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The set up

Eigenfunctions {y;} of a self-adjoint Hamiltonian 7" with eigenvalues in .

Z |ply(r) = Ay(r) withj € J
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Denote the set of eigenfunctions: {l//j =1



The localization problem, mathematically

Compute localized orbitals (Wannier functions) qu such that:
Each ¢j IS “significant” on a small part of the domain
Each ¢j decays rapidly away from its “center”

We have V,, localized orbitals with N,, < N

N
span {¢j}j:“’1 C span {y; ;L

NB: Not immediately clear when/if this is possible —for the moment lets assume it is



Localization, In pictures
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Localization, via linear algebra

Upon “discretization” we have: ¥ = |¥1 ** Wy | and ® =

Find Q € Oy, (s0o Q0 = 1) such that:

d = PO

has localized columns



Why do we want localized basis functions?

Localization methods play a key role in efficient
computational methods: y b
l J

Induce “sparsity” NN \ N
So-called linear-scaling methods

Exact exchange ] XL X \:

| ocal electron correlation

Interpolation (see previous talks)

and many more...

See the review on MLWFs by Marzari, et. al. [2012]



Localization, computationally



A prototype scheme (one option)

1. Mathematically define a measure of locality £ (¢;)

2. “Solve” the optimization problem:

min (L)) ... L)
0*Q=I

Generally not a convex problem, typically exhibits many local minima

For concreteness, can consider

L)), ... L(y) = ), L ()

Other formulations (simultaneous diagonalization by Gygi et al. [2003], iterated projection by Stubbs et al. [2021],...) °



Observations and choices

Choice of fand Z impact how effectively we can solve the problem

Often need a good initialization to find a well localized basis

Choice of f and Z influence the character of the computed orbitals

Need to appeal to manifold optimization

10



Locality: density convolution



Locality, in an infinite domain

For an infinite system, quite natural to
use “variance’:

(wlrly) — (wlrlw)?

For molecular systems is essentially

the Foster-Boys [1960] criteria
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Locality, in a periodic domain?

How do you define the center of an N
orbital? Which one is it?

Position operator in periodic domains,
see [Resta 1998]

How do you define a second moment
sensibly? j k J
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A simple 1d example

Consider a function with two peaks
on|[—L,L):

p(r) = sin(0)’8(r + a) + cos(0)*5(r — a))

What should the center be as @
varies?

What about the spread?

Admittedly a bit contrived, but
Illustrative

sin(6)?

—d

cos(6)?
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Real space vs periodic approximation

center

— Imlnp (2w /L)
()

I
0.00 0.16 0.31 0.47 0.63 0.79 0.94 1.10 1.26 1.41 1.57

spread 0 = /4

— 1 —cos(2wa/L)
(r) = ()’

I
0.00 0.02 0.05 0.08 0.10 0.12 0.15 0.18 0.20 0.22 0.25

a
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Some necessary notation
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d
<= Periodic atomic structure =

Potential v(r) satisfies v(ir +an) = v(r) Vvr e R,n, € Z

So-called Bravis lattice: L = {R | R=an,n, € Z}

Unitcell I'={r|r=ca;,— 1/2 <c < 1/2}

ir-k

Block orbitals i, = ™ “u;(r); u; i is L periodic
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Periodic copies and Fourier transforms

v @ 0 O Q«ﬁ\—ﬁ 0‘\#—0 L

=0 — R =3

Define Wannier functions spatially

¢; r(r) = [ W k(r)e D)
F>I<

]

Smooth in K i (similarly #; ) implies ¢;  is highly localized



The MLWF approach (abridged history)

Marzari and Vanderbilt [1997]: optimize localization criteria €2 inspired by Foster-Boys
Per Blount [1962] can reformulate €2 in K space via:
(e | Vie 1) and (i i | Vi | 1, 10}
Propose using finite differences in K space via “shells” defined by b
Can compute everything using M,!,fl;'l“ = (Ui | 1, 1)

Resta [1998] defined a position operator for periodic boundary conditions; appeared
earlier, e.qg., Selloni et al. [1987] and Fois et al. [1988]

Consistent definition in the thermodynamic limit L — oo
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Key challenges / shortcomings

1

Results in a center computed as Y

k.b

Discontinuous, can have “false” local minima (e.g., branch cut)

Slow convergence(?) of center and spread as L — oo (equivalently, ||b|| — O)

Does not admit error bounds, can be quite inaccurate in practice

Requires a “special” reduction to the 1 -point only case

Optimization may converge slowly
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A new formulation: density convolution

Center of a density p: the point around which the second moment is minimized

o0

c* £ arg min ro p(r)(r — ¢)*dr = [ p(r)rdr

¢ — OO0

“Truncate” to get a spread definition with periodic boundary conditions

5,(¢) £ J

p(r)(r — ¢)*dr = J p(r + o)rdr
Se

S0

Finally,

c* £ arg min s,(¢) and s* = s,(€*)
C
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Spread in the Fourier domain

In an infinite domain, natural representation in Fourier space
(Pir| T r) to (i | Vil 1)
and

(Dir|r ?| ¢ir) to (U;y| Vil U k)

In a finite domain, simply truncate r and r* to [—L, L)

A “spectrally accurate” representation of the differentiation
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Properties

Consistent in the limit L — oo

Has proper translation symmetry

The spread is continuous even if the center is not

A nice formulation, but hard to optimize directly (“non local”)
Admits systematic truncation to construct (recover) simpler formula

Essentially a spectral definition of the differentiation operators

Foster-Boys > density convolution > truncated density convolution
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Systematic approximation

Following Marzari Vanderbilt pick “shells” b such that
D wbb! =1
b

Make the approximation (valid for local orbitals)

2 — Z wy (b7r)? & 2 2wpRe(l — e~™'T)
b b

Yields the spread approximation (don’t know the center)

5,(0) = ) 2wpRe(1 — p(b)e™ )
b
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Truncated density convolution (TDC)

Solve for the center

¢* = — ) wpb Imlog j(b)
b

and compute the spread

st = ) 2wy(1 = [p(b)])
b

To connect with prior work

The spread formula appeared in Stengel and Spaldin [2006]
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The approximation, informally

Roughly (but not exactly) corresponds to the approximations:

r ~ sin(r)

1 —r?

~ cOS(7)
Good near the origin, but does deteriorate
Could be systematically improved (higher order truncation)

Similar to Von Neumann analysis for finite difference schemes
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Comparison with Marzari Vanderbilt

How different is this”? We have

1
c* = — 2 wpb Imlogﬁ ZM,E;‘Z‘“’
b k

and compare with

|
K ~ k.k+b
CMLWF—FD ~ Y, 2 Z Wbb Im log Mn,n
Kk b

Not the same, but similar for local functions—spread formula matters more

26



A single optimization trajectory
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Random initializations BaTiOs3
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Random initializations Cr-0s
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MLWEF didn’t really converge here, this is to within 1% of the best spread
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Outlook

Experiments suggest the TDC provides a more robust objective for localization
Converges as it should for a smooth objective
Julia codes forthcoming: WTP.jl and SCDM. |l

Some variations of the formula we recovered have appeared, but always
seemed to be considered “equivalent”
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Initialization: SCDM



Do we always need to optimize?

Betteridge’s law of headlines: no

Selected columns of the density matrix (SCDM):

A direct method for localization

Can serve as an initial guess for optimization

Condensed phase (+ k-points and/or entangled bands) and molecular systems

Robust and efficient: part of QE + Wannier90 and more

Parameter free (except in the entangled case)
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SCDM —the algorithm (N = /N, and | -point only)

1. Compute the column-pivoted QR factorization: W*I1 = OR
2. Let € denote the first NV elements selected by the permutation I1

3. Solve min ||¥YQ — WY (¥*). «|| (this is Lowdin orthogonalization)
Q*0=I |

O = YO will be well localized

QRCP paper [Golub and Businger 1965], textbook [Golub and Van Loan 19906]
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SCDM—why it works

For insulating systems P = WW* has localized
columns [Kohn 1959 and 1996]

Pivoted QR identifies NV columns of P to serve as
models for localized orbitals

All columns are well localized, also need the set
to be well conditioned

Orthogonalization of a well-conditioned subset
doesn’t delocalize the functions much




SCDM —in practice for Cr203
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What if .7 is not isolated?
f(4)

Use a quasi-density matrix

P = Z Wi f(4)y™

Compute the CPQR
fINP*IT = QR
Let € be the first N, selected columns yl
Solve min ||YQ — Y(f(A)Y*). «||~
0*Q=I ’ S

In practice, only keep eigenvalues in A such that |f(4;)| > €; quasi-density matrix will have well-localized columns %



Extension to k-points

Pick the columns at the 1 -point 18
and use them for all K (so one -
QRCP)

%\16
Solve for the gauge at each k >
using those same columns 219

Can also be paired with the
entangled version .

10x10x10 k-point grid, reference calculation in black, SCDM in blue, wannier90 in red

Justified by Panati and Pisante [2013], Nenciu [1991], des Cloizeaux [1964], etc.

14
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What about an atomic orbital basis?

Two natural extensions:

Apply SCDM to P in an AO basis (really PS
or Sl/2ps1/2

cc-pVTZ def2-TZVPP ANO-RCC-VTZP

Corresponds to picking well-conditioned
projected atomic orbitals

Sparse, real space grid evaluation of W plus
“standard” SCDM

Can easily transform back into AO basis
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Atomic orbital basis sets
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Discussion

Orbital centers / spreads in periodic systems are ambiguous
Careful definition provides a starting point for localization

The objective function can have a significant impact on
convergence of the optimization procedure

SCDM provides a robust initialization for localization
Can even be used in isolation

Robust computation of localized orbitals is important in many
situations where automation is important, e.g., high-throughput
calculations (Vitale et al. [2020])
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