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The difficulty of calculating the ground-state energy

Recent developments Our motivation

e Ground-state energies are e QMC can be extended even
needed for chemistry. further, but first the sampling

e The difficulty of finding the and optimization strategies it
ground-state energy grows employs need to be improved.
exponentially with number of 1. Long convergence times.
electrons/spins. 2. Loss of stability.

e Quantum Monte Carlo (QMC) 3. Convergence to
comes to the rescue, providing unreasonable solutions.
energies for e We need to understand QMC

1. Benzene (CgHpg) with 42 mathematically in order to

interacting electrons improve it.

2. Lattices with 100 spins,
hence 21% spin
configurations
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Extreme eigenvalue problem

In QMC applications, we need to solve discrete eigenvalue problems
involving matrices with dimensions up to 10198 x 10198,

Even storing a single vector of this size would be unmanageable.

Question: How do such large matrices arise?
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The quantum spin problem

Question: How can we represent H as a matrix?

Consider a wavefunction

V) = 1) @ [¢h2) ®@ - -+ @ [ihw),

which is a tensor product of |[+) and |—) states on the individual spins.

Example 1.

W)y =|+—-—+—...4+-)
Example 2.

W) =l++== =)

= The tensor product wavefunctions form a (complete) orthonormal
basis of size 2V.
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The quantum spin problem

Question: How can we represent H as a matrix?

Introduce the raising and lowering operators
— o}, which raises [¢;) from |—) to |+),
— o, which lowers |¢;) from |+) to |—),

and insist that

—> H has the matrix representation

H=-> ofoi —h> of

in~j

= —ZU,-ZUf — hZ(U?‘—I—ai_) .

in~j
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The quantum spin problem

To see the sparsity pattern of 7, operate on the left and right with basis

vectors:
(WHHI?) = < — Y oiof —h) (of +o7) ¢2>
i~j i
null excitation single excitation

— If ! and 4? differ by 0 spins,
WM = (91 =Y, ofoflu?).
— If 4 and ¥? differ by 1 spin,

(W H[?) = —h
— If ¢! and ¢? differ by 2+ spins,

(WHH[y?) =0

= The matrix H has N + 1 nonzero entries per column.
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The quantum spin problem

3 spins
2 spins -3 —h —h —h
—h 1 —h —h
o _h _h —h 1 —h —h .
—-h —-h 1 —h
—-h 2 —h
—h 1 —-h —-h
—h 2 —h
“h —h -2 —h —-h 1 —h
—h —h 1 -—h
—h —-h —-h -3

For a system of N spins, the matrix has dimensions 2V x 2N

but there are just N 4+ 1 nonzero entries per column.
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The electronic structure problem

Consider the Born-Oppenheimer model for N electrons orbiting a field of
fixed nuclei, specified by

1 Za 1
H:—EZVE;_;“;_RA‘ “V‘Zi‘ri_rj'.

J>i
— R, is the location of nucleus A.
— Z, is the atomic number of A.

— r; is the location of electron i.

Allow each electron to occupy a spin up or down state

wi) =11 orfwi) =[1),

and insist on the antisymmetry property

where |x;) = |r;,w;) denotes the position and spin of electron i.
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The electronic structure problem

Question: How can we represent H as a matrix?

Consider an orthonormal set of single-electron spatial orbitals

|¢1>7 ‘¢2>’ SRR ‘¢M>
and the associated spin orbitals

IX1) = [¢1) ® | 1),

Ix2) = [¢1) @ | 1),

ey

Ixam) = [om) @ [ 1)-
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The electronic structure problem

Question: How can we represent H as a matrix?

Next introduce the basis of Slater determinants

xi(x1)  xj(x1) o xk(x1)

o k) = Xilxe) - xj(x2) eee o xk(x2)
ik =l . .

Xi(xw) uew) o xw(xn)
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xi(x1)  xj(x1) o xk(x1)
o k) = Xilxe) - xj(x2) eee o xk(x2)
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Slater determinants satisfy the antisymmetry property
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The electronic structure problem

Question: How can we represent H as a matrix?

Next introduce the basis of Slater determinants

xi(x1)  xj(x1) o xk(x1)
k= L Xi(x2)  xj(x2) -+ xu(x2)
TN : :

xi(xn)  xj(xn) o xk(xw)

Slater determinants satisfy the antisymmetry property

= Slater determinants form an (incomplete) orthonormal basis of size
2M
(w)-
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Question: How can we represent H as a matrix?

Introduce the raising and lowering operators
— a;, which satisfies a)'|j--- k) = |ij- - - k) if i is not yet occupied,
— a; , which satisfies a; |ij - k) = |j -+ k),

and insist that

+ot - oa—
aa; =a;a; =0.
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The electronic structure problem

Question: How can we represent H as a matrix?

Introduce the raising and lowering operators
— a;, which satisfies a)'|j--- k) = |ij- - - k) if i is not yet occupied,
— a; , which satisfies a; |ij - k) = |j -+ k),

and insist that

+ot - oa—
aa; =a;a; =0.

= In the basis of Slater determinants, H has the matrix representation

2M 2M

1
H= Z(i|h[j)afaj+§ > (ijlkl)al &) ajax

ij=1 ij,k, =1

where (i|h|j) and (ij|kl) are integrals over one or two electron positions.
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The electronic structure problem

To see the sparsity pattern of 7, operate on the left and right with basis

vectors:
2
|h\j a aj+ 5 E U|k/ a a/ak ) >

null / single excitation null / single / double excitation

(W' M%) = <w1

— Double excitations lead to
(ij - [H| K- ) = (il kl) = (ijlIk).

— Single excitations lead to

(ikiky -+ [H|jkiko -+ ) = (il hlj) +Z [(iknljkn) = (ikn|knj)]
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The electronic structure problem

To see the sparsity pattern of 7, operate on the left and right with basis

vectors:
2
|h\j a aj+ 5 E U|k/ a a/ak ) >

null / single excitation null / single / double excitation

(W' M%) = <w1

— Double excitations lead to
(- [H]KT ) = (iflKT) = (ij] k).
— Single excitations lead to
(ikiky - [Hljkike ) = (ilhlj) +Z [(iknljkn) = (ikn|knj)]

— Null excitations lead to

N N
(i Hliviz---) = Ailhlin)+D - [iminlimin) = iminliniim)].

= The matrix H has O(N?M?) nonzero entries per column.
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Traditional methods

For small matrices, there are iterative eigenvalue solvers, e.g., power
method, subspace iteration, Lanczos algorithm, Jacobi-Davidson method.

The power method is the simplest method for finding Amax(A):

Power method

1. xtt1 = Axt

e Historical eigenvalue estimator
Xt — <X0a Axt>
(x0,xt)

e Modern eigenvalue estimator

G0 (Xt AxY)
R
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Convergence of power method

Consider a symmetric matrix A € R"*" with largest-magnitude

eigenvalues |\;| > |\p| > -+ and eigenvectors v, v2 ..., and set

0,1
0=/(xv') = arccos(w).

A2
R=|2Z],
A1 x|

1

1. Eigenvector estimates x°, x1, ... satisfy

tan Z(x*,v') < Rftan#.

2. Historical or modern eigenvalue estimates A%, AL, ... satisfy

~

‘At—)\l _ 2Rt tan2 0 ‘S\t—)\l
A1 — 1— Rttan?4 A\

‘ < 2R?*t tan?4.
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Convergence of power method

Convergence of power method

Consider a symmetric matrix A € R"*" with largest-magnitude
eigenvalues |\;| > |\p| > -+ and eigenvectors v, v2 ..., and set
A2
== 0=/(x°v) = arccos‘i‘
‘Al ’ x|
1. Eigenvector estimates x°, x1, ... satisfy
tan Z(x*,v') < Rftan#.
2. Historical or modern eigenvalue estimates A%, AL, ... satisfy
A=\ _ 2R tan?d 0 = D m
< or ’ ) <2 R* tan?4.
‘ A1 — 1— Rttan24 -
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Limitations of power method

We can estimate the ground state for small systems by applying the
power method to A =1 — eH for small enough € > 0,

but this leads to increasingly dense vectors at each iteration.

Question: How can we adapt the power method to larger matrices?
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Introduce random walkers &1, ..., = {1,2,...,d} with positive or
negative signs S, ..., SM e {+1,-1}.

1. Birth: For each walker ¢/ = j:

a) With probability pjx, spawn Nj. particles at a new location
k # j, where

Nix = || Aj|/pix + U], U ~ Unif(0, 1).

b) Assign the walkers the sign S/ if Ay > 0 or —Slif A <0.
2. Death: For each walker & = j:
a) Replace & with N walkers, where

Nj = [|Azl+ U], U~ Unif(0,1).

b) Assign the walkers the sign S} if A; > 0 or —S! if A;; <O0.
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Full Configuration Interaction Quantum Monte Carlo

Introduce random walkers &1, ..., = {1,2,...,d} with positive or
negative signs S, ..., SM e {+1,-1}.

1. Birth: For each walker ¢/ = j:

a) With probability pjx, spawn Nj. particles at a new location
k # j, where

Nix = || Aj|/pix + U], U ~ Unif(0, 1).

b) Assign the walkers the sign S/ if Ay > 0 or —Slif A <0.
2. Death: For each walker & = j:
a) Replace & with N walkers, where

Nj = [|Azl+ U], U~ Unif(0,1).

b) Assign the walkers the sign S} if A; > 0 or —S! if A;; <O0.
3. Annihilation: Cancel walkers on the same site with opposite signs.
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FCIQMC approximates x'*! = Ax? in the sense that

Xt =M Si.
E[X*"] = AX®,  where Sl
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— The birth step perform multiplication by Aqstdiag-

— The death step performs multiplication by Agiag.
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Full Configuration Interaction Quantum Monte Carlo

FCIQMC approximates x'*! = Ax? in the sense that

Xt = Zf\il 5{55;

E[X"™] = AX',  where Ny o
Xt+1 — Zi:ﬁl St—ﬁ—l(;f;“

— The birth step perform multiplication by Aqstdiag-

The death step performs multiplication by Agiag.

The annihilation step performs addition A = Agiag + Aofrdiag-
— To stabilize the walker population, FCIQMC adapts the shift, i.e.,

N
A=1—cH-0d),  6=00 1 Ollog( ).
t—1



Convergence of FCIQMC

Question: Does FCIQMC converge?




Convergence of FCIQMC

Question: Does FCIQMC converge?

1. The system ((gé)lﬁiﬁl\/m(St{)lﬁfSNwdf) is Markovian.



Convergence of FCIQMC

Question: Does FCIQMC converge?

1. The system ((gé)lﬁiﬁl\/m(St{)lﬁfSNwdf) is Markovian.

2. We anticipate the system converges to a stationary measure p.



Convergence of FCIQMC

Question: Does FCIQMC converge?

1. The system ((gé)lﬁiﬁl\lw (St{)lgigNmét) is Markovian.
2. We anticipate the system converges to a stationary measure p.

3. Moreover, we anticipate

EXT=E[3 o]

lies close to the ground state.



Convergence of FCIQMC

Question: Does FCIQMC converge?

1. The system ((gé)lﬁiﬁl\lw (St{)lgigNﬁét) is Markovian.
2. We anticipate the system converges to a stationary measure p.

3. Moreover, we anticipate

EXT=E[3 o]

lies close to the ground state.

4. Then, it makes sense to estimate the ground-state energy using

t S=tmin

D, (X X5)

which is a ratio of convergent averages of a Markov chain, with
convergence rate ~ t—1/2,

o Yee (X0, AX?)
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Introduce a random compression operator ® : RY — RY such that
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Full Configuration Interaction Fast Randomized lteration

Question: Why not approximate xt*1 = Axt more directly?
M pp y

Introduce a random compression operator ® : RY — RY such that
(a) ®(x) has at most m nonzero entries.
(b) E®(x) = x.

FCIFRI (Lim & Weare, 2017)

1. X" = A®(X")
2 Xt+1 _ Xt+1/th+1”1

Again, we approximate the dominant eigenvalue of A using

co o Dee (X0 AX?)

S=tmin

St (X0 x5

convergence rate.

t__

and anticipate a ~ t~1/2
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Full Configuration Interaction Fast Randomized Iteration

Question: Why not approximate xt*1 = Axt more directly?
M pp y

Introduce a random compression operator ® : RY — RY such that
(a) ®(x) has at most m nonzero entries.
(b) E®(x) = x.

FCIFRI (Lim & Weare, 2017)

1. X" = A®(X")
2 Xt+1 _ Xt+1/th+1”1

Again, we approximate the dominant eigenvalue of A using

Se_ Yo (X° AX?)
St (X0 x5

convergence rate.

and anticipate a ~ t~1/2

Question: How should we choose the compression operator ®7
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Full Configuration Interaction Fast Randomized Iteration

Proposition (optimal compression)

For any x € RY let o be a permutation of {1,...,d} such that

|on(1)| > |xa(2)| Z oo 2 |xoz(d)"

Then, the compression operator ® that minimizes E|®(x) — x||? is
characterized as follows:

A
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Proposition (optimal compression)

For any x € RY let o be a permutation of {1,...,d} such that

|Xa(1)| > |xa(2)| Z oo 2 |xoz(d)"
Then, the compression operator ® that minimizes E|®(x) — x||? is
characterized as follows:

(a) The largest-magnitude entries are preserved exactly, i.e.,
D(x)o(i) = Xa(i)s i=1,...,k.

(b) The smallest-magnitude entries are randomly perturbed, i.e.,
®(x); = x;/p; with probability p; and ®(x); = 0 otherwise, where

__(m=K)Ixil

- .
D jmk+1 Xa(i)]

i

(c) The number k is as small as possible, while ensuring Poki1) <1

T i = = =
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Figure: FCIFRI ground-state energy estimates for Neon (8e, 220).
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1. FCIFRI is more accurate than FCIQMC but FCIQMC is cheaper than
FCIFRI. In practice, we combine them.

2. There is not a mathematical understanding of when these methods
succeed versus fail (i.e., what matrix properties).
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Introducing variational Monte Carlo

The ground state: The ground-state wavefunction v solves a Hermitian
eigenvalue problem Ay = H1p with A as small as possible.
The variational principle: The ground-state wavefunction ¥ minimizes

=

Variational Monte Carlo: VMC minimizes £ [¢] over a wavefunction
class g, where 0 is a vector of real- or complex-valued parameters.

Variational Monte Carlo (VMC)

1. Draw samples from the wavefunction density

po (%) o< [vog (x)|*.

2. Use the random samples to estimate the energy gradient
g = V& [e] and potentially other quantities for the optimization.
3. Update the @ parameters to reduce the energy.
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Main example: We will apply VMC to the transverse-field Ising model
for spin-1/2 particles on a periodic 1-D lattice, specified by
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Introducing variational Monte Carlo

Main example: We will apply VMC to the transverse-field Ising model
for spin-1/2 particles on a periodic 1-D lattice, specified by

ZJZUZ—hZU 34

i~j
— o7 and o7 are Pauli operators
— | ~ j signifies that / and j are neighbors

— his a real-valued parameter

Ansatz: 1) is a restricted Bolzmann machine (RBM) ansatz
Yw,b(o HHCOSh(ZWU (To), +b>
i=1 T

where T ranges over translation operators on the lattice, and w and b
are vectors of complex-valued parameters, called weights and biases.
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vanishing variance principle, a special feature of VMC (proved later).
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— VMC estimated energies decrease and improve over time.

— The variance in the energies also decreases. This is because of the
vanishing variance principle, a special feature of VMC (proved later).

Question: How precisely do we update the @ parameters?
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Gradients and Hessians

1. Fix a vector of parameters € and consider a small update 6 + 4.
The resulting (intermediate-normalized) wavefunction is

~ (g, %0)

¢0+6 - m%ﬂ& .

2. Apply a Taylor series expansion
~ ~ ~ 1 ~
Yo+ =9 + Z,, 0 + 5 Zu 80,05 + O(|8]),

where

¥ = 1o = Ve,
S o ~ {ve,06,70)
;i = Og, e = Og,%0 (v, Vo) e,

~ 5 ~
wlj = 89[,0],1/}9 — ...
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3. Use the Taylor series expansion for 1/39+5 to calculate

E[ors]) — E[e] = "8 + g 6 +8"HS + R(67 J6)+0O(|s]°),

energy difference gradient terms Hessian terms
g - W’ﬁ@ H, = <$f;ﬁfj> Jj— <$"f;@>
(. 9) (0, 0) (0, 0)

where’zq:?-l—g[ﬂ.
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Gradients and Hessians

3. Use the Taylor series expansion for 1/39+5 to calculate

E[ors]) — E[e] = "8 + g 6 +8"HS + R(67 J6)+0O(|s]°),

energy difference gradient terms Hessian terms
g - W’ﬁ@ H, = <$f;ﬁfj> Jj— <$”Z7z$>
(. 9) (0, 0) (0, 0)

where’zq:?-l—g[zﬂ.

Three main takeaways:

1. For real 0, the gradient is 2g and the Hessian is 2H + 2J.

2. For complex 6, the Wirtinger gradient is (g), and the Wirtinger
Ta)
3. g — 0 and J — 0 as ¢ approaches any eigenstate of 7.

Hessian is (



Gradients and Hessians

Proposition (ground state regularity)
The vector g and matrix J are bounded by

gl < H@ H min H (# _A)\)@H’ 1] < H&;ﬂ H min H (H _A)\)JH.
9] *® 9| 5] *e& [

Therefore, g — 0 and J — 0 as minycg || (H — A)zZH/H@H —0,
assuming uniformly bounded H 1;, H/H 1ZH and H &u H/H 1$H terms.




Gradients and Hessians

Proposition (ground state regularity)

The vector g and matrix J are bounded by

gl < H@ H min H (# _A)\)@H’ 1] < H&;ﬂ H min H (H _A)\)JH.
9] *® 9| 5] *e& [

Therefore, g — 0 and J — 0 as minycg || (H — A)zZH/H@H —0,
assuming uniformly bounded H 1;, H/H 1ZH and H &u H/H 1$H terms.

The Hessian structure has implications for VMC optimization.
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Various optimization methods

Gradient descent methods: Choose 6 to minimize

Eiinear [12;0+5] - 5[72;9] = 6*g + g*aa

linearized energy difference gradient

plus a penalization term that keeps the update small.

1. The penalization term is either

_ _ A~ ~ 2
e 1o or ¢ 'Z(Yo,Yors)",
——

GD natural GD

where € > 0 is a tunable parameter.

2. The term 4(1/39,77?19+5 )2 is approximated using

AA 2 * QZIMZ'
4(1/]9’11)94»5) =6 55+O(|6|3), SUZM
(¥,9)
Natural GD ('stochastic reconfiguration') uses the penalization
€~16%(S +nl)d, where 7 > 0 helps keep the updates small.
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Various optimization methods

GD and natural GD

Choose 6 to solve
5*R6]

méin [é*g +g%0 +
where R =1 in GD and R = S + nl in natural GD. Equivalently, set

d=—cRg.
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Various optimization methods

Rayleigh-Gauss-Newton method: Choose § to minimize

gquad ['(ZG+5} - 5[720] = 5*g + g*6 + O0"HS s

quasi-Hessian

quadratic energy difference gradient

plus a penalization term that keeps the update small.

1. The missing Hessian term (&7 J §) is small in practice and — 0 as
1) approaches the true ground state.

2. As a penalization term, we use e~ 16%(S + nl)d.
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Various optimization methods

RGN method (Webber & Lindsey, 2021)

Choose é to solve

m&in {6*g+g*5+6*H6—|— J Ré] ,

€

where R = S + nl. Equivalently, set

§=—(H+e¢'R) g
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where 871 — @' is the parameter update, —g (Oi) is the negative energy
gradient, and P’ is the preconditioning matrix.
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Convergence rate analysis

Observation: GD, natural GD, and RGN can all be written as:
P (6t -0)=—g(0)), i=1,2,...

where 871 — @' is the parameter update, —g (Gi) is the negative energy
gradient, and P’ is the preconditioning matrix.

Method | Preconditioner P
Gradient descent el

Natural gradient descent e 1(S+nl)
Rayleigh-Gauss-Newton H+e 1 (S+nl)

Table: Different preconditioners for energy minimization.

This motivates a convergence rate analysis for general parameter updates
Pl (01+1 _ 01) =g (01)
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Convergence rate analysis

Proposition (convergence rate)

Consider the parameter updates P’ (8'+! — 0') = —g ("), where
(PY)~1,(P*)~1,... are uniformly bounded. Assume 8',62,... converges
to a local energy minimizer 6%, and the Hessian or Wirtinger Hessian is
positive definite at 8*. Then,

: £ [Woin] — E[ve-] _ |, o e
imsup o < limsup |1 = (H+ )} P (H 4 )
or

. E [Wgi1] — & [e+] ) e B %2
AR o e bt U FE U A N |

in the real and complex cases, respectively, where H = H(6*) and

J = J(6%).

.
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Convergence rate analysis

The convergence rate analysis ensures the following:
1. If RGN is applied with €/ converging to infinity and 14 converging
to the ground state, the energies converge superlinearly:

lim sup & [oin] — € [Yo-]

P e o] —Ele] O
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Convergence rate analysis

The convergence rate analysis ensures the following:
1. If RGN is applied with €/ converging to infinity and 14 converging
to the ground state, the energies converge superlinearly:

lim sup & [hgi1] — € [o-]
isoo & [Ver] — & [Ye-]

2. Other methods have a slower linear convergence rate, quantified by
the mismatch between the preconditioner P' and Hessian.

=0.
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Empirical tests

We applied different VMC optimizers to the 10 x 1 TFl model, which is
small enough that £, g, S, and H can be computed by exact summation.

[— 6D — NaturalGD —— Linear Method —— RGN]|
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Figure: RGN energies converge quickly in ferromagnetic (h = 0.5, left),
transitional (h = 1.0, center), and paramagnetic (h = 1.5, right) regimes.
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Stochastic sampling

Question: How can we estimate &, g, S, and H stochastically?

1. Generate samples 01,05, ...,07 from the wavefunction density
[4(a)”
plo) =
(¥, )

using Markov chain Monte Carlo, i.e., propose moving from o to o’
with probability p(o-, o’) and accept the move with probability

. [ p(a)p(o’, o)
parorerl

Otherwise, stay put.
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Stochastic sampling

2. Approximate £, g, S, and H using
& = Ep[Ec(o)],
i = covpli(o), EL(a)],
ij = covp[vi(o), vi(o)]

Hj = covylvi(o), ELj(0)] — & Eslvi(a)] — €Sy

0y

E; and cov, are expectations and covariances over the data, and

Ei(o) = 7-;)1/()((;;), Ei (o) = 1) 9,Y(0)

S G AT
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Analysis of sampling

Proposition (sampling error)

Assume the MCMC sampler is geometrically ergodic with respect to p,
and for some € > 0, E,|E ()" < 00 and sup; E,|v;(o)|** < 0.
Then, as T — oo,

VT(ér-€) BN(0,v®), VT(gr—g)3N(0,3),
where the asymptotic variances v2 and X are given by

=Y vy [EL(00), EL(o)] + Y covaymy [Er(ae). Er(o0)]
t=0 t=1

X = ZCOVUONP i(o0), g_] O't) + ZCOVUONP I:g;(o-t)’g_;(o-o):l ;
t=1

and g’ is defined as
g'(0) = (v(0) = Eginplv (0”)]) (Er(o) = £).

= = = = =
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Analysis of sampling

The proposition has two main takeaways:

1. The ‘vanishing variance principle’: When ) approaches an
eigenstate, var £t approaches zero regardless of the MCMC sampler.

2. Variance reduction: To reduce the variance in &1 and g1, (a)
increase the number of samples or (b) reduce time-correlations
among samples.

Variance reduction is essential for achieving the best VMC energies.
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Empirical tests

1. We used an MCMC sampler with random proposals based on
flipping a single spin.

2. We combined 50 MCMC samplers per core across 48 cores and
performed 4000 MCMC steps per parameter update.
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Figure: VMC ground-state energy estimates for TFl models on a 200 x 1 lattice.
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Figure: VMC ground-state energy estimates for TFl models on a 200 x 1 lattice.
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Figure: VMC ground-state energy estimates for TFl models on a 200 x 1 lattice.

1. In principle, VMC converges nicely using natural GD or especially
RGN.
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Limitations
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Figure: VMC ground-state energy estimates for TFl models on a 200 x 1 lattice.

1. In principle, VMC converges nicely using natural GD or especially
RGN.

2. In practice, it is challenging to (a) choose an ansatz, (b) gather
enough samples, and (c) perform the linear algebra calculations.
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