Bosonization of Fermionic Many-Body Systems Benjamin Schlein, University of Zurich IPAM workshop Model Reduction in Quantum Mechanics April 11, 2022 Based on joint works with N. Benedikter, P. T. Nam, M. Porta, R. Seiringer ## **Bosonic systems** Statistics: we distinguish between Bosons: described by symmetric wave functions, ie. $$\psi_N(x_{\pi 1}, x_{\pi 2}, \dots, x_{\pi N}) = \psi_N(x_1, x_2, \dots, x_N)$$ for all $\pi \in S_N$ Fermions: described by antisymmetric wave functions, ie. $$\psi_N(x_{\pi 1}, x_{\pi 2}, \dots, x_{\pi N}) = \sigma_{\pi} \psi_N(x_1, x_2, \dots, x_N)$$ for all $\pi \in S_N$ **Bosonic mean-field regime:** N particles in torus $\Lambda = [0; 2\pi]^3$, with Hamiltonian $$H_N = \sum_{j=1}^N -\Delta_{x_j} + \frac{1}{N} \sum_{i< j}^N V(x_i - x_j) \qquad \text{acting on } L_s^2(\Lambda^N)$$ Goals: ground state energy, excitations, time-evolution. ### **Bogoliubov theory** Fock space: describe bosons on $$\mathcal{F}_s = \bigoplus_{n \ge 0} L_s^2(\Lambda^n)$$ For $p \in \mathbb{Z}^3$, we introduce a_p^*, a_p satisfying **CCR** $$[a_p, a_q^*] = \delta_{pq}, \qquad [a_p, a_q] = [a_p^*, a_q^*] = 0$$ Then $a_p^* a_p =$ number of particles with momentum p In particular, $\sigma(a_p^*a_p) = \mathbb{N}$. Hamilton operator: in second quantized form, we find $$H_N = \sum_{p \in \mathbb{Z}^3} p^2 a_p^* a_p + \frac{1}{2N} \sum_{p,q,r \in \mathbb{Z}^3} \widehat{V}(r) a_{p+r}^* a_q^* a_{q+r} a_p$$ BEC: low-energy states exhibit Bose-Einstein condensation, ie. $$a_0^*, a_0 \simeq \sqrt{N} \gg 1 = [a_0, a_0^*]$$ Hence, $$H_{N} \simeq \frac{(N-1)\hat{V}(0)}{2} + \sum_{p \neq 0} \left[p^{2} + \hat{V}(p) \right] a_{p}^{*} a_{p} + \frac{1}{2} \sum_{p \neq 0} \hat{V}(p) \left[a_{p}^{*} a_{-p}^{*} + a_{p} a_{-p} \right]$$ $$+ \frac{1}{\sqrt{N}} \sum_{p,r \neq 0} \hat{V}(r) \left[a_{p+r}^{*} a_{-r}^{*} a_{p} + \text{h.c.} \right]$$ $$+ \frac{1}{2N} \sum_{p,q,r \neq 0} \hat{V}(r) a_{p+r}^{*} a_{q}^{*} a_{q+r} a_{p}$$ Neglect cubic and quartic terms: we find $$H_N \simeq \frac{(N-1)\widehat{V}(0)}{2} + \sum_{p \neq 0} \left[p^2 + \widehat{V}(p) \right] a_p^* a_p + \frac{1}{2} \sum_{p \neq 0} \widehat{V}(p) \left[a_p^* a_{-p}^* + a_p a_{-p} \right]$$ ## **Bogoliubov transformations**: let $$T = \exp\left[\frac{1}{2} \sum_{p \neq 0} \tau_p \left(a_p^* a_{-p}^* - a_p a_{-p}\right)\right]$$ Then $$T^* a_p^* T = (\cosh \tau_p) a_p^* + (\sinh \tau_p) a_{-p}$$ $T^* a_p T = (\cosh \tau_p) a_p + (\sinh \tau_p) a_{-p}^*$ **Diagonalization**: with appropriate choice of τ_p , we obtain $$T^*H_NT \simeq \frac{(N-1)\widehat{V}(0)}{2} - \frac{1}{2} \sum_{p \neq 0} \left[p^2 + \widehat{V}(p) - \sqrt{|p|^4 + 2p^2}\widehat{V}(p) \right]$$ $$+ \sum_{p \neq 0} \sqrt{|p|^4 + 2p^2}\widehat{V}(p) \cdot a_p^* a_p$$ From this expression, we can read off ground state energy and excitations. #### Mean-field fermions **Mean-field regime**: consider N fermions in torus $\Lambda = [0; 2\pi]^3$. System described on $$L_a^2(\Lambda^N) = \{ \psi \in L^2(\Lambda^N), \text{ antisymmetric w.r.t. permutations} \}$$ On $$L_a^2(\Lambda^N)$$, we have $\sum_{j=1}^N -\Delta_{x_j} \simeq N^{5/3}$. Hamilton operator: given by $$H_N = \sum_{j=1}^{N} -\varepsilon^2 \Delta_{x_j} + \frac{1}{N} \sum_{i < j}^{N} V(x_i - x_j)$$ with semiclassical parameter $\varepsilon = N^{-1/3}$. We assume $\hat{V} \geq 0$. We are interested in ground state energy $$E_N = \min_{\psi \in L_a^2(\Lambda^N): \|\psi\| = 1} \langle \psi, H_N \psi \rangle$$ ## Hartree-Fock theory: consider Slater determinants $$\psi_{\text{slater}}(x_1,\ldots,x_N) = C \det \left[f_i(x_j) \right]_{1 \le i,j \le N}$$ with $\{f_1,\ldots,f_N\}$ an orthonormal system in $L^2(\Lambda)$. They are characterized by one-particle reduced density $$\omega = N \operatorname{tr}_{2,\dots,N} |\psi_{\operatorname{slater}}\rangle \langle \psi_{\operatorname{slater}}| = \sum_{j=1}^{N} |f_j\rangle \langle f_j|$$ Their energy is given by Hartree-Fock functional $$\mathcal{E}_{\mathsf{HF}}(\omega) = \mathsf{tr} \left[-\varepsilon^2 \Delta \right] \omega + \frac{1}{2N} \int dx dy \, V(x-y) \left[\omega(x,x) \omega(y,y) - |\omega(x,y)|^2 \right]$$ The Hartree-Fock energy is defined by $$E_N^{\mathsf{HF}} = \min_{0 \le \omega \le 1: \operatorname{tr} \omega = N} \mathcal{E}_{\mathsf{HF}}(\omega)$$ Fermi sea: If V = 0, Hartree-Fock energy minimized by $$\omega_F = \frac{1}{(2\pi)^3} \sum_{p \in \mathbb{Z}^3 : |p| \le p_F} |e^{ip \cdot x}\rangle \langle e^{ip \cdot x}|$$ with Fermi momentum $$p_F \simeq (3/4\pi)^{1/3} N^{1/3} =: \kappa_0 N^{1/3}$$ Here, we assume that Fermi ball is completely filled. Then ω_F also minimizes Hartree-Fock functional if $V \neq 0$. Hence $$E_N^{\mathsf{HF}} = \mathcal{E}_{\mathsf{HF}}(\omega_F) = \sum_{|p| \le p_F} \varepsilon^2 p^2 + \frac{N\hat{V}(0)}{2} - \frac{1}{2N} \sum_{|p|,|p'| \le p_F} \hat{V}(p - p')$$ Remark: in general, [Gontier-Hainzl-Lewin, 19] proved that $E_N^{\mathsf{HF}} - \mathcal{E}_{\mathsf{HF}}(\omega_F)$ is sub-exponentially small in N. Remark: justification of Hartree-Fock theory by [Bach, 92], [Graf-Solovej, 94] for Coulomb interaction. ### **Correlation energy** Theorem [Benedikter, Porta, S., Seiringer]: let $|k|\hat{V} \in \ell^1(\mathbb{Z}^3)$, $\hat{V} > 0$. Then $$\begin{split} &\lim_{N \to \infty} \left[E_N - \mathcal{E}_{\mathsf{HF}}(\omega_F) \right] / \varepsilon \\ &= \kappa_0 \sum_{k \in \mathbb{Z}^3} |k| \bigg\{ \frac{1}{\pi} \int_0^\infty \log \left[1 + 2\pi \kappa_0 \hat{V}(k) \left(1 - \lambda \mathrm{arctan} \left(\frac{1}{\lambda} \right) \right) \right] d\lambda - \frac{\pi}{2} \kappa_0 \hat{V}(k) \bigg\} \end{split}$$ **Remark 1:** for upper bound, only need $\sum_{k \in \mathbb{Z}^3} |k| \hat{V}^2(k) < \infty$. Remark 2: Result agrees with formula first predicted by Gell-Mann-Brueckner, through random phase approximation. Remark 3: for small V, theorem proven by [Benedikter-Nam-Porta-S.-Seiringer, 20]. [Christiansen-Hainzl-Nam] proved similar result, with different approach. ### Some ideas from proof To estimate energy, it is convenient to factor out Fermi sea and focus on its excitations. #### Fock space representation: on $$\mathcal{F}_a = \bigoplus_{n \ge 0} L_a^2(\Lambda^n)$$ we introduce creation, annihilation operators satisfying canonical anticommutation relations $$\{a_p, a_q^*\} = \delta_{p,q}, \qquad \{a_p, a_q\} = \{a_p^*, a_q^*\} = 0$$ We consider the Hamilton operator $$\mathcal{H}_{N} = \sum_{p \in \mathbb{Z}^{3}} \varepsilon^{2} p^{2} a_{p}^{*} a_{p} + \frac{1}{2N} \sum_{p,q,r \in \mathbb{Z}^{3}} \hat{V}(r) a_{p+r}^{*} a_{q}^{*} a_{q+r} a_{p}$$ **Particle-hole transformation**: on \mathcal{F}_a , define unitary R with $$R\Omega = \prod_{|p| \le p_F} a_p^* \Omega = \text{Fermi sea}$$ and $$Ra_p^*R^* = \begin{cases} a_p^*, & \text{if } |p| > p_F \\ a_p, & \text{if } |p| \le p_F \end{cases}$$ After conjugation, a_p^* creates a hole in the Fermi sea, if $|p| \leq p_F$. **Observe**: $$R: \chi(\mathcal{N}_h = \mathcal{N}_p)\mathcal{F}_a \to L_a^2(\Lambda^N)$$, where $$\mathcal{N}_h = \sum_{|p| \le p_F} a_p^* a_p, \qquad \mathcal{N}_p = \sum_{|p| > p_F} a_p^* a_p$$ count number of **holes** and of excited **particles**. #### **Excitation Hamiltonian**: we define $$\mathcal{L}_N = R^* \mathcal{H}_N R$$ ### Conjugation of kinetic energy: we compute $$\sum_{p \in \mathbb{Z}^3} \varepsilon^2 p^2 R^* a_p^* a_p R$$ $$= \sum_{|p| \le p_F} \varepsilon^2 p^2 a_p a_p^* + \sum_{|p| > p_F} \varepsilon^2 p^2 a_p^* a_p$$ $$= \sum_{|p| \le p_F} \varepsilon^2 p^2 - \sum_{|p| \le p_F} \varepsilon^2 p^2 a_p^* a_p + \sum_{|p| > p_F} \varepsilon^2 p^2 a_p^* a_p$$ $$= \operatorname{tr} \left[-\varepsilon^2 \Delta \right] \omega_F + \mathbb{H}_0$$ with the kinetic energy of excitations: $$\mathbb{H}_0 = \sum_{p \in \mathbb{Z}^3} |\varepsilon^2 p^2 - \varepsilon^2 p_F^2| \, a_p^* a_p$$ ### Conjugation of potential energy: we find $$\frac{1}{2N} \sum_{p,q,r} \hat{V}(r) R^* a_{p+r}^* a_q^* a_{q+r} a_p R = \frac{N\hat{V}(0)}{2} - \frac{1}{2N} \sum_{|p|,|p'| \le p_F} \hat{V}(p-p') + Q_B + \text{corrections}$$ where $$Q_{B} = \frac{1}{2N} \sum_{|p|,|q| \le p_{F},|p+r|,|q+r| > p_{F}} \hat{V}(r) a_{p+r}^{*} a_{p}^{*} a_{q+r} a_{q}$$ $$+ \frac{1}{2N} \sum_{|p|,|q+r| \le p_{F},|p+r|,|q| > p_{F}} \hat{V}(r) \left[a_{p+r}^{*} a_{p}^{*} a_{q+r}^{*} a_{q}^{*} + a_{q} a_{q+r} a_{p} a_{p+r} \right]$$ $$= \frac{1}{2N} \sum_{r \in \mathbb{Z}^{3}} \hat{V}(r) \left[b_{r}^{*} b_{r} + \frac{1}{2} (b_{r}^{*} b_{-r}^{*} + b_{r} b_{-r}) \right]$$ in terms of particle-hole pair creation operators $$b_r^* = \sum_{|p| \le p_F, |p+r| > p_F} a_{p+r}^* a_p^*$$ satisfying (after normalization) approximately bosonic relations $$[b_r^*, b_k^*] = [b_r, b_k] = 0,$$ $[b_r, b_k^*] = \operatorname{const} \cdot \delta_{r,k} + \operatorname{corrections}$ Conclusion: excitation Hamiltonian is given by $$\mathcal{L}_N = \mathcal{E}_{HF}(\omega_F) + \mathbb{H}_0 + Q_B + \text{corrections}$$ where $$\mathbb{H}_{0} = \sum_{p \in \mathbb{Z}^{3}} |\varepsilon^{2} p^{2} - \varepsilon^{2} p_{F}^{2}| a_{p}^{*} a_{p}$$ $$Q_{B} = \frac{1}{2N} \sum_{r \in \mathbb{Z}^{3}} \hat{V}(r) \left[b_{r}^{*} b_{r} + \frac{1}{2} (b_{r}^{*} b_{-r}^{*} + b_{r} b_{-r}) \right]$$ and where corrections are small on states with few excitations. **Question**: can \mathbb{H}_0 be expressed through operators b, b^* ? $$\mathbb{H}_{0} b_{r}^{*} \Omega = \sum_{\substack{|q| \leq p_{F}, |q+r| > p_{F}}} \mathbb{H}_{0} a_{q+r}^{*} a_{q}^{*} \Omega$$ $$= \sum_{\substack{|q| \leq p_{F}, |q+r| > p_{F}}} \left[\varepsilon^{2} (q+r)^{2} - \varepsilon^{2} q^{2} \right] a_{q+r}^{*} a_{q}^{*} \Omega$$ $$\simeq \sum_{\substack{|q| \leq p_{F}, |q+r| > p_{F}}} 2\varepsilon^{2} q \cdot r a_{q+r}^{*} a_{q}^{*} \Omega \neq \epsilon(r) b_{r}^{*} \Omega$$ Localized bosonic modes: we decompose Fermi sphere into $M = N^{\delta}$ patches $\{B_{\alpha}\}_{\alpha=1,...,M}$, and define modes $$b_{k,\alpha}^* = \frac{1}{n_{\alpha}(k)} \sum_{\substack{p \in B_{\alpha}, \\ |p| \le p_F, |p+k| > p_F}} a_{p+k}^* a_p^*$$ with $n_{\alpha}(k)$ chosen so that $$\left[b_{\alpha,k},b_{\beta,q}^*\right] \simeq \delta_{\alpha,\beta}\delta_{k,q}$$ Now, we find, with w_{α} the center of B_{α} , $$\mathbb{H}_0 b_{r,\alpha}^* \Omega \simeq \sum_{\substack{q \in B_\alpha, \\ |q| \leq p_F, |q+r| > p_F}} 2\varepsilon^2 q \cdot r a_{q+r}^* a_q^* \Omega \simeq 2\varepsilon^2 (w_\alpha \cdot r) b_{r,\alpha}^* \Omega$$ suggesting $$\mathbb{H}_0 \simeq 2\kappa_0 \varepsilon \sum_{r \in \mathbb{Z}^3} (\widehat{w}_{\alpha} \cdot r) b_{r,\alpha}^* b_{r,\alpha}$$ Quadratic Hamiltonian: combining modes with momenta k and -k, we arrive at $$\mathcal{L}_N = \mathcal{E}_{HF}(\omega_F) + \sum_{k \in \Gamma^{nor}} 2\varepsilon \kappa_0 |k| \mathfrak{h}(k) + \text{corrections}$$ with $$\mathfrak{h}(k) = \sum_{\alpha,\beta=1}^{M} (D(k) + W(k))_{\alpha,\beta} b_{k,\alpha}^* b_{k,\beta}$$ $$+ \frac{1}{2} \sum_{\alpha,\beta=1}^{M} \widetilde{W}(k)_{\alpha,\beta} \left[b_{k,\alpha}^* b_{k,\beta}^* + b_{k,\beta} b_{k,\alpha} \right]$$ where the $M \times M$ matrices $D(k), W(k), \widetilde{W}(k)$ have entries $$D(k)_{\alpha,\beta} = \delta_{\alpha,\beta} | \hat{k} \cdot \hat{\omega}_{\alpha} |,$$ $$W(k)_{\alpha,\beta} = \frac{\hat{V}(k)}{2\hbar\kappa_0 N|k|} \times \begin{cases} n_{\alpha}(k)n_{\beta}(k) & \text{if } \alpha,\beta \in \mathcal{I}_k^+ \text{ or } \alpha,\beta \in \mathcal{I}_k^- \\ 0 & \text{otherwise,} \end{cases}$$ $$\widetilde{W}(k)_{\alpha,\beta} = \frac{\hat{V}(k)}{2\hbar\kappa_0 N|k|} \times \begin{cases} 0 & \text{if } \alpha,\beta \in \mathcal{I}_k^+ \text{ or } \alpha,\beta \in \mathcal{I}_k^- \\ n_{\alpha}(k)n_{\beta}(k) & \text{otherwise.} \end{cases}$$ ### Bogoliubov theory: let $$T = \exp\left[\frac{1}{2} \sum_{k \in \Gamma^{\mathsf{nor}}} \sum_{\alpha,\beta} K(k)_{\alpha,\beta} \, b_{k,\alpha}^* b_{k,\beta}^* - \mathsf{h.c.}\right]$$ Up to small corrections, $$T^*b_{k,\alpha}T\simeq\sum_{\beta}\cosh(K(k))_{\alpha,\beta}\,b_{k,\beta}+\sum_{\beta}\sinh(K(k))_{\alpha,\beta}\,b_{k,\beta}^*$$ With appropriate choice of K, we find $$\begin{split} T^*\mathcal{L}_N T &= \mathcal{E}_{\mathsf{HF}}(\omega_F) + 2\varepsilon\kappa_0 \sum_{k\in\Gamma^{\mathsf{nor}}} |k| \operatorname{tr} \big[E(k) - D(k) - W(k) \big] \\ &+ \sum_{k\in\Gamma^{\mathsf{nor}}} \sum_{\alpha,\beta} \mathfrak{K}(k)_{\alpha,\beta} \, b_{k,\alpha}^* b_{k,\beta} + \text{corrections} \end{split}$$ Finally, explicit computation shows that $$\operatorname{tr} \big[E(k) - D(k) - W(k) \big] \\ \simeq \frac{1}{\pi} \int_0^\infty \log \left[1 + 2\pi \kappa_0 \hat{V}(k) (1 - \lambda \operatorname{arctan}(1/\lambda)) \right] d\lambda - \frac{\pi}{2} \kappa_0 \hat{V}(k)$$ ### An additional challenge: From $$\mathbb{H}_0 b_{r,\alpha}^* \Omega \simeq 2\kappa_0 \varepsilon \left(\widehat{w}_{\alpha} \cdot r \right) b_{r,\alpha}^* \Omega \quad \Rightarrow \quad \mathbb{H}_0 \simeq 2\kappa_0 \varepsilon \sum_{r \in \mathbb{Z}^3} (\widehat{w}_{\alpha} \cdot r) b_{r,\alpha}^* b_{r,\alpha} =: \mathbb{D}_B$$ Instead, we only obtain that $$\left[\mathbb{H}_{0}-\mathbb{D}_{B},b_{r,\alpha}\right],\left[\mathbb{H}_{0}-\mathbb{D}_{B},b_{r,\alpha}^{*}\right]\simeq0\quad\Rightarrow\quad T^{*}(\mathbb{H}_{0}-\mathbb{D}_{B})T\simeq(\mathbb{H}_{0}-\mathbb{D}_{B})$$ Therefore, $$\mathcal{L}_N \simeq \mathcal{E}_{\mathsf{HF}}(\omega_F) + \mathbb{H}_0 + Q_B$$ $\simeq \mathcal{E}_{\mathsf{HF}}(\omega_F) + (\mathbb{H}_0 - \mathbb{D}_B) + 2\kappa_0 \varepsilon \sum_{k \in \mathsf{\Gamma}^\mathsf{nor}} |k| \mathfrak{h}(k)$ and $$T^*\mathcal{L}_N T \simeq \mathcal{E}_{\mathsf{HF}}(\omega_F) + 2\kappa_0 \varepsilon \sum_{k \in \Gamma^{\mathsf{nor}}} |k| \operatorname{tr} \left[E(k) - D(k) - W(k) \right] + (\mathbb{H}_0 - \mathbb{D}_B) + 2\kappa_0 \varepsilon \sum_{k \in \Gamma^{\mathsf{nor}}} |k| \sum_{\alpha, \beta} \mathfrak{K}(k)_{\alpha, \beta} \, b_{k, \alpha}^* b_{k, \beta}$$ To control $-\mathbb{D}_B$, we use a **second** almost bosonic **Bogoliubov transformation**, diagonalizing \mathfrak{K} . ### **Dynamics of excitations** Time evolution of almost bosonic excitations can be described by **Bogoliubov Hamiltonian** $\mathfrak{K}(k)$. Schrödinger equation: consider solution of $$i\varepsilon\partial_t\psi_{N,t} = \left[-\sum_{j=1}^N \varepsilon^2\Delta_{x_j} + \frac{1}{N}\sum_{i< j}^N V(x_i - x_j)\right]\psi_{N,t}$$ with initial data of the form $\psi_{N,0} = RT\xi \in L_a^2(\Lambda^N)$, with $$\xi = \frac{1}{Z} b^*(\varphi_1) \dots b^*(\varphi_m) \Omega, \qquad \text{with } b^*(\varphi) = \sum_{k \in \Gamma^{\mathsf{nor}}} \sum_{\alpha \in \mathcal{I}_k} \varphi_\alpha(k) b_{k,\alpha}^*$$ Then $$T^*R^*\psi_{N,t} = T^*R^*e^{-iH_Nt/\varepsilon}RT\xi$$ $$= e^{-iT^*R^*H_NRTt/\varepsilon}\xi = e^{-iT^*\mathcal{L}_NTt/\varepsilon}\xi$$ From approximation $$T^*\mathcal{L}_N T = \mathcal{E}_{\mathsf{HF}}(\omega_F) + 2\varepsilon\kappa_0 \sum_{k \in \Gamma^{\mathsf{nor}}} |k| \operatorname{tr} \left[E(k) - D(k) - W(k) \right]$$ $$+ (\mathbb{H}_0 - \mathbb{D}_B) + 2\kappa_0 \varepsilon \sum_{k \in \Gamma^{\mathsf{nor}}} |k| \sum_{\alpha, \beta} \mathfrak{K}(k)_{\alpha, \beta} \, b_{k, \alpha}^* b_{k, \beta}$$ we are led to excitation dynamics $$\xi_t = \frac{1}{Z} b^*(\varphi_{1,t}) \dots b^*(\varphi_{m,t}) \Omega$$ where $$\varphi_t = e^{-ih_B t/\varepsilon} \varphi$$, with $h_B = 2\kappa_0 \varepsilon \bigoplus_{k \in \Gamma^{\text{nor}}} |k| \mathfrak{K}(k)$ Theorem [Benedikter, Nam, Porta, S., Seiringer]: many-body evolution can be approximated in norm by $$||e^{-iH_N t/\varepsilon}RT\xi - e^{-i(\mathcal{E}_{\mathsf{HF}}(\omega_F) + E_{\mathsf{corr}})t/\varepsilon}RT\xi_t|| \le C|t|\varepsilon^{1/15}$$