Machine learning basics
A speedrun

Stefan Chmiela




ML 1s linearization



ML IS (the art of) linearization



ML Is (the art of) linearization®



ML Is (the art of) linearization®

* most of the time



Supervised learning

Interpolation and generalization

N
N observations I = { (xi, yl-) } drawn i.i.d. over P
i=1

Labels y, =f(xl-) generated by unknown function

Estimation using parametrized function class &

Idealized setup: no noise in the labels

Operation in /nz‘erpo/at/on regime:
estimated f € F

- noisy labels
- model bias
- too few data (under-sampling)

satlsflesf( ) =f( .

Real world: various noise sources, e.g.

A simple neural network
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Key ingredients to ML



Key ingredients to ML

- Measure for model performance
- Strong inductive bias + regularization



Measuring performance of ML models
Interpolation and generalization

Assessing model quality: Measure expected performance on
known and new samples drawn from P using some loss L( -, - )

R(f) = Ep L(f(x), f(x)) 1

Most common: squared loss L (y,y’) = 5 ‘y -y

Learning problem: minimize some loss function

2
(Estimates mean label)

Also useful (Regression) (Classification)
- Absolute loss - Hinge-loss ,
‘f (XZ) — yl-‘ (Estimates median label) max [1 — fu (Xz) yl.,()] (SVMs)
- Log-loss

log <1 + e‘fw(xi)yl) (Logistic regression)



A successful learning scheme
Data Is not enough

- Encodes appropriate notion of regularity in inductive bias for f

. Imposed through the construction of function class & and the use of
regularization j

preferably rich & dense

- Universal approximation theorems: almost arbitrary functions can be learned
Cybenko (1989); Hornik (1991); Barron (1993); Leshno et al. (1993); Maiorov (1999); Pinkus (1999))
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, Multilayer perceptrons (Rosenblatt,
= 7"7&1 1958) are universal approximators

Absence of inductive bias?
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Bronstein, Michael M., et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges." arXiv
preprint arXiv:2104.13478 (2021).



A successful learning scheme
The case for regularity in candidate functions

Function regularity is hard to define in high dimensions
e.g. 1-Lipschitz smoothness: f : & — R satisfies

o) —f)] < [|x=x

forallx,x’ € & “locally smooth” functions

How many observations needed for a good f?

2d
S ° Consider f(x) = Z Zj€b <x - xj)

o9 ) J=
[ ] ’ .. . . d

. "”"3;. , with z; = & l,xj € R“and ¢ a locally
‘T%’.':. o supported ‘bump’.

Exponential growth of Lipschitz class with input dimension!

Bronstein, Michael M., et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges." arXiv
preprint arXiv:2104.13478 (2021).



Inductive bias via function regularity
Under-titting and over-fitting

Degree 1 Degree 4 Degree 15
— Model — Model — Model
——  True function ——  True function —— True function

eee Samples eee Samples eee Samples

Under-fitting Over-fitting
We need a way to control model complexity!

Example taken from http://scikit-learn.org



Inductive bias via function regularity
Encouraging generalization

Given complexity measureon &, ¢ : & — R,
e.g.a norm — e.g. weight decay on model weights ¢ ( 0) = ¢(0)

Redefine interpolation problem as

feargminc(g) st g (xl-) =f(xl-) fori=1,...,N

gEF

\ Pick most regular / smooth functions

within our function class.

Regularization

min — Z L ( ) +  Ar(w) Regularizer controls
w n complexity of the solution.

- Reqularizer
Data loss J



Inductive bias via function regularity
Bias-variance tradeoft

. Some asymptotic error is maintained even in the limit N — oo (model bias)

Chosen function class & does not exactly match our learning problem (e.g. bad features)

- Model can be too powerful/complex for a given dataset (model variance)

Overly complex models may follow noise in the data.

Expected loss can E [ _f X 2] — Bias? + Var + Noise
be decomposed: (y = 7)) i i

Optimal model balances both terms.



Inductive bias via function regularity
Bias-variance tradeoft

BIAS-VARIANCE TRADEOFF Amount of available data also determines complexity!
What is a good ML model?
LOW ¢-c-vvvvvene MODEL COMPLEXITY +---------» High
- -~ GENERALIZATION
Under-fitting Over-fitting ERROR
Optimal
model
g complexity
o
o
w
Bias
B TRAINING ERROR
REGULARIZE High bias, Low bias, Low bias, INCREASE
low variance low variance high variance COMPLEXITY

Keith, John A., et al. "Combining machine learning and computational chemistry for predictive insights into
chemical systems." Chemical reviews 121.16 (2021): 9816-9872.



A successful learning scheme
Types of regularizers

Sparsity
inducing

Compromise...
Two parameters ...

LT Norm L2 Norm LT + L2 Norm

Common regularization terms

- L, regularization . L, regularization
r(w) =w'w = ||W||% r(w) = [|w]|, (non-convex, sparse solution)
(strictly convex, differentiable)
- Elastic net

alwl; + (1 —a)IIWH%(
a e [0,1)

strictly convex, non-differentiable)



Linear least-squares regression
Determining hyper-parameters

CROSS-VALIDATION
How to find a good ML model?

TRAINING DATION TEST

T A I=——

training,
and test subsets.

2 For each combination _ | - 2ATION ERE

of hyper-parameters:
ypere Train model \_ @ __/ Evaluate on validation set

ESTIMATE FOR
3 Choose best — I —— GENERALIZATION ERROR
hyper-parameter
cg%biﬁation Optimal @ / (COMPARABLE WITH
hyper-params. Evaluate on independent test set OTHER MODELS)

Keith, John A., et al. "Combining machine learning and computational chemistry for predictive insights into
chemical systems." Chemical reviews 121.16 (2021): 9816-9872.



Example



Linear least-squares regression
Example
Model of form:f(xl-; =X W = Zx w; = XW

Residual: y — Xw

Linear least squares regression problem: min ||y — XW”%
A%

Take gradient w.r.t. w and set it to zero:

Normal equations: X'Xw = X'y
Unigue solution for full-rank X, i.e. rank(X) = N

= (XTX)_1 X'y = Xty X™: Pseudo-inverse



Linear least-squares regression
Ridge regularization (L,)

To avoid overfitting (e.g. due to a high-dimensional feature space),
penalize norm of the solution:

min [ly — Xw]|3 + A[lwl|3

\ Vary A to modify model
complexity (smoothness).

Setting loss-function derivative to zero leads to:

w=(+X"X)" Xy

- Generalization performance
- Numerical stabillity



Linear least-squares regression
Example

Input features / basis functions: .
r, — X; = <¢1 (ri), e, (rl-)> for somer; € R4

Using non-linear features,
our model can be non-
linear in r!




Linear least-squares regression
Kernel trick

Key idea:
(1) Replace each data point with feature vector
X; = ¢ (Xz) Can be high-dimensional or even a function!

(2) Never do that transformation explicitly. Instead define scalar product
between features:

— Yy —
k <x xj> = XTX, = <X Xj>
(3) Only use the kernel matrix in the algorithm

K=XX"'eR" K, =k <Xi, Xj>



Linear least-squares regression
Kernel trick

To avoid overfitting (e.g. due to a high-dimensional feature space),
penalize norm of the solution:

min [ly — Xw]|3 + A[lwl|3

Kernel ridge regression:

W = (,11 + XTx)_l XTy = X' (XXT -+ /11)_1 y

Use either X' X or XX (whichever is cheaper)

Training Prediction

w=Yax a=(XX+)y §=y (XX +4I) " X%



Kernel trick
Example: Polynomial kernel

Kernel describing degree-d polynomial
T d
k (Xl, X2) = (X1 X, + c)

Feature mapping for d = 2:

Pr(x) = [xlz, o X2, \/Exlxz, s \/zxn_lxn, \/_cxl, . \/_ ]

Non-linear classification
problem

Unke, O. T., Chmiela, S., Sauceda, H. E., Gastegger, M., Poltavsky, I., Schutt, K. T., ... & Mdller, K. R. (2021).
Machine learning force fields. Chemical Reviews, 121(16), 10142-10186.



Kernel regression as linear operator
Kernels: Green’s functions of operators

4 f@)
\ , tor response R
\‘ Regres—SE):“OEErj -----------
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Target function
CO/;VO/ .
W Iy
»
—/ —/ —/
L1 Lo L3
Pl =\ =\ N —/ —/ Regression as linear integral operator
f(Z) =T f(Z) = / k(z,2°) f(Z") dZ using convolution kernel (%, ).
X
Discrete analogon: M Discretization of f(Z"):
(target function is - s\ P> " -
only sampled A E k(Z,Z;) f(T;) f@) =) f(@8ZF - Z)
partially) i
M Regularization; non-stationarity;
— E k’( Ci", fz) o = Ko Ia}ck of sampling grid, normalization:

f(?,) —r



Kernel trick
Properties

- Large (even infinite) features spaces are possible.

- Solve highly non-linear learning problems without carrying out the
(expensive) feature transformation.

- Models are linear in their parameters!
Better inductive biases via linear side-constraints f¢ = & [Tk]ﬁ

mmm Probability distribution

—— MD trajectory \
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sGDML FFE: energy conservation + permutational symmetry constraints




Linear models in general
"Interpretability” of results

© Interaction
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Contributions of individual atoms to prediction in the sGDML FF.



Training Memory: O(N?)
: . 3
Parameter optimization Time: O(N”)

Solve for

_ XX is symmetric, positive-definite:
a=(XXT+i)ly = (LLT) 'y ’ p

Cholesky factorization with L. € R

OR follow the gradient (iterative optimization, use MVPs):
Derivative of loss function: VWL(f(X), y) = XX+ Dot —y

a'=a"!—y [XXT + Ao’ —y]

y - learning rate

e.g. (stochastic) gradient descent

OR Krylov subspace solver (conjugate gradients):

) = Pe Y * conjugate optimization steps
T = — - optimal, dynamic “learning rate”
Pw P t> o / 7



Training
Numerical stability

Large linear systems are badly conditioned!

Intensity [a.u.]
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Sorted eigen-spectrum [a.u.]

Define a better conditioned equivalent linear system (e.g. Nystrém preconditioner):

(K+Ahe=y +— B'K+A)BS=B'y, ¢=Bp



Training
Numerical solvers

Iterative solvers can trade-off memory and runtime requirements
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Deep learning
Non-linear parameter dependencies

Linear systems: shallow Non-linear parameter dependency: deep
architecture learning

(1) Introduce non-linear parameters within features / basis functions qbi:

>
r, — X; = (gbl (ri), sy, (ri)) for some r; € R

(2) Training with some flavor of gradient descent
Optimization problem loses most nice properties (e.g. convexity) :(



Deep learning
Non-linear parameter dependencies

Artificial neuron Feed-forward NN

Training via back-propagation: gradient-descent

Unke, O. T., Chmiela, S., Sauceda, H. E., Gastegger, M., Poltavsky, I., Schutt, K. T., ... & Muller, K. R. (2021).
Machine learning force fields. Chemical Reviews, 121(16), 10142-10186.



The “art’-part of ML

Strong inductive biases are crucial

invariances”
descriptors comp. efficiency” periodic® unique global smooth®
atom-centered symmetry functions (ASCF)*"! ® 1,2,3-body terms, cutoff
smooth overlap of atomic positions (soAP)** ® density based, SO(3) rotational group
integration

Coulomb matrix (CM)*"” ® 1,2-body terms
sine matrix*'* @® 1,2-body terms
Ewald sum matrix""* ® 1,2-body terms
bag of bonds (BoB)*'* ® 1:2-body terms
Faber—Christensen—Huang—Lilienfeld (FCHL)"'® © 1,2,3-body terms

spectrum of London and Axilrod—Teller—Muto potential ® 1,2,3,4-body terms
(sLATM)*"”

I P RN R

ML X LI KL X 2 <

LR S SO MMM L~

ML MR "X

GG S S S S NG S O G S S N

L 0 SRR IR Sl 14
S O AR i <Rl 1~

many-body tensor representation (MBTR)**® © 1,2,3-body terms X

atomic cluster expansion®”’ ® 1,2-body terms X

invariant many-body interaction descriptor (MBI)**° ® 1,2,3-body terms X

neural network architectures

deep potential—smooth edition (DeepPot-SE)**"*** ® 1,2,3-body terms, cutoff V/ X X

MPNN, SchNet**>*** @®/® 1,2-body terms, hierarchical \/ X X
Cormorant™® ® 1,2-body terms, hierarchical X X X

tensor field networks*** ® 1,2-body terms Vv X X

similarity metrics
root mean square deviation of atomic positions ® 1,2-body terms, input matching X X X \/ X
(RMSD)™

overlap matrix*** ® 1,2-body terms, input matching X X \/ \/ X
REMatch*” © 1,2-body terms, input matching X X \/ \/ X
sGDML™’ ® 1,2-body terms \/ \/ of \/ \/

e \/ ” = satisfies condition; “Q” = partially satisfies condition; “X” = does not satisfy condition. “Computational efficiency ranks with grades ®—®
in descending order. The efficiency class reflects the extent that the descriptor requires expensive operations (e.g., a hierarchical processing or
matching of inputs). “Descriptor has been used within periodic boundary conditions. ““T” = translational; “R” = rotational; “P” = permutational.
“In this context, a descriptor is referred to as smooth if its first derivative with respect to nuclear positions is continuous. 7Only invariant to
permutations represented in the training data.

Different inductive biases in ML-FF models

Keith, John A., et al. "Combining machine learning and computational chemistry for predictive insights into
chemical systems." Chemical reviews 121.16 (2021): 9816-9872.



The “art’-part of ML

Strong inductive biases are crucial

Observations

Function values . Function values . Function values .
Gradients V. -~ Gradients Vu. -
Hessians Hess(u) -

L]
(]
5
§
o
A Laplacian disc B Wave equation
Normal constraints n Function values .
Laplacian equation Au = 0 A Normal constraints n
Wave equation Cu = 0 )
1.0 -
) Example: Differential
= . .
g equations provide strong
°
constraints.
g
o

-1.0

-1.0 1.0



The "art”-part of ML

Strong inductive biases are crucial

GeomAtt

GeomAtt: Attention mechanism
learns relevant interactions

(a) (b)
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| bonds

First-layer
attenion matrix

Frank, Thorben, and Stefan Chmiela. "Detect the Interactions that Matter in Matter: Geometric Attention for Many-

Body Systems." arXiv preprint arXiv:2106.02549 (2021).
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