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Bosonic systems

Statistics: we distinguish between
Bosons: described by symmetric wave functions, ie.

¢N(337r17337r27- .. 7CU7TN) — ¢N(£Blax27° .. 7'CUN> for all m € SN

Fermions: described by antisymmetric wave functions, ie.

YN(Tr1, Trny -y TaN) = onP (X1, 22, ..., ZN) for all m € Sy

Bosonic mean-field regime: N particles in torus A = [0; 27]3,
with Hamiltonian

N N
1
Hy= Y —Ag+ ~ SN V(xi —xj) acting on L2(AM)
1=1 1<J

Goals: ground state energy, excitations, time-evolution.



Bogoliubov theory

Fock space: describe bosons on
Fs = P L2(A")
n>0
For p € Z3, we introduce a}, ap satisfying CCR

[ap,a;;] = dpq; lap, aq] = [a;';ai‘]] =0
Then

a;ap = number of particles with momentum p
In particular, a(a}”;ap) = N.

Hamilton operator: in second quantized form, we find

1 ~

2

Hy = E p-ayap + N g V(r)a;+ra;aq+rap
pEZ> p,q,m€L3



BEC: low-energy states exhibit Bose-Einstein condensation, ie.

ag, a0 ~ VN > 1 = [ag, ag]

Hence,
N —1)V(0
iy = M DVO 5 2 V) agap+ S Y V@) [agar, + apay)
p7#0 p#O
1 .
+ — Z V(r) [a*_l_ra*_rap—l—h.c.]
\/Npﬂ“#o ’
Z V(r)a 1-0q q_|_rap
QNPqT#O g

Neglect cubic and quartic terms: we find

(N —1)V(0)

Har ~
N 2

+Z{%wﬂmw-szﬁ*+ww]
p7#0 p;éO




Bogoliubov transformations: let

T = exp 1 > (a;a*_p — apa_p)
2
p70
Then

T a,T = (coshp) a, + (sinh1p) a—p
T* apT = (coshp) ap + (sinhp) a”

Diagonalization: with appropriate choice of m, we obtain

(N—-1)V(0) 1

T*HnNT ~ —
N 2 2

> [P2+ V) — VIpl* + 207V ()
p70
+ 5 VIp/* + 207V (p) - atay
p#0
From this expression, we can read off ground state energy and
excitations.




Mean-field fermions

Mean-field regime: consider N fermions in torus A = [O;27r]3.
System described on

Lg(/\N) = {¢ e L2(AY), antisymmmetric w.r.t. permutations}

On LZ(AY), we have Y01 —A,, ~ NO5/3.

Hamilton operator: given by

N 5 1 N
Hy = ), =8+ 3 Vi(wi — )
=1 i<j

with semiclassical parameter ¢ = N—1/3 We assume V > 0.

We are interested in ground state energy

En = min ,H
V7 ez Y



Hartree-Fock theory: consider Slater determinants
Ysjater(21, .-, zy) = C'det |fi(x;)] l<ij<N
with {f1,..., fx} an orthonormal system in L2(A).

They are characterized by one-particle reduced density
N

w = Nt"2,...,N|¢sIater><¢slater| — Z |fj><fj|

J=1
T heir energy is given by Hartree-Fock functional
SHF(w) = tr [—&“QA} w

t o [drdy V(@ — ) [w(, 2o(,y) — o 9P|

The Hartree-Fock energy is defined by

HF -
E = min E w
N O<w<l:trw=N HF( )



Fermi sea: If V = 0, Hartree-Fock energy minimized by

1 Z |€ip-:c> <€ip-:13|

wF:
27)3
(27) pEZ3:|p|<pp

with Fermi momentum

P (3/47T)1/3N1/3 —- /fONl/?’

Here, we assume that Fermi ball is completely filled.

Then wp also minimizes Hartree-Fock functional if V£ 0. Hence

NV (0 1 .
ER]”: = €|_||:(wF) = Z 52]92 + 2( ) - SN Z V(p _p/)

p|<pp ip|,|P'|<pF

Remark: in general, [Gontier-Hainzl-Lewin, 19] proved that
ERF — €y (wp) is sub-exponentially small in N.

Remark: justification of Hartree-Fock theory by [Bach, 92],
[Graf-Solovej, 94] for Coulomb interaction.



Correlation energy

Theorem [Benedikter, Porta, S., Seiringer]: let |k|V € ¢1(Z3),
V > 0. Then

Aim [EN - 5HF(WF)]/5

=Ko ) |Ic|{%/0OO log [1 + 27‘(‘/430‘7(]{)(1 — Aarctan(%))] d)\ — gli()V(k)}

keZ3

Remark 1: for upper bound, only need >, -3 |k|V2(k) < 0.

Remark 2: Result agrees with formula first predicted by
Gell-Mann—Brueckner, through random phase approximation.

Remark 3: for small V, theorem proven by [Benedikter-Nam-
Porta-S.-Seiringer, 20].

[Christiansen-Hainzl-Nam] proved similar result, with different
approach.



Some ideas from proof

To estimate energy, it is convenient to factor out Fermi sea and
focus on its excitations.

Fock space representation: on

Fo= @ LZ(A™)
n>0

we introduce creation, annihilation operators satisfying canonical
anticommutation relations

{ap,az;} = Op.q, {a,p,aq} = {a;;,a;;} =0

We consider the Hamilton operator

1 .

2 2

Hy = Z e“p“anap + N Z Vi(r) a;_l_ra; A g4rOp
pEZ> p,q,m€L3
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Particle-hole transformation: on F,, define unitary R with

RQ = H aXQ) = Fermi sea

p
p|<pF
and
. .
xp*x ) Qp; if [p| > pp
Rapht =14 if |p| <
D> Pl >~ PF

After conjugation, a; creates a hole in the Fermi sea, if |p| < pp.

Observe: R : x(N}, = Np)Fa — L2(AN), where
Np = > ayap, Np= > azap

p|I<pp p|>pF

count number of holes and of excited particles.
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Excitation Hamiltonian: we define

Ly = R*HNR

Conjugation of kinetic energy: we compute

> 62p2R*a;apR

pEZ3
_ 2 2 4 D D 4
= Y PPaat Y 2o
p|<pp p|>pF
_ 2 2 2 D & 2 2 4
=Y AP Y HPat Y Hde
p|I<pp p|<pp p|>pF

=tr [—e?A] wp + Ho

with the Kinetic energy of excitations:

Ho= 3 Ie%2 — <22 agap
p€eZ3
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Conjugation of potential energy: we find

NV(0) 1 N
Z V(T)R* Ap4rQq q—l—raPR — > - SN Z V(p— p/)
Npar pl,Ip'|<pF
+ QQp + corrections
where
1 .
Qp = ﬁ Z V(T) a;+ra;aq+raq
\pl lg|<pp,lp+rllg+rI>pp
T ﬂ 2 V(T)[ AptrOpQytrQq t Aqlqtraplpty

ip|,la+r|<pp,|p+r|, |q|>pp

1% brb brb™ brb_ ]
2N 23 (7“)[ r + ( r + br r)
res
in terms of particle-hole pair creation operators
by = Z a’;—i-ra;
p|I<pp,|pt+ri>pp
satisfying (after normalization) approximately bosonic relations
(b, b1.] = [br,b] = O, [br, by] = const - §,.;, + corrections
13



Conclusion: excitation Hamiltonian is given by

Ly =Eye(wr) + Hp + Qp 4+ corrections
where

2.2 2 2
Hpy = Z le“p pF|a;ap
pEZ3

Qp = QNT§3V(T>[bbr+ ~ (0, A+ brby)

and where corrections are small on states with few excitations.

Question: can Hp be expressed through operators b, b*7?

HO biQ — Z HO aq_i_,r q
9|<pp,lg+r|>pF
— > [52((] +r)° — 52q2} a;_l_,raj;
9|<pp,lg+r|>pF
~ > 2e2q - raq_|_r 2 7~ e(r) by2

q|<pp,lgF+T|>pF

14



Localized bosonic modes: we decompose Fermi sphere into
M = N° patches {Ba},—1.. . and define modes

1 * *
a ka
na (k) pg};a, p+k™~p

p|<pp,|p+k|>pp

* —
bkﬂx__

with nqg(k) chosen so that

[ba,k’ %} ~ 0a,80%k,q

Now, we find, with w, the center of B,

Ho by 2 ~ > 2e2q - Ty 4, 0qS2 = 22 (wq - 1) br.oS2
qua,
[ql<pp,lq+rI>pF

suggesting

HO ~ 2/4605 Z (’[[Ja : T) b;’abr’a
reZ3
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Quadratic Hamiltonian: combining modes with momenta k
and —k, we arrive at

Ly =E&xr(wp) + D> 2erglklh(k) 4 corrections
kel nor

with

M
h(k) = > (D(k)+W(k))apsbr brs
a,f=1

1 < T/ * *
+ 5 Z W(k)a,ﬁ [bk,abk,ﬁ + bk,ﬁbk,a]
a,8=1

where the M x M matrices D(k), W (k), W (k) have entries
D(k)(){,B — 60‘76“2 . (:(\Joé|,

W), 5 = V(E) [ na(B)ngk)  if a8 €L or a,f €T
! 2hkoN|k| | O otherwise,

. O ( : + —

W (k) s = V (k) L]0 if o, B €L or o, BET,
’ 2hkoN k| | na(k)ng(k) otherwise.

16



Bogoliubov theory: let

1
T=exp| . 3 3 K(Fasbibis— ]
kernoraﬁ

Up to small corrections,

T*bg 0T =Y cosh(K (k))g pbr.g + > Sinh(K ()55 5
A B

With appropriate choice of K, we find

T*LNT = Epp(wrp) +2erg Y K] tr[E(k) — D(k) — W(k)}
kernor

+ D D A(k)a,pbf bk + corrections
kel Mor o B

Finally, explicit computation shows that
tr[E(k) — D(k) — W(k)]

~ 1/00 09 [1 + 2mo ¥ (k) (1 — Aarctan(1/3)]d — ~ro¥ (k)

7™ JO
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An additional challenge: From

Ho by 02 =~ 2k0e (Wa-1) by, Q2 #  Hp >~ 2kge Y, (Wa-r) by 4bra =: Dp
rezs3
Instead, we only obtain that

Ho—Dp,bral, [Ho—Dp,bjo| ~0 = T*(Ho—Dp)T ~ (Ho—Dp)

Therefore,

Ly~ Eyp(wr) +Ho + @p
~ Eyp(wp) + (Hp — D) + 2k0e Y |klh(k)

kernor
and
T*LNT ~ Eyp(wr) + 260 > |Kk|tr [E(k) — D(k) — W(k)]
kernOI’
+ (HO — ]D)B) + 2kpe Z |k| Z ﬁ(k)a,ﬁ bz,abk,ﬁ
kernor Oé,,B

To control —Dpg, we use a second almost bosonic Bogoliubov
transformation, diagonalizing R.
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Dynamics of excitations

Time evolution of almost bosonic excitations can be described
by Bogoliubov Hamiltonian &(k).

Schrodinger equation: consider solution of

N N
: 1
158t¢N,t — |~ E €2Aa:j + N Z V(z; — xj) ¢N,t
j=1 i<j

with initial data of the form vy o = RT¢ € L2(AY), with
1

E= b (p) . W (em)Q  With b (@)= 3 3 wa(Mbi,
kelhor aeT,

Then

¢~ T"RHNRTt/eg — ~iT*LNTt/eg
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From approximation

T*LNT = Epp(wr) +2erg Y |k|tr|E(k) — D(k) — W(k)]
kernor '

+ (Hg —Dp) + 2k0e Y |kl > 8&(K)a,gbf obr,s
kernor C\f,ﬁ

we are led to excitation dynamics

1
& = Eb*(sol,t) 0 (o, )2

where
—thpt/ey,  with hp = 2kge @D |k|&(k)
k,ErI’IOI’

Yt — €

Theorem [Benedikter, Nam, Porta, S., Seiringer]: many-
body evolution can be approximated in norm by

||€—iHNt/€RT£ _ e—’l:(gHF(wF)—|—Ecorr)t/€RT5t|| S C|t|€1/15
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