~ |Ax] = (2k + 1),



Interacting fermions on the lattice

To quantify locality of an interaction resp. of the corresponding SLT
operators, one defines Banach spaces B of SLT operators with norm

B p 5 ey, Sliam(X))

where ¢ : [0,00) — (0,00) is a rapidly decaying function, e.g.

((r)=e*



Interacting fermions on the lattice

To quantify locality of an interaction resp. of the corresponding SLT
operators, one defines Banach spaces B of SLT operators with norm

B p 5 ey, Sliam(X))

where ¢ : [0,00) — (0,00) is a rapidly decaying function, e.g.

((r)=e*

In order to control also the localisation properties of elements of A,
one defines sub-algebras D C A with norm

[ (1 —En,) (B)H) .

181 = ] + sup (1070

where ¢ : [0,00) — (0, 00) is again a rapidly decaying function and
Ep, : A — Aj, denotes the conditional expectation.
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Proposition: Thermodynamic limit for the dynamics
Let Ho € B¢. Then for any B € A, the limit
MKt o —iHDkE
Ue(B) := lim e *Be ot e A
k—00

exists and defines a one-parameter family t — {{; of automorphisms of
the algebra A with densely defined generator Ly, : D(Lp,) — A.

Moreover, for suitable pairs fi, f> of rapidly decaying functions,
i : Dy, — Dy,
is a bounded operator and L(/t\k oEp, — 4 in norm.
Also the Liouvillian
Ly Ds = Dpy,  Lip(B) = lemoo[Hg‘k,EAk(B)]

is a bounded operator and the convergence is in norm.

Lieb, Robinson '72; ...; Bru, Pedra '16; Nachtergaele et al. '19;
Moon, Ogata '20; Henheik, T. '21.
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The standard gap condition
Standard gap assumption

Assume that smallest eigenvalue Eé\k(t) (ground state) of Hé\k(t) is
separated from the rest of the spectrum uniformly in the volume |Ag],

inf dist (£9"(1). o (Hp* (1) \ {E*(1)}) =t £ > 0.

Examples
» Electrons in a Chern-trivial insulator, i.e. with the chemical
potential 4 in a “band gap”.
» Electrons in a Chern-nontrivial insulator with periodic boundary
conditions.
» The filled Dirac sea.
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Not a ground state of Hy + eV — u9.
We call it a non-equilibrium almost-
stationary state (NEASS).

In non-interacting systems: adiabatic theory for “almost invariant
subspaces” was established in Nenciu '81, '02; Nenciu, Sordoni '03
(based on Helffer, Sjostrand '89); Panati, Spohn, T. '03.
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From now on we consider a time-dependent gapped Hamiltonian
Ho(t) € Bo—a, t € | C R, possibly perturbed by a time-dependent
operator £V/(t), where V(t) = V,(t) + Hi(t) is the sum of an SLT
operator Hi(t) € B.-2- and a Lipschitz potential V,(t), i.e.
V(1) = Z v(x,t) azax .
XEN,
Let
H-(t) :== Ho(t) +eV/(t)

and denote by Ut the corresponding adiabatic evolution family
generated by the time-dependent Liouvillian %LHE(t) with adiabatic
parameter n > 0, i.e.

e (B) = k'Lmoou?féAk(B) cA.

Note that for e = 0 we are in the usual adiabatic situation of a
time-dependent Hamiltonian with spectral gap.
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Adiabatic theorems for extended many-body systems

> Adiabatic theorems under the “standard gap assumption”
in finite volumes and for ¢ = 0 with error estimates that are
uniform in the volume were first shown by Bachmann, De
Roeck, Fraas '18.

» In T. '20 an adiabatic theorem under the “standard gap
assumption” in finite volumes also for € > 0 is shown, i.e. an
adiabatic theorem for NEASSs.

» In Henheik, T. '20 we prove an adiabatic theorem under

“standard gap assumption” in the infinite volume and for ¢ > 0,
i.e. for Ly, on A.
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Motivation: Response of Chern-nontrivial systems (e.g. quantum
Hall systems), where the Hamiltonian has no spectral gap in the
presence of edges.

Idea: Require the spectral gap only for the infinite system.
Problem: There is no limiting Hamiltonian for the infinite system.
A state p on A is called a Ly,-ground state, iff

p(B*Lyy(B)) >0 forall B e D(Ly,).

Let p be a Ly,-ground state and (#,, 7,,2,) be the corresponding
GNS triple. Then there exists a unique densely defined, self-adjoint
positive operator H, > 0 on #,, satisfying

ﬂp(eisc”O(B)) = eiSHPWp(B)e_iSHF’ and e_iSHPQp =Q,
forall B€ A and s € R.

H, is called the bulk Hamiltonian associated with p.
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Gap assumption in the bulk (cf. Moon, Ogata, JFA '19)

There exists g > 0 such that for each t € / the Liouvillian £y, (;) has
a unique ground state p; and

a(Hp )\ {0} C [g,00).
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Let the Hamiltonian H.(t) = Ho(t) + €V/(t) satisfy the previous
assumptions and denote by &7’} the Heisenberg time-evolution it
generates on A.
Then for any ¢,n € (0,1] and t € [ there exists a near-identity
automorphism °7(t) of A such that the super-adiabatic NEASS
defined by

My = peo By

has the following properties:

(1) It almost intertwines the time evolution: For any n € N and any
f € S, there exists a constant C, such that for any t € | and B € Dr

(N5 o thzg, — NE7) (B)|

EI7'|‘]. _|_ ,',]n+1

<G (11t = wl") 11Br.

d+1
”7+
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Super-adiabatic theorem for NEASSs

Let the Hamiltonian H.(t) = Ho(t) + €V/(t) satisfy the previous
assumptions and denote by &7’} the Heisenberg time-evolution it
generates on A.

Then for any ¢,n € (0,1] and t € [ there exists a near-identity
automorphism °7(t) of A such that the super-adiabatic NEASS
defined by

8777 Ly— 8777
My == pro By

has the following properties:

(2) It is local in time: B;"7 depends only on H. and its time
derivatives at time t.

(3) It is stationary whenever the Hamiltonian is stationary: if H. is
constant on an interval J C / then M5 = M5 is constant for t € J.

(4) I'If’0 has an explicit asymptotic expansion in powers of &.
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Super-adiabatic theorem for NEASSs

Let the Hamiltonian H.(t) = Ho(t) + €V/(t) satisfy the previous
assumptions and denote by &7’} the Heisenberg time-evolution it
generates on A.
Then for any ¢,n € (0,1] and t € [ there exists a near-identity
automorphism °7(t) of A such that the super-adiabatic NEASS
defined by

My = peo By

has the following properties:

(5) It equals the ground state of Hy whenever the perturbation
vanishes and the Hamiltonian is stationary: if for some t € [/ all
time-derivatives of H. vanish at time t and V/(t) = 0, then
I‘Iszrl — I_IE’O —

= U =
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» Why is this useful at all? It provides an immediate justification of
standard linear response (and higher order response) formulas for
systems that initially in gapped ground states.

See e.g. Henheik, T. '21.

» Proving uniqueness of the ground state p of Ly, and “fast
convergence” of p — p, e.g.

[(p = P")(B)| < Gyl B|dist(X, 0A) " (1)

for all B € Ax, are difficult problems that have not yet been
achieved for interacting fermionic systems.

For weakly interacting spin systems such a result has been shown
by Yarotzky '05. See also Henheik, T. 21 and Bachmann, De
Roeck, Fraas '21.

(See also Datta, Fernandez, Frohlich, Rey-Bellet '96).

» Assuming (1), in Henheik, T. '20 we also show an adiabatic
theorem for finite systems with a gap in the bulk.
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Thanks for your attention!



