
Machine learning basics
A speedrun

Stefan Chmiela

ML is linearization

ML is (the art of) linearization

ML is (the art of) linearization*

* most of the time

ML is (the art of) linearization*

Interpolation and generalization
Supervised learning

 observations drawn i.i.d. over N 𝒟 = {(xi, yi)}
N

i=1
P

Labels generated by unknown functionyi = f (xi)
Estimation using parametrized function class ℱ = {fθ∈Θ}

Idealized setup: no noise in the labels
Operation in interpolation regime:
estimated satisfies f̃ ∈ ℱ f̃ (xi) = f (xi)

e.g. : linear regression coefficient or NN parametersθ ∈ Θ

Real world: various noise sources, e.g.

• noisy labels
• model bias
• too few data (under-sampling)

Key ingredients to ML

Key ingredients to ML

• Measure for model performance
• Strong inductive bias + regularization

Assessing model quality: Measure expected performance on
known and new samples drawn from using some loss P L(⋅ , ⋅)

ℛ(f̃) := 𝔼P L(f̃(x), f(x))
Most common: squared loss (Estimates mean label)L (y, y′) =

1
2

y − y′
2

Measuring performance of ML models

(Classification)

• Hinge-loss  
 (SVMs)

• Log-loss  
 (Logistic regression)

max [1 − fw (xi) yi,0]
p

log (1 + e−fw(xi)yi)

Also useful (Regression)

• Absolute loss  
 (Estimates median label) f (xi) − yi

Learning problem: minimize some loss function

Interpolation and generalization

• Encodes appropriate notion of regularity in inductive bias for f
• Imposed through the construction of function class and the use of

regularization
ℱ

preferably rich & dense

Cybenko (1989); Hornik (1991); Barron (1993); Leshno et al. (1993); Maiorov (1999); Pinkus (1999))
• Universal approximation theorems: almost arbitrary functions can be learned

A successful learning scheme
Data is not enough

Bronstein, Michael M., et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges." arXiv
preprint arXiv:2104.13478 (2021).

Multilayer perceptrons (Rosenblatt,
1958) are universal approximators

Absence of inductive bias?

The case for regularity in candidate functions

Function regularity is hard to define in high dimensions
e.g. 1-Lipschitz smoothness: satisfiesf : 𝒳 → ℝ

 for all f(x) − f (x′) ≤ x − x′ x, x′ ∈ 𝒳 “locally smooth” functions

How many observations needed for a good ?̃f

Exponential growth of Lipschitz class with input dimension!

Bronstein, Michael M., et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges." arXiv
preprint arXiv:2104.13478 (2021).

Consider

with and a locally
supported ‘bump’.

f(x) =
2d

∑
j=1

zjϕ (x − xj)
zj = ± 1,xj ∈ ℝd ϕ

A successful learning scheme

Inductive bias via function regularity
Under-fitting and over-fitting

Example taken from http://scikit-learn.org

Under-fitting Over-fitting

We need a way to control model complexity!

Inductive bias via function regularity

Given complexity measure on , ,
e.g. a norm

ℱ c : ℱ → ℝ+

Redefine interpolation problem as

f̃ ∈ arg min

g∈ℱ
c(g) s.t. g (xi) = f (xi) for i = 1,…, N

Pick most regular / smooth functions
within our function class.

e.g. weight decay on model weights c (fθ) = c(θ)

Encouraging generalization

Regularization

min
w

1
n

n

∑
i=1

L (fw (xi), yi)
Data loss

+ λr(w)
⏟

Regularizer

Regularizer controls
complexity of the solution.

Inductive bias via function regularity

• Some asymptotic error is maintained even in the limit (model bias)N → ∞
Chosen function class does not exactly match our learning problem (e.g. bad features)ℱ

• Model can be too powerful/complex for a given dataset (model variance)
Overly complex models may follow noise in the data.

E [(y − ̂f(x))2] = Bias2 + Var + NoiseExpected loss can
be decomposed:

Optimal model balances both terms.

Bias-variance tradeoff

Inductive bias via function regularity
Bias-variance tradeoff

Keith, John A., et al. "Combining machine learning and computational chemistry for predictive insights into
chemical systems." Chemical reviews 121.16 (2021): 9816-9872.

Amount of available data also determines complexity!

Types of regularizers
A successful learning scheme

Common regularization terms

• regularization 
  
(strictly convex, differentiable)

L2
r(w) = w⊤w = ∥w∥2

2

• regularization 
 (non-convex, sparse solution)

• Elastic net 

 (strictly convex, non-differentiable)

L1
r(w) = ∥w∥1

α∥w∥1 + (1 − α)∥w∥2
2

α ∈ [0,1)

Determining hyper-parameters

Keith, John A., et al. "Combining machine learning and computational chemistry for predictive insights into
chemical systems." Chemical reviews 121.16 (2021): 9816-9872.

Linear least-squares regression

Example

Example
Linear least-squares regression

Model of form: ̂f (xi; w) = x⊤
i w =

N

∑
j=1

xijwj = Xw

Linear least squares regression problem: min
w

∥y − Xw∥2
2

Take gradient w.r.t. and set it to zero:w

Normal equations: X⊤Xw = X⊤y
Unique solution for full-rank , i.e. X rank(X) = N

w = (X⊤X)−1 X⊤y = X+y : Pseudo-inverseX+

Residual: y − Xw

To avoid overfitting (e.g. due to a high-dimensional feature space),
penalize norm of the solution:

min ∥y − Xw∥2

2 + λ∥w∥2
2

Ridge regularization ()L2

Linear least-squares regression

Vary to modify model
complexity (smoothness).

λ

Setting loss-function derivative to zero leads to:

w = (λI + X⊤X)−1 X⊤y
• Generalization performance
• Numerical stability

Example
Linear least-squares regression

Input features / basis functions:

for some ri → xi = (ϕ1 (ri), …, ϕn (ri))
⊤

ri ∈ ℝd

Using non-linear features,
our model can be non-
linear in !r

Key idea:

(1) Replace each data point with feature vector

(2) Never do that transformation explicitly. Instead define scalar product
between features:

(3) Only use the kernel matrix in the algorithm

xi → ϕ (xi)

k (xi, xj) = X⊤
i Xj = ⟨Xi, Xj⟩

K = XX⊤ ∈ ℝN×N, Kij = k (xi, xj)

Kernel trick
Linear least-squares regression

Can be high-dimensional or even a function!

Kernel trick
Linear least-squares regression

To avoid overfitting (e.g. due to a high-dimensional feature space),
penalize norm of the solution:

min ∥y − Xw∥2

2 + λ∥w∥2
2

Kernel ridge regression:

w = (λI + X⊤X)−1 X⊤y = X⊤ (XX⊤ + λI)−1 y
Use either or (whichever is cheaper)X⊤X XX⊤

Training

 w = ∑
i

αixi α = (XX⊤ + λl)−1 y

Prediction

ỹ = y (XX⊤ + λI)−1 Xx̃

Example: Polynomial kernel
Kernel trick

Kernel describing degree- polynomial

Feature mapping for :

d
k (x1, x2) = (x⊤

1 x2 + c)d

d = 2
ϕ2(x) = [x2

1 , …, x2
n , 2x1x2, …, 2xn−1xn, 2cx1, …, 2cxn, c]

⊤

Non-linear classification
problem

Unke, O. T., Chmiela, S., Sauceda, H. E., Gastegger, M., Poltavsky, I., Schütt, K. T., ... & Müller, K. R. (2021).
Machine learning force fields. Chemical Reviews, 121(16), 10142-10186.

Kernel regression as linear operator
Kernels: Green’s functions of operators

Properties
Kernel trick

• Large (even infinite) features spaces are possible.

• Solve highly non-linear learning problems without carrying out the
(expensive) feature transformation.

• Models are linear in their parameters!
Better inductive biases via linear side-constraints !̂f𝒢 = 𝒢 [Tk] f

sGDML FF: energy conservation + permutational symmetry constraints

”Interpretability” of results
Linear models in general

Contributions of individual atoms to prediction in the sGDML FF.

Energy prediction Force prediction

Parameter optimization
Training

Solve for

α = (XX⊤ + λ𝕀)−1y = (LL⊤)−1 y
 is symmetric, positive-definite:

Cholesky factorization with
XX⊤

L ∈ ℝN×N

Memory: 𝒪(N2)
Time: 𝒪(N3)

OR Krylov subspace solver (conjugate gradients):

γt = ⟨ ⃗p t, ⃗y ⟩
⟨ ⃗p t, ⃗p t⟩Kλ

• conjugate optimization steps
• optimal, dynamic “learning rate”

Derivative of loss function: ∇wL(̂f(x), y) = (XX⊤ + λ𝕀)αt−1 − y

OR follow the gradient (iterative optimization, use MVPs):

e.g. (stochastic) gradient descent

αt = αt−1 − γ [(XX⊤ + λ𝕀)αt−1 − y]
 - learning rateγ

Numerical stability
Training

Define a better conditioned equivalent linear system (e.g. Nyström preconditioner):

(K + λI)c = y ↦ B⊤(K + λI)Bβ = B⊤y, c = Bβ

In
te

ns
ity

 [a
.u

.]

~ 1010

Null-space
of original C

on
di

tio
n

nu
m

be
r

Sorted eigen-spectrum [a.u.]

In
te

ns
ity

 [a
.u

.]

Null-space
of original C

on
di

tio
n

nu
m

be
r

~ 106
~ 105

~ 104

Sorted eigen-spectrum [a.u.]

Strong
preconditioning

Large linear systems are badly conditioned!

Numerical solvers
Training

Iterative solvers can trade-off memory and runtime requirements

Non-linear parameter dependencies
Deep learning

Linear systems: shallow
architecture

Non-linear parameter dependency: deep
learning

(1) Introduce non-linear parameters within features / basis functions :

for some

(2) Training with some flavor of gradient descent
Optimization problem loses most nice properties (e.g. convexity) :(

ϕi

ri → xi = (ϕ1 (ri), …, ϕn (ri))
⊤

ri ∈ ℝd

Non-linear parameter dependencies
Deep learning

Artificial neuron Feed-forward NN

Unke, O. T., Chmiela, S., Sauceda, H. E., Gastegger, M., Poltavsky, I., Schütt, K. T., ... & Müller, K. R. (2021).
Machine learning force fields. Chemical Reviews, 121(16), 10142-10186.

Training via back-propagation: gradient-descent

Different inductive biases in ML-FF models

Keith, John A., et al. "Combining machine learning and computational chemistry for predictive insights into
chemical systems." Chemical reviews 121.16 (2021): 9816-9872.

The “art”-part of ML
Strong inductive biases are crucial

Example: Differential
equations provide strong
constraints.

Strong inductive biases are crucial
The “art”-part of ML

Strong inductive biases are crucial

Frank, Thorben, and Stefan Chmiela. "Detect the Interactions that Matter in Matter: Geometric Attention for Many-
Body Systems." arXiv preprint arXiv:2106.02549 (2021).

GeomAtt: Attention mechanism
learns relevant interactions

The “art”-part of ML

