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Eigenfunctions  of a self-adjoint Hamiltonian  with eigenvalues in 


 with  


Denote the set of eigenfunctions: 

{ψj} ℋ ℐ

ℋ[ρ]ψj(r) = λjψj(r) j ∈ ℐ

{ψj}N
j=1

The set up

ℐ



The localization problem, mathematically

Compute localized orbitals (Wannier functions)  such that:


Each  is “significant” on a small part of the domain


Each  decays rapidly away from its “center”


We have  localized orbitals with 


ϕj

ϕj

ϕj

Nw Nw ≤ N

span {ϕj}
Nw
j=1 ⊆ span {ψj}N

j=1

4NB: Not immediately clear when/if this is possible—for the moment lets assume it is



Localization, in pictures
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Localization, via linear algebra

Upon “discretization” we have:  and 


Find  (so ) such that:


 


has localized columns

Ψ =
∣ ∣

ψ1 ⋯ ψN

∣ ∣
Φ =

∣ ∣
ϕ1 ⋯ ϕNw

∣ ∣

Q ∈ 𝕆N×Nw
Q*Q = I

Φ = ΨQ
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Why do we want localized basis functions?

Localization methods play a key role in efficient 
computational methods:


Induce “sparsity” 


So-called linear-scaling methods


Exact exchange


Local electron correlation


Interpolation (see previous talks)


and many more…
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ϕi ϕj

∫ ϕiϕjdr ≈ 0

See the review on MLWFs by Marzari, et. al. [2012] 



Localization, computationally



A prototype scheme (one option)

1. Mathematically define a measure of locality 


2. “Solve” the optimization problem:





Generally not a convex problem, typically exhibits many local minima


For concreteness, can consider


ℒ(ϕi)

min
Q*Q=I

f(ℒ(ϕ1), …, ℒ(ϕNw
))

f(ℒ(ϕ1), …, ℒ(ϕNw
)) = ∑ ℒ(ϕi)

9Other formulations (simultaneous diagonalization by Gygi et al. [2003], iterated projection by Stubbs et al. [2021],…)



Observations and choices

Choice of  and  impact how effectively we can solve the problem


Often need a good initialization to find a well localized basis


Choice of  and  influence the character of the computed orbitals


Need to appeal to manifold optimization

f ℒ

f ℒ
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Locality: density convolution



Locality, in an infinite domain

For an infinite system, quite natural to 
use “variance”:





For molecular systems is essentially 
the Foster-Boys [1960] criteria


⟨ψ |r2 |ψ⟩ − ⟨ψ |r |ψ⟩2

12



−L L

Locality, in a periodic domain?

How do you define the center of an 
orbital? Which one is it?


Position operator in periodic domains, 
see [Resta 1998]


How do you define a second moment 
sensibly?
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A simple 1d example

Consider a function with two peaks 
on :





What should the center be as  
varies?


What about the spread?


Admittedly a bit contrived, but 
illustrative

[−L, L)

ρ(r) = sin(θ)2δ(r + a) + cos(θ)2δ(r − a))

θ

14

L−L a−a

sin(θ)2

cos(θ)2



Real space vs periodic approximation
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θ0.00 0.16 0.31 0.47 0.63 0.79 0.94 1.10 1.26 1.41 1.57

center

a
0.00 0.02 0.05 0.08 0.10 0.12 0.15 0.18 0.20 0.22 0.25

spread θ = π/4

Imlnρ̂(2π/L)⟨r⟩

1 − cos(2πa/L)⟨r2⟩ − ⟨r⟩2



Some necessary notation

Potential  satisfies  


So-called Bravis lattice: 


Unit cell: 


Block orbitals ;  is  periodic

v(r) v(r + a1n1) = v(r) ∀r ∈ ℝ, ni ∈ ℤ

𝕃 = {R ∣ R = a1n1, n1 ∈ ℤ}

Γ = {r ∣ r = ca1, − 1/2 ≤ c < 1/2}

ψj,k = eir⋅kuj,k(r) uj,k 𝕃
16

Periodic atomic structure

a1



Periodic copies and Fourier transforms

Define Wannier functions spatially





Smooth in   (similarly ) implies  is highly localized

ϕj,R(r) =
1

|Γ*| ∫Γ*
ψ̃j,k(r)e−ik⋅Rdk

k ψ̃j,k ũj,k ϕj,k

17

R = 0 R = 3



The MLWF approach (abridged history)

Marzari and Vanderbilt [1997]: optimize localization criteria  inspired by Foster-Boys 

Per Blount [1962] can reformulate  in  space via: 


 and  


Propose using finite differences in  space via “shells” defined by 


Can compute everything using 


Resta [1998] defined a position operator for periodic boundary conditions; appeared 
earlier, e.g., Selloni et al. [1987] and Fois et al. [1988]


Consistent definition in the thermodynamic limit 

Ω

Ω k

⟨um,k |∇k |un,k⟩ ⟨um,k |∇2
k |un,k⟩

k b

Mk,b
mn = ⟨um,k |un,k⟩

L → ∞
18



Key challenges / shortcomings 

Results in a center computed as 


Discontinuous, can have “false” local minima (e.g., branch cut)


Slow convergence(?) of center and spread as  (equivalently, )


Does not admit error bounds, can be quite inaccurate in practice


Requires a “special” reduction to the -point only case


Optimization may converge slowly

1
N ∑

k,b

wbb Im log Mk,b
n,n

L → ∞ ∥b∥ → 0

Γ

19



A new formulation: density convolution

Center of a density : the point around which the second moment is minimized





“Truncate” to get a spread definition with periodic boundary conditions





Finally,


ρ

c* ≜ arg min
c ∫

∞

∞
ρ(r)(r − c)2dr = ∫

∞

−∞
ρ(r)rdr

sρ(c) ≜ ∫𝕊c

ρ(r)(r − c)2dr = ∫𝕊0

ρ(r + c)r2dr

c* ≜ arg min
c

sρ(c) and s* ≜ sρ(c*)

20



Spread in the Fourier domain

In an infinite domain, natural representation in Fourier space


 to 


and


 to 


In a finite domain, simply truncate  and  to 


A “spectrally accurate” representation of the differentiation

⟨ϕj,R |r |ϕj,R⟩ ⟨uj,k |∇k |uj,k⟩

⟨ϕj,R |r2 |ϕj,R⟩ ⟨uj,k |∇2
k |uj,k⟩

r r2 [−L, L)

21



Properties

Consistent in the limit 


Has proper translation symmetry 


The spread is continuous even if the center is not


A nice formulation, but hard to optimize directly (“non local”) 


Admits systematic truncation to construct (recover) simpler formula


Essentially a spectral definition of the differentiation operators


Foster-Boys  density convolution  truncated density convolution

L → ∞

≥ ≥
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Systematic approximation

Following Marzari Vanderbilt pick “shells”  such that





Make the approximation (valid for local orbitals)





Yields the spread approximation (don’t know the center)


b

∑
b

wbbbT = I

r2 = ∑
b

wb(bTr)2 ≈ ∑
b

2wbRe(1 − e−ibTr)

sρ(c) = ∑
b

2wbRe(1 − ̂ρ(b)eibTc)

23

b1b2



Truncated density convolution (TDC)

Solve for the center





and compute the spread





To connect with prior work


c* = − ∑
b

wbb Im log ̂ρ(b)

s* = ∑
b

2wb(1 − | ̂ρ(b)|)

̂ρ =
1
N ∑

k

Mk,k+b
n,n

24The spread formula appeared in Stengel and Spaldin [2006]



The approximation, informally

Roughly (but not exactly) corresponds to the approximations:








Good near the origin, but does deteriorate


Could be systematically improved (higher order truncation)


Similar to Von Neumann analysis for finite difference schemes

r ≈ sin(r)

1 − r2 ≈ cos(r)

25



Comparison with Marzari Vanderbilt

How different is this? We have





and compare with





Not the same, but similar for local functions—spread formula matters more

c* = − ∑
b

wbb Im log
1
N ∑

k

Mk,k+b
n,n

c*MLWF−FD ≈ −
1
N ∑

k
∑

b

wbb Im log Mk,k+b
n,n

26



A single optimization trajectory
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Random initializations BaTiO3
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Random initializations Cr2O3
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MLWF didn’t really converge here, this is to within 1% of the best spread



Outlook

Experiments suggest the TDC provides a more robust objective for localization


Converges as it should for a smooth objective


Julia codes forthcoming: WTP.jl and SCDM.jl


Some variations of the formula we recovered have appeared, but always 
seemed to be considered “equivalent”
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Initialization: SCDM



Do we always need to optimize?

Betteridge’s law of headlines: no


Selected columns of the density matrix (SCDM):


A direct method for localization


Can serve as an initial guess for optimization


Condensed phase (+ k-points and/or entangled bands) and molecular systems


Robust and efficient: part of QE + Wannier90 and more


Parameter free (except in the entangled case)

32



SCDM—the algorithm (  and -point only)N = Nw Γ

1. Compute the column-pivoted QR factorization: 


2. Let  denote the first  elements selected by the permutation 


3. Solve  (this is Löwdin orthogonalization)


 will be well localized

Ψ*Π = QR

𝒞 N Π

min
Q*Q=I

∥ΨQ − Ψ(Ψ*):,𝒞∥F

Φ = ΨQ

33QRCP paper [Golub and Businger 1965], textbook [Golub and Van Loan 1996] 



SCDM—why it works

For insulating systems  has localized 
columns [Kohn 1959 and 1996]


Pivoted QR identifies  columns of  to serve as 
models for localized orbitals


All columns are well localized, also need the set 
to be well conditioned


Orthogonalization of a well-conditioned subset 
doesn’t delocalize the functions much


P = ΨΨ*

N P

34



SCDM—in practice for Cr2O3
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What if  is not isolated?ℐ

Use a quasi-density matrix 





Compute the CPQR





Let  be the first  selected columns


Solve 


̂P = ∑
i

ψi f(λi)ψ*

f(Λ)Ψ*Π = QR

𝒞 Nw

min
Q*Q=I

∥ΨQ − Ψ( f(Λ)Ψ*):,𝒞∥F

36

f(λ)

λ

ℐ

In practice, only keep eigenvalues in  such that ; quasi-density matrix will have well-localized columnsΛ |f(λi)| > ϵ



Extension to -pointsk

Pick the columns at the -point 
and use them for all  (so one 
QRCP)


Solve for the gauge at each  
using those same columns


Can also be paired with the 
entangled version

Γ
k

k

37
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10x10x10 k-point grid, reference calculation in black, SCDM in blue, wannier90 in red

Justified by Panati and Pisante [2013], Nenciu [1991], des Cloizeaux [1964], etc. 



What about an atomic orbital basis?

Two natural extensions:


Apply SCDM to  in an AO basis (really  
or 


Corresponds to picking well-conditioned 
projected atomic orbitals


Sparse, real space grid evaluation of  plus 
“standard” SCDM


Can easily transform back into AO basis

P PS
S1/2PS1/2

Ψ

38

  

SCDM-M

SCDM-L

SCDM-G

cc-pVTZ def2-TZVPP ANO-RCC-VTZP



Atomic orbital basis sets
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Discussion

Orbital centers / spreads in periodic systems are ambiguous  


Careful definition provides a starting point for localization 


The objective function can have a significant impact on 
convergence of the optimization procedure


SCDM provides a robust initialization for localization 


Can even be used in isolation


Robust computation of localized orbitals is important in many 
situations where automation is important, e.g., high-throughput 
calculations (Vitale et al. [2020])
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