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Electron density in equilibrium
because electrons are redistributed to screen the potential dif-
ference between the gates. We find that the overall shape of
the electron density is shifted from the case of VR50 and,
therefore, the maximum value of the electron density ns(x)
occurs away from x50 ~long-dashed lines in Fig. 1!. How-
ever, the width of the region occupied by electrons,
(a1b)/d is nearly independent of VR while the maximum
value of the electron density ns(x) becomes larger with an
increase of VR for given average electron density n̄ and bare
screening length a0 /d . In the lower panel of Fig. 2, we show
the maximum value of ns(x), a/d , and b/d as a function of
gate voltage VR for several sets of n̄ and a0 /d . With a given
average electron density n̄ /n050.458, the maximum value
of the electron density ns(x) with a0 /d50.001 ~solid! is
found to increase more rapidly than with a0 /d50.01 ~dot-
ted! as a function of gate voltage VR . Comparing the dotted
and dashed lines in Fig. 2~c!, we find that the variation of the
maximum value of ns(x) with increasing VR shows the same
increasing rate regardless of the average electron density
n̄ /n0 with a given value of a0 /d . The width of the region
occupied by electrons (a1b)/d is found to be nearly inde-
pendent of VR as can be easily seen from Fig. 2~d!. This
means that an asymmetric shape of the electron density
causes the variation of its maximum value with varying gate
voltage VR . This fact is found to be responsible for the se-
vere change of the electrostatic potential in the center of the
Hall bar at finite magnetic field, as discussed in the following
section.

B. Compressible and incompressible regions

For finite magnetic field and temperature, the self-
consistent problem is now a nonlinear integral equation, and
must be solved by a numerical iteration method. For this,
starting with the self-consistent potential at T50 and B50,
we first ‘‘heat’’ the electronic system sufficiently high and,
then, cool it slowly to the desired temperature. At each tem-
perature step we ensure fully converged results by employ-
ing the Newton-Raphson method to solve the nonlinear
equation of Eqs. ~10! and ~12!.
In the presence of a magnetic field, screening by electrons

is drastically changed due to the d-shaped density of states
D(E) in Eq. ~12!. According to Wulf et al.,11 an effective
screening length for finite magnetic field and temperature is
given as

aT5
kBT
\vc

4
p~22p !

a0 , ~16!

where p is the filling factor nH modulo 2 and nH is the local
filling factor defined as nH(x)5ns(x)/nL , with a Landau
level degeneracy nL51/2plm

2 . Thus, one expects a periodic
change of the screening property as a function of the mag-
netic field. There is essentially no screening when the chemi-
cal potential m lies in the gap between two successive Lan-
dau levels, i.e., p50. Otherwise, i.e., when m is pinned in a
Landau level, electrons show a nearly perfect screening at a
low temperature.
In this work, we express the magnetic field as the occu-

pation number n(0)[n(0)/nL , where n(0) is the maximum
of the electron density, ns(x)ux50 at B5T5VR50. For a

given set of the parameters the occupation number is in-
versely proportional to the magnetic field and indicates the
appearance of the incompressible region at x50. We expect
that at even integer values of n(0) the chemical potential m
is about to drop into the gap between two successive Landau
levels at x50 (T50) and, therefore, an incompressible re-
gion is about to be formed near x50. To understand the
effects of the magnetic field more easily, we first discuss
results calculated for a very low temperature, kBT/E250.005
@E2 is equal to a cyclotron energy at the occupation number
n(0)52.0#. The electrostatics at higher temperatures and its
temperature dependence will be shown in a later paragraph.
Figure 3 shows the potentials and electron densities of the

Hall bar calculated for several magnetic fields at low tem-
perature. In Fig. 3~a!, we plot the electron density ns(x) ~left
panel! and electrostatic potential energy U(x) ~right panel! at
a very strong magnetic field or n(0)51.5, where the chemi-
cal potential ~dot-dashed line! is pinned at the lowest Landau
level and the compressible region extends over the whole
sample. In this case, a change in a screening ability due to
the magnetic field is easily examined. According to CMS
one should expect no change in the electron density ns(x)
from the results for zero magnetic field, because a perfect
screening is assumed even for zero magnetic field. In our
case, however, the calculated electron density ns(x) shows a
slight difference depending on the presence of the magnetic

FIG. 3. For n(0)51.5 ~a!, 2.05 ~b!, and 3.0 ~c!, we plot the
electron densities ns(x) and electrostatic potentials U(x) calculated
with VR50.0, kBT/E250.005, n̄ /n050.458, and a0 /d50.01 @E2
is equal to a cyclotron energy at the occupation number n(0)52.0#.
The dotted lines ~left column! represent the difference between the
electron densities with and without magnetic fields. The dashed and
dotted lines ~right column! describe the chemical potential and Lan-
dau levels, respectively. The electron densities ns(x) at a0 /d50.05
are also shown with dashed lines.
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Magnetic Thomas-Fermi theory for 2d quantum dots

1a 650 LIEB, SOLOVEJ, AND YNGVASON

PN, B, V(x) NP), B/N, V/N(x )MTF MTF (2.9)

Theorem 2.1 includes the TF theory as a special case. In
the same way as in Prop. 4.14 in Ref. 21 one shows that
P~ g y ~P~ v weakly in Ls as B~0.
The shape of the electronic density (computed by Kris-

tinn Johnsen) in the case of a quadratic potential
V(x )=K

~
x

~
and y =0 is shown in Fig. 2 for diferent

values of B. At the highest value of 8 (8 T), the density is
everywhere below do(8) and given by the minimizer
(3.15) of the classical functional (1.6). At 8 =7 T, all the
electrons are still in the lowest Landau level, but that lev-
el is full around the middle of the dot where the density is
anchored at do(8). As the field gets weaker it becomes
energetically favorable for electrons at the boundary of
the dot, where the potential is high, to move into the next
Landau level close to the minimum of the potential. A
dome-shaped region then arises above the plateau at
p=do(8)=Do(8), but eventually the density hits the
next plateau at p=D, (8). This gradual filling of levels
continues as the field strength goes down. At B=2 T
three Landau levels are full and electrons in the central
dome are beginning to occupy the fourth level. Finally,
at 8 =0, we have the usual Thomas-Fermi model, which
may be regarded as a limiting case with infinitely many
Landau levels occupied.
In order to state the variational equation for the

minimization problem it is convenient to define the
derivative ji') =djt) /d p of the kinetic-energy density
everywhere, including points of discontinuity, as a set
ualued function (cf. Ref. 30), namely,

[E (8)j for D (8)(p(D +, (8), v=0, 1, . . .' I

[E (B),E,+,(8)] for p=D +, (8), v=0, 1, . . . .
(2.10)

With this notation the Thomas-Fermi equation for the
functional (1.5) may be written as follows.

2.2 THEOREM (Thomas F-ermi equation) .There is a
non n-egatiue number p, =p(N, B,V) such that the minim
izer P=PN ti"v satisfies

E:ji) [p(x) ] if p(x) & 0p—V(x )—ps x «0 if p(x)=0 .
(2. 1 1)

The quantity p appearing in the TF equation is the physi-
cal chemical potential, i.e.,

p, =BE(N,B,V)/BN . (2.12)

Since E is convex as a function of N, p is monotonically
increasing with Xfor fixed B and V. It satisfies

p(N, B,V)=Np(1, 8/N, V/N) . (2.13)

From the definition of jz one expects that the kinetic-
energy term above can be neglected for large B and hence
that lim~ E T"=E . The rigorous proof of this fact
relies on a careful study of the classical problem. This
analysis is far from trivial and is postponed to the next
section.
There is another case where the MTF energy can be re-

lated to the classical energy. Namely, for a homogeneous
exterior potential, i.e.,

V(kx ) =A,'V(x)

The derivation of the TF equation is analogous to that
in Ref. 29. It is also true that if (p, )M ) is any solution pair
for (2.11), then p is the minimizer of 6' " for some N
and p=p(N, B,V). The proof of this is a bit trickier
than in the standard case, because jz is not continuous-
ly diQ'erentiable. It has been carried out by Lieb and
Loss.
Finally we discuss the relationship between the MTF

theory and the classical theory defined by the functional
(1.6). We of course have that

"[p;8,V]= fj i[p)( x)]d x+ ( [p; V] .

zo

lO lO

0 — 7'1'
for all A, )0 with some s )0. We consider the potentials
k V(x) with k )0 and are interested in the dependence of
the MTF energy and density on the coupling constant k.
Writing

zO I.

lO 10

U =- 0'1'

p x k 2/(s+ 1)q k 1/(s + 1)

we have the scaling

"[p;B,kV]=k /'+" f jb(p)+8 fp;kV]

r—k1/(s+1) k1/(s+1) fJ"Jb P

(2.14)

where

b Bk—2/(s + 1)
+( [p, V] (2.15)

(2.16)

FICs. 2. Quantum dots at various magnetic field strengths.
The potential is V(x) =—'m s, co2~x ~', with m s, =0.67m,
Ace=3. 37 meV, and %=50. The coordinate axes are displayed
in units of 10 m and the density p in the units 10 ' m

Changing k is thus equivalent to changing the kinetic en-
ergy by a multiplicative factor and rescaling the magnetic
field, keeping the potential fixed. We shaH show in the
next section that for k small E is a good approximation
to EMTF

Lieb, Solovej, Yngvason 1995



Incompressible stripes
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Figure 4. Sketches of Landau level bending in a cross section of the 2DES from one edge to the
other edge, expected from the Hall potential profiles of type II (corresponding to (a–c)) and type
III (corresponding to (d–f )) within a quantum Hall plateau. The bending is shown in (a) and (d)
for thermal equilibrium, in (b) and (e) for a small Hall voltage, and in (c) and (f ) for a large Hall
voltage exceeding the Landau level gap energy several times. The respective Hall potential profile is
shown in pink, indicating the electrochemical potential drop. On the top and at the bottom of the
figure, in the (x , y) plane, the landscape of compressible (grey) and incompressible (white) regions
is sketched, and the local current densities jx driven by local electrostatic potential gradients in
the y direction are indicated by arrows—at the top, for thermal equilibrium; at the bottom, for
large Hall voltage.

width y2 − y1 in the y direction, where the local filling factor is constant, the
integral current DIx =

∫y2
y1

jx(y) dy is given by the electrostatic potential drop
DFy =

∫y2
y1

Ey(y) dy over this width,

DIx = nl
e2

h
DFy . (5.2)

The integral current is therefore independent of the details of the electrostatic
potential drop along the path between y1 and y2.

Let us consider the situation around the integer value for the bulk filling
factor. The bulk is mainly incompressible with the local filling factor nl = i,
with inhomogeneities embedded. Already in thermal equilibrium, i.e. equal
electrochemical potential within the 2DES, the electrostatic potential varies
owing to these inhomogeneities (figure 4a). Local current densities encircle the
electrostatic potential minima and maxima, leading by integration within a cross
section over the sample width to zero net current. This is also true for the current

Phil. Trans. R. Soc. A (2011)
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Interacting fermions on the lattice
First consider systems of interacting fermions on finite sets X ⊂ Zd .

The N-particle Hilbert space for such a system is

hX ,N := `2(X ,Cs)∧N

and it is convenient to work on Fock space FX :=

s|X |⊕
N=0

hX ,N .

The algebra L(FX ) of bounded operators on FX is generated by the
fermionic creation and annihilation operators a∗x ,i and ax ,i .

By AX ⊂ L(FX ) we denote the sub-algebra of operators that
commute with the number operator NX :=

∑
x∈X a∗x ,iax ,i .

Since for Y ⊂ X we have AY ⊂ AX , one can define the algebra of
local obsevarbles as

Aloc :=
⋃

X⊂Zd , |X |<∞

AX .

The quasi-local algebra is the C ∗-algebra A := Aloc
‖·‖.
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Interacting fermions on the lattice
In order to describe infinite systems of interacting fermions one takes
the thermodynamic limit of a sequence of finite systems e.g. on cubes
Λk := {−k, . . . , k}d ⊂ Zd , k ∈ N.

We consider also sequences of Hamiltonians that are sums of local
terms (“SLT operator families’),

HΛk
0 =

∑
X⊂Λk

Φ(X ) ,

where the map

Φ : P0(Zd)→ Aloc , X 7→ Φ(X ) ∈ AX

is called an interaction.
A typical interaction for a physical Hamiltonian is of the form

Φ(X ) =


a∗x T (x − y) ay + h.c .+ a∗xax W (x − y) a∗yay if X = {x , y}

a∗x(φ(x)− µ)ax if X = {x}
0 otherwise

Then ‖HΛk
0 ‖ ∼ |Λk | = (2k + 1)d .
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Interacting fermions on the lattice
To quantify locality of an interaction resp. of the corresponding SLT
operators, one defines Banach spaces Bζ of SLT operators with norm

‖Φ‖ζ := sup
x∈Zd

∑
X∈P0(Zd ), x∈X

‖Φ(X )‖
ζ(diam(X ))

,

where ζ : [0,∞)→ (0,∞) is a rapidly decaying function, e.g.
ζ(r) = e−ar

In order to control also the localisation properties of elements of A,
one defines sub-algebras Dζ ⊂ A with norm

‖B‖ζ := ‖B‖+ sup
k∈N

(
‖ (1− EΛk

) (B)‖
ζ(k)

)
<∞ ,

where ζ : [0,∞)→ (0,∞) is again a rapidly decaying function and
EΛk

: A → AΛk
denotes the conditional expectation.
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Interacting fermions on the lattice
Proposition: Thermodynamic limit for the dynamics
Let H0 ∈ Bζ . Then for any B ∈ Aloc the limit

Ut(B) := lim
k→∞

eiHΛk
0 t B e−iHΛk

0 t ∈ A
exists and defines a one-parameter family t 7→ Ut of automorphisms of
the algebra A with densely defined generator LH0 : D(LH0)→ A.

Lieb, Robinson ’72; . . . ; Bru, Pedra ’16; Nachtergaele et al. ’19;
Moon, Ogata ’20; Henheik, T. ’21.
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The standard gap condition
Standard gap assumption

Assume that smallest eigenvalue EΛk
0 (t) (ground state) of HΛk

0 (t) is
separated from the rest of the spectrum uniformly in the volume |Λk |,

inf
Λk

dist
(
EΛk

0 (t), σ(HΛk
0 (t)) \ {EΛk

0 (t)}
)

=: g > 0 .
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Adiabatic theorem
From now on we consider a time-dependent gapped Hamiltonian
H0(t) ∈ Be−a · , t ∈ I ⊂ R, possibly perturbed by a time-dependent
operator εV (t), where V (t) = Vv (t) + H1(t) is the sum of an SLT
operator H1(t) ∈ Be−a · and a Lipschitz potential Vv (t), i.e.

V Λk
v (t) =

∑
x∈Λk

v(x , t) a∗xax .

Let
Hε(t) := H0(t) + εV (t)

and denote by Uη,εt,t0 the corresponding adiabatic evolution family
generated by the time-dependent Liouvillian 1

ηLHε(t) with adiabatic
parameter η > 0, i.e.

Uη,εt,t0(B) := lim
k→∞

Uη,ε,Λk
t,t0 (B) ∈ A .

Note that for ε = 0 we are in the usual adiabatic situation of a
time-dependent Hamiltonian with spectral gap.
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Adiabatic theorems for extended many-body systems

I Adiabatic theorems under the “standard gap assumption”
in finite volumes and for ε = 0 with error estimates that are
uniform in the volume were first shown by Bachmann, De
Roeck, Fraas ’18.

I In T. ’20 an adiabatic theorem under the “standard gap
assumption” in finite volumes also for ε > 0 is shown, i.e. an
adiabatic theorem for NEASSs.

I In Henheik, T. ’20 we prove an adiabatic theorem under
“standard gap assumption” in the infinite volume and for ε > 0,
i.e. for Ut,t0 on A.



Adiabatic theorems for extended many-body systems

I Adiabatic theorems under the “standard gap assumption”
in finite volumes and for ε = 0 with error estimates that are
uniform in the volume were first shown by Bachmann, De
Roeck, Fraas ’18.

I In T. ’20 an adiabatic theorem under the “standard gap
assumption” in finite volumes also for ε > 0 is shown, i.e. an
adiabatic theorem for NEASSs.

I In Henheik, T. ’20 we prove an adiabatic theorem under
“standard gap assumption” in the infinite volume and for ε > 0,
i.e. for Ut,t0 on A.



Adiabatic theorems for extended many-body systems

I Adiabatic theorems under the “standard gap assumption”
in finite volumes and for ε = 0 with error estimates that are
uniform in the volume were first shown by Bachmann, De
Roeck, Fraas ’18.

I In T. ’20 an adiabatic theorem under the “standard gap
assumption” in finite volumes also for ε > 0 is shown, i.e. an
adiabatic theorem for NEASSs.

I In Henheik, T. ’20 we prove an adiabatic theorem under
“standard gap assumption” in the infinite volume and for ε > 0,
i.e. for Ut,t0 on A.



Adiabatic theorem with a gap in the bulk
Motivation: Response of Chern-nontrivial systems (e.g. quantum
Hall systems), where the Hamiltonian has no spectral gap in the
presence of edges.

Idea: Require the spectral gap only for the infinite system.
Problem: There is no limiting Hamiltonian for the infinite system.

A state ρ on A is called a LH0-ground state, iff

ρ(B∗LH0(B)) ≥ 0 for all B ∈ D(LH0).

Let ρ be a LH0-ground state and (Hρ, πρ,Ωρ) be the corresponding
GNS triple. Then there exists a unique densely defined, self-adjoint
positive operator Hρ ≥ 0 on Hρ satisfying

πρ(eisLH0 (B)) = eisHρπρ(B)e−isHρ and e−isHρΩρ = Ωρ

for all B ∈ A and s ∈ R.

Hρ is called the bulk Hamiltonian associated with ρ.



Adiabatic theorem with a gap in the bulk
Motivation: Response of Chern-nontrivial systems (e.g. quantum
Hall systems), where the Hamiltonian has no spectral gap in the
presence of edges.
Idea: Require the spectral gap only for the infinite system.

Problem: There is no limiting Hamiltonian for the infinite system.

A state ρ on A is called a LH0-ground state, iff

ρ(B∗LH0(B)) ≥ 0 for all B ∈ D(LH0).

Let ρ be a LH0-ground state and (Hρ, πρ,Ωρ) be the corresponding
GNS triple. Then there exists a unique densely defined, self-adjoint
positive operator Hρ ≥ 0 on Hρ satisfying

πρ(eisLH0 (B)) = eisHρπρ(B)e−isHρ and e−isHρΩρ = Ωρ

for all B ∈ A and s ∈ R.

Hρ is called the bulk Hamiltonian associated with ρ.



Adiabatic theorem with a gap in the bulk
Motivation: Response of Chern-nontrivial systems (e.g. quantum
Hall systems), where the Hamiltonian has no spectral gap in the
presence of edges.
Idea: Require the spectral gap only for the infinite system.
Problem: There is no limiting Hamiltonian for the infinite system.

A state ρ on A is called a LH0-ground state, iff

ρ(B∗LH0(B)) ≥ 0 for all B ∈ D(LH0).

Let ρ be a LH0-ground state and (Hρ, πρ,Ωρ) be the corresponding
GNS triple. Then there exists a unique densely defined, self-adjoint
positive operator Hρ ≥ 0 on Hρ satisfying

πρ(eisLH0 (B)) = eisHρπρ(B)e−isHρ and e−isHρΩρ = Ωρ

for all B ∈ A and s ∈ R.

Hρ is called the bulk Hamiltonian associated with ρ.



Adiabatic theorem with a gap in the bulk
Motivation: Response of Chern-nontrivial systems (e.g. quantum
Hall systems), where the Hamiltonian has no spectral gap in the
presence of edges.
Idea: Require the spectral gap only for the infinite system.
Problem: There is no limiting Hamiltonian for the infinite system.

A state ρ on A is called a LH0-ground state, iff

ρ(B∗LH0(B)) ≥ 0 for all B ∈ D(LH0).

Let ρ be a LH0-ground state and (Hρ, πρ,Ωρ) be the corresponding
GNS triple. Then there exists a unique densely defined, self-adjoint
positive operator Hρ ≥ 0 on Hρ satisfying

πρ(eisLH0 (B)) = eisHρπρ(B)e−isHρ and e−isHρΩρ = Ωρ

for all B ∈ A and s ∈ R.

Hρ is called the bulk Hamiltonian associated with ρ.



Adiabatic theorem with a gap in the bulk
Motivation: Response of Chern-nontrivial systems (e.g. quantum
Hall systems), where the Hamiltonian has no spectral gap in the
presence of edges.
Idea: Require the spectral gap only for the infinite system.
Problem: There is no limiting Hamiltonian for the infinite system.

A state ρ on A is called a LH0-ground state, iff

ρ(B∗LH0(B)) ≥ 0 for all B ∈ D(LH0).

Let ρ be a LH0-ground state and (Hρ, πρ,Ωρ) be the corresponding
GNS triple.

Then there exists a unique densely defined, self-adjoint
positive operator Hρ ≥ 0 on Hρ satisfying

πρ(eisLH0 (B)) = eisHρπρ(B)e−isHρ and e−isHρΩρ = Ωρ

for all B ∈ A and s ∈ R.

Hρ is called the bulk Hamiltonian associated with ρ.



Adiabatic theorem with a gap in the bulk
Motivation: Response of Chern-nontrivial systems (e.g. quantum
Hall systems), where the Hamiltonian has no spectral gap in the
presence of edges.
Idea: Require the spectral gap only for the infinite system.
Problem: There is no limiting Hamiltonian for the infinite system.

A state ρ on A is called a LH0-ground state, iff

ρ(B∗LH0(B)) ≥ 0 for all B ∈ D(LH0).

Let ρ be a LH0-ground state and (Hρ, πρ,Ωρ) be the corresponding
GNS triple. Then there exists a unique densely defined, self-adjoint
positive operator Hρ ≥ 0 on Hρ satisfying

πρ(eisLH0 (B)) = eisHρπρ(B)e−isHρ and e−isHρΩρ = Ωρ

for all B ∈ A and s ∈ R.

Hρ is called the bulk Hamiltonian associated with ρ.



Adiabatic theorem with a gap in the bulk
Motivation: Response of Chern-nontrivial systems (e.g. quantum
Hall systems), where the Hamiltonian has no spectral gap in the
presence of edges.
Idea: Require the spectral gap only for the infinite system.
Problem: There is no limiting Hamiltonian for the infinite system.

A state ρ on A is called a LH0-ground state, iff

ρ(B∗LH0(B)) ≥ 0 for all B ∈ D(LH0).

Let ρ be a LH0-ground state and (Hρ, πρ,Ωρ) be the corresponding
GNS triple. Then there exists a unique densely defined, self-adjoint
positive operator Hρ ≥ 0 on Hρ satisfying

πρ(eisLH0 (B)) = eisHρπρ(B)e−isHρ and e−isHρΩρ = Ωρ

for all B ∈ A and s ∈ R.

Hρ is called the bulk Hamiltonian associated with ρ.



Adiabatic theorem with a gap in the bulk

Gap assumption in the bulk (cf. Moon, Ogata, JFA ’19)

There exists g > 0 such that for each t ∈ I the Liouvillian LH0(t) has
a unique ground state ρt and

σ(Hρt ) \ {0} ⊂ [ g ,∞) .



Adiabatic theorem with a gap in the bulk
Super-adiabatic theorem for NEASSs
Let the Hamiltonian Hε(t) = H0(t) + εV (t) satisfy the previous
assumptions and denote by Uε,ηt,t0 the Heisenberg time-evolution it
generates on A.

Then for any ε, η ∈ (0, 1] and t ∈ I there exists a near-identity
automorphism βε,η(t) of A such that the super-adiabatic NEASS
defined by

Πε,η
t := ρt ◦ βε,ηt

has the following properties:
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assumptions and denote by Uε,ηt,t0 the Heisenberg time-evolution it
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Then for any ε, η ∈ (0, 1] and t ∈ I there exists a near-identity
automorphism βε,η(t) of A such that the super-adiabatic NEASS
defined by

Πε,η
t := ρt ◦ βε,ηt

has the following properties:
(1) It almost intertwines the time evolution: For any n ∈ N and any
f ∈ S, there exists a constant Cn such that for any t ∈ I and B ∈ Df∣∣(Πε,η

t0 ◦ U
ε,η
t,t0 − Πε,η

t

)
(B)
∣∣

≤ Cn
εn+1 + ηn+1

ηd+1

(
1 + |t − t0|d+1

)
‖B‖f .
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defined by
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t := ρt ◦ βε,ηt

has the following properties:
(2) It is local in time: βε,ηt depends only on Hε and its time
derivatives at time t.

(3) It is stationary whenever the Hamiltonian is stationary: if Hε is
constant on an interval J ⊂ I then Πε,η

t = Πε,0
t is constant for t ∈ J.

(4) Πε,0
t has an explicit asymptotic expansion in powers of ε.
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Super-adiabatic theorem for NEASSs
Let the Hamiltonian Hε(t) = H0(t) + εV (t) satisfy the previous
assumptions and denote by Uε,ηt,t0 the Heisenberg time-evolution it
generates on A.
Then for any ε, η ∈ (0, 1] and t ∈ I there exists a near-identity
automorphism βε,η(t) of A such that the super-adiabatic NEASS
defined by

Πε,η
t := ρt ◦ βε,ηt

has the following properties:
(5) It equals the ground state of H0 whenever the perturbation
vanishes and the Hamiltonian is stationary: if for some t ∈ I all
time-derivatives of Hε vanish at time t and V (t) = 0, then
Πε,η
t = Πε,0

t = ρt .



Concluding remarks
I Why is this useful at all? It provides an immediate justification of

standard linear response (and higher order response) formulas for
systems that initially in gapped ground states.
See e.g. Henheik, T. ’21.

I Proving uniqueness of the ground state ρ of LH0 and “fast
convergence” of ρΛk → ρ, e.g.

|(ρ− ρΛ)(B)| ≤ Cn‖B‖dist(X , ∂Λ)−n (1)

for all B ∈ AX , are difficult problems that have not yet been
achieved for interacting fermionic systems.

For weakly interacting spin systems such a result has been shown
by Yarotzky ’05. See also Henheik, T. ’21 and Bachmann, De
Roeck, Fraas ’21.
(See also Datta, Fernandez, Fröhlich, Rey-Bellet ’96).

I Assuming (1), in Henheik, T. ’20 we also show an adiabatic
theorem for finite systems with a gap in the bulk.
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