Machine learning basics A speedrun

Stefan Chmiela

ML is linearization

ML is (the art of) linearization

ML is (the art of) linearization*

ML is (the art of) linearization*

* most of the time

Supervised learning

Interpolation and generalization

N observations
$$\mathcal{D} = \left\{ (x_i, y_i) \right\}_{i=1}^{N} \text{drawn } i.i.d. \text{ over } P$$

Labels $y_i = f(x_i)$ generated by unknown function

Estimation using parametrized function class $\mathcal{F} = \{f_{\theta \in \Theta}\}$

Idealized setup: no noise in the labels

Operation in *interpolation regime:* estimated $\tilde{f} \in \mathscr{F}$ satisfies $\tilde{f}(x_i) = f(x_i)$

Real world: various noise sources, e.g.

- noisy labels
- model bias
- too few data (under-sampling)

e.g. $\theta \in \Theta$: linear regression coefficient or NN parameters

Key ingredients to ML

Key ingredients to ML

- Measure for model performance
- Strong inductive bias + regularization

Measuring performance of ML models Interpolation and generalization

Assessing model quality: Measure *expected performance* on known and *new* samples drawn from *P* using some *loss* $L(\cdot, \cdot)$

$$\mathscr{R}(\tilde{f}) := \mathbb{E}_{P} L(\tilde{f}(x), f(x))$$

Most common: squared loss $L(y, y') = \frac{1}{2} |y - y'|^{2}$ (Estimates mean label)

Learning problem: minimize some loss function

Also useful (Regression)

(Classification)

• Absolute loss $\left| f(\mathbf{x}_i) - y_i \right|$ (Estimates median label)

Hinge-loss
max
$$\left[1 - f_{\mathbf{w}}(\mathbf{x}_i) y_i, 0\right]^p$$
 (SVMs)

Log-loss
$$\log\left(1 + e^{-f_{\mathbf{w}}(\mathbf{x}_i)y_i}\right)$$
 (Logistic regression)

A successful learning scheme Data is not enough

- Encodes appropriate notion of regularity in *inductive bias* for f
- Imposed through the construction of function class \mathcal{F} and the use of *regularization*

preferably rich & dense

• Universal approximation theorems: almost arbitrary functions can be learned Cybenko (1989); Hornik (1991); Barron (1993); Leshno et al. (1993); Maiorov (1999); Pinkus (1999))

Multilayer perceptrons *(Rosenblatt, 1958)* are universal approximators

Absence of inductive bias?

Bronstein, Michael M., et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges." arXiv preprint arXiv:2104.13478 (2021).

A successful learning scheme

The case for regularity in candidate functions

Function regularity is hard to define in high dimensions

e.g. 1-Lipschitz smoothness: $f: \mathcal{X} \to \mathbb{R}$ satisfies

 $|f(x) - f(x')| \le ||x - x'||$ for all $x, x' \in \mathcal{X}$ "locally smooth" functions

How many observations needed for a good \tilde{f} ?

Consider $f(x) = \sum_{j=1}^{2^d} z_j \phi \left(x - x_j \right)$ with $z_j = \pm 1, x_j \in \mathbb{R}^d$ and ϕ a locally supported 'bump'.

Exponential growth of Lipschitz class with input dimension!

Bronstein, Michael M., et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges." arXiv preprint arXiv:2104.13478 (2021).

Inductive bias via function regularity Under-fitting and over-fitting

We need a way to control model complexity!

Inductive bias via function regularity Encouraging generalization

Given complexity measure on \mathscr{F} , $c: \mathscr{F} \to \mathbb{R}_+$, e.g. a *norm* \longrightarrow e.g. weight decay on model weights $c(f_{\theta}) = c(\theta)$

Redefine interpolation problem as

$$\tilde{f} \in \arg\min_{g \in \mathscr{F}} c(g)$$
 s.t. $g(x_i) = f(x_i)$ for $i = 1, ..., N$
Pick most regular / smooth functions within our function class.

Regularization

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} L\left(f_{\mathbf{w}}\left(\mathbf{x}_{i}\right), y_{i}\right) + \underbrace{\lambda r(w)}_{\text{Data loss}} \text{Regularizer}$$

Regularizer controls complexity of the solution.

Inductive bias via function regularity Bias-variance tradeoff

- Some asymptotic error is maintained even in the limit $N \to \infty$ (model bias) Chosen function class \mathcal{F} does not exactly match our learning problem (e.g. bad features)
- Model can be too powerful/complex for a given dataset (model variance)
 Overly complex models may follow noise in the data.

Expected loss can be decomposed:

$$E\left[(\mathbf{y} - \hat{f}(\mathbf{x}))^2\right] = Bias^2 + Var + Noise$$

Optimal model balances both terms.

Inductive bias via function regularity Bias-variance tradeoff

Keith, John A., et al. "Combining machine learning and computational chemistry for predictive insights into chemical systems." Chemical reviews 121.16 (2021): 9816-9872.

A successful learning scheme

Types of regularizers

Common regularization terms

• L_2 regularization $r(\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{w} = ||\mathbf{w}||_2^2$ (strictly convex, differentiable)

- L_1 regularization $r(\mathbf{w}) = \|\mathbf{w}\|_1$ (non-convex, sparse solution)
- Elastic net $\alpha \|\mathbf{w}\|_1 + (1 - \alpha) \|\mathbf{w}\|_2^2$ (strictly convex, non-differentiable) $\alpha \in [0,1)$

Linear least-squares regression Determining hyper-parameters

Keith, John A., et al. "Combining machine learning and computational chemistry for predictive insights into chemical systems." Chemical reviews 121.16 (2021): 9816-9872.

Example

Linear least-squares regression Example

Model of form:
$$\hat{f}(\mathbf{x}_i; \mathbf{w}) = \mathbf{x}_i^{\mathsf{T}} \mathbf{w} = \sum_{j=1}^N x_{ij} w_j = \mathbf{X} \mathbf{w}$$

Linear least squares regression problem: $\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$ Take gradient w.r.t. w and set it to zero:

Normal equations: $\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$ Unique solution for full-rank \mathbf{X} , i.e. rank $(\mathbf{X}) = N$ $\mathbf{w} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{X}^{+}\mathbf{y}$ \mathbf{X}^{+} : Pseudo-inverse

Linear least-squares regression Ridge regularization (L_2)

To avoid overfitting (e.g. due to a high-dimensional feature space), penalize norm of the solution:

$$\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{2}^{2}$$

Vary λ to modify model complexity (smoothness).

Setting loss-function derivative to zero leads to:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{X}^{\mathsf{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

- Generalization performance
- Numerical stability

Linear least-squares regression Example

Input *features / basis functions*: $\mathbf{r}_i \rightarrow \mathbf{x}_i = \left(\phi_1\left(\mathbf{r}_i\right), ..., \phi_n\left(\mathbf{r}_i\right)\right)^{\mathsf{T}}$ for some $\mathbf{r}_i \in \mathbb{R}^d$

Using non-linear features, our model can be nonlinear in **r**!

Linear least-squares regression Kernel trick

Key idea:

(1) Replace each data point with feature vector

 $\mathbf{x}_i \rightarrow \phi(\mathbf{x}_i)$ Can be high-dimensional or even a function!

(2) Never do that transformation explicitly. Instead define scalar product between features:

$$k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right) = \mathbf{X}_{i}^{\mathsf{T}}\mathbf{X}_{j} = \left\langle \mathbf{X}_{i},\mathbf{X}_{j}\right\rangle$$

(3) Only use the kernel matrix in the algorithm

$$\mathbf{K} = \mathbf{X}\mathbf{X}^{\mathsf{T}} \in \mathbb{R}^{N \times N}, K_{ij} = k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$$

Linear least-squares regression Kernel trick

To avoid overfitting (e.g. due to a high-dimensional feature space), penalize norm of the solution:

 $\min \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$

Kernel ridge regression:

$$\mathbf{w} = (\lambda \mathbf{I} + \mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y} = \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{X}^{\mathsf{T}} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

Use either $\mathbf{X}^{\mathsf{T}} \mathbf{X}$ or $\mathbf{X} \mathbf{X}^{\mathsf{T}}$ (whichever is cheaper)

Training

Prediction

$$\mathbf{w} = \sum_{i} \alpha_{i} \mathbf{x}_{i} \qquad \alpha = \left(\mathbf{X} \mathbf{X}^{\top} + \lambda \mathbf{I} \right)^{-1} \mathbf{y}$$

$$\tilde{y} = \mathbf{y} \left(\mathbf{X} \mathbf{X}^{\mathsf{T}} + \lambda \mathbf{I} \right)^{-1} \mathbf{X} \tilde{\mathbf{x}}$$

Kernel trick

Example: Polynomial kernel

Kernel describing degree-*d* polynomial $k(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2 + c)^d$

Feature mapping for
$$d = 2$$
:
 $\phi_2(x) = \left[x_1^2, \dots, x_n^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_{n-1}x_n, \sqrt{2}cx_1, \dots, \sqrt{2}cx_n, c\right]^{\mathsf{T}}$

Non-linear classification problem

Unke, O. T., Chmiela, S., Sauceda, H. E., Gastegger, M., Poltavsky, I., Schütt, K. T., ... & Müller, K. R. (2021). Machine learning force fields. Chemical Reviews, 121(16), 10142-10186.

Kernel regression as linear operator

Kernels: Green's functions of operators

$$\hat{f}(\vec{x}) = T_k f(\vec{x}) = \int_{\mathcal{X}} k(\vec{x}, \vec{x}') f(\vec{x}') \, \mathrm{d}\vec{x}'$$

7.1

 $\Lambda \Lambda$

Discrete analogon:

(target function is only sampled partially)

$$\approx \sum^{M} k(\vec{x}, \vec{x}_i) \tilde{f}(\vec{x}'_i)$$

$$=\sum_{i}^{M}k(\vec{x},\vec{x}_{i})\boldsymbol{\alpha}_{i}=K\vec{\boldsymbol{\alpha}}$$

Regression as linear integral operator using convolution kernel $k(\vec{x}, \vec{x}')$.

Discretization of $f(\vec{x}')$:

$$ilde{f}(ec{x}) = \sum_{i}^{M} f(ec{x}) \delta(ec{x} - ec{x}_{i}')$$

Regularization; non-stationarity; lack of sampling grid, normalization: $\tilde{f}(\vec{x}_i) \to \alpha_i$

Kernel trick

Properties

- Large (even infinite) features spaces are possible.
- Solve highly non-linear learning problems without carrying out the (expensive) feature transformation.
- Models are linear in their parameters! Better inductive biases via linear side-constraints $\hat{f}_{\mathcal{G}} = \mathcal{G}[T_k]f!$

<u>sGDML FF</u>: energy conservation + permutational symmetry constraints

Linear models in general "Interpretability" of results

Contributions of individual atoms to prediction in the sGDML FF.

Training Parameter optimization

Memory: $\mathcal{O}(N^2)$ Time: $\mathcal{O}(N^3)$

Solve for

 $\alpha = (\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbb{I})^{-1}\mathbf{y} = (\mathbf{L}\mathbf{L}^{\top})^{-1}\mathbf{y}$

 $\mathbf{X}\mathbf{X}^{\mathsf{T}}$ is symmetric, positive-definite: Cholesky factorization with $\mathbf{L} \in \mathbb{R}^{N \times N}$

OR follow the gradient (iterative optimization, use MVPs):

Derivative of loss function: $\nabla_{\mathbf{w}} L(\hat{f}(\mathbf{x}), \mathbf{y}) = (\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbb{I})\alpha^{t-1} - \mathbf{y}$

Loss sufface

$$\alpha^{t} = \alpha^{t-1} - \gamma \left[(\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbb{I})\alpha^{t-1} - \mathbf{y} \right]$$

$$\gamma \text{ - learning rate}$$

e.g. (stochastic) gradient descent

OR Krylov subspace solver (conjugate gradients):

$$\gamma_{t} = \frac{\left\langle \overrightarrow{p}_{t}, \overrightarrow{y} \right\rangle}{\left\langle \overrightarrow{p}_{t}, \overrightarrow{p}_{t} \right\rangle_{\mathbf{K}_{\lambda}}}$$

- conjugate optimization steps
- optimal, dynamic "learning rate"

Training Numerical stability

Large linear systems are badly conditioned!

Define a better conditioned equivalent linear system (e.g. Nyström preconditioner):

 $(\mathbf{K} + \lambda I)\mathbf{c} = \mathbf{y} \quad \mapsto \quad \mathbf{B}^{\top}(\mathbf{K} + \lambda I)\mathbf{B}\boldsymbol{\beta} = \mathbf{B}^{\top}\mathbf{y}, \quad \mathbf{c} = \mathbf{B}\boldsymbol{\beta}$

Training Numerical solvers

Iterative solvers can trade-off memory and runtime requirements

Deep learning

Non-linear parameter dependencies

Linear systems: shallow architecture

Non-linear parameter dependency: deep learning

(1) Introduce non-linear parameters within *features / basis functions* $\boldsymbol{\phi}_i$: $\mathbf{r}_i \rightarrow \mathbf{x}_i = \left(\phi_1\left(\mathbf{r}_i\right), \dots, \phi_n\left(\mathbf{r}_i\right)\right)^{\mathsf{T}}$ for some $\mathbf{r}_i \in \mathbb{R}^d$

(2) Training with some flavor of gradient descent Optimization problem loses most nice properties (e.g. convexity) :(

Deep learning

Non-linear parameter dependencies

Artificial neuron

Feed-forward NN

Training via back-propagation: gradient-descent

Unke, O. T., Chmiela, S., Sauceda, H. E., Gastegger, M., Poltavsky, I., Schütt, K. T., ... & Müller, K. R. (2021). Machine learning force fields. Chemical Reviews, 121(16), 10142-10186.

The "art"-part of ML Strong inductive biases are crucial

				invariances ^d				
descriptors	comp. efficiency ^b	periodic ^c	unique	Т	R	Р	global	smooth ^e
atom-centered symmetry functions (ASCF) ⁴¹¹	1,2,3-body terms, cutoff		х			\checkmark	х	\checkmark
smooth overlap of atomic positions $(SOAP)^{412}$	B density based, SO(3) rotational group integration	\checkmark	х	\checkmark	\checkmark	\checkmark	х	\checkmark
Coulomb matrix (CM) ⁴¹³	⊗ 1,2-body terms	Х	\checkmark			Х		\checkmark
sine matrix ⁴¹⁴			\checkmark			х		\checkmark
Ewald sum matrix ⁴¹⁴						Х		\checkmark
bag of bonds (BoB) ⁴¹⁵		Х	х			0		х
Faber-Christensen-Huang-Lilienfeld (FCHL) ⁴¹⁶	© 1,2,3-body terms		х				х	\checkmark
spectrum of London and Axilrod–Teller–Muto potential (SLATM) ⁴¹⁷	1,2,3,4-body terms		х				х	
many-body tensor representation (MBTR) ⁴¹⁸	© 1,2,3-body terms	х	х					\checkmark
atomic cluster expansion ⁴²⁰	⊗ 1,2-body terms		х					\checkmark
invariant many-body interaction descriptor (MBI) ⁴⁶⁰	B 1,2,3-body terms	X	х				X	\checkmark
	neural network architectures							
deep potential—smooth edition (DeepPot-SE) ^{461,462}	B 1,2,3-body terms, cutoff		х				х	\checkmark
MPNN, SchNet ^{352,434}			х				х	\checkmark
Cormorant ⁴⁶³	B 1,2-body terms, hierarchical	X	х				х	
tensor field networks ⁴⁶⁴	B 1,2-body terms		х				х	
	similarity metrics							
root mean square deviation of atomic positions (RMSD) ⁴⁵⁴	\otimes 1,2-body terms, input matching	Х	Х	0	0	Х	\checkmark	Х
overlap matrix ⁴⁵⁴		Х	х					х
REMatch ⁴⁵⁹	© 1,2-body terms, input matching	Х	Х					Х
sGDML ²⁰⁷			\checkmark			Of	\checkmark	\checkmark

 $a^{a}\sqrt{}^{"}$ = satisfies condition; "O" = partially satisfies condition; "X" = does not satisfy condition. ^bComputational efficiency ranks with grades -D in descending order. The efficiency class reflects the extent that the descriptor requires expensive operations (e.g., a hierarchical processing or matching of inputs). ^cDescriptor has been used within periodic boundary conditions. $a^{"}T"$ = translational; "R" = rotational; "P" = permutational. ^eIn this context, a descriptor is referred to as smooth if its first derivative with respect to nuclear positions is continuous. ^fOnly invariant to permutations represented in the training data.

Different inductive biases in ML-FF models

Keith, John A., et al. "Combining machine learning and computational chemistry for predictive insights into chemical systems." Chemical reviews 121.16 (2021): 9816-9872.

The "art"-part of ML

-1.0

-1.0

Strong inductive biases are crucial

0.0

0.0

1.0

1.0

Example: Differential equations provide strong constraints.

The "art"-part of ML

Strong inductive biases are crucial

Frank, Thorben, and Stefan Chmiela. "Detect the Interactions that Matter in Matter: Geometric Attention for Many-Body Systems." arXiv preprint arXiv:2106.02549 (2021).