▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Randomized methods for quantum many-body problems: a mathematical primer

Robert J. Webber¹

¹Computing and Mathematical Sciences, California Institute of Technology

Institute for Pure & Applied Mathematics March 9, 2022

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000000000000000000000000000000000000
Plan for talk			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

2 Examples

- The quantum spin problem
- The electronic structure problem

3 FCIQMC

- Deterministic power method
- FCIQMC
- FCIFRI

4 Variational Monte Carlo

- Gradients and Hessians
- Optimization methods
- Deterministic analysis
- Stochastic analysis

Recent developments

• Ground-state energies are needed for chemistry.

Our motivation

Recent developments

- Ground-state energies are needed for chemistry.
- The difficulty of finding the ground-state energy grows exponentially with number of electrons/spins.

Our motivation

Recent developments

- Ground-state energies are needed for chemistry.
- The difficulty of finding the ground-state energy grows exponentially with number of electrons/spins.
- Quantum Monte Carlo (QMC) comes to the rescue, providing energies for
 - 1. Benzene (C_6H_6) with 42 interacting electrons
 - Lattices with 100 spins, hence 2¹⁰⁰ spin configurations

Our motivation

Recent developments

- Ground-state energies are needed for chemistry.
- The difficulty of finding the ground-state energy grows exponentially with number of electrons/spins.
- Quantum Monte Carlo (QMC) comes to the rescue, providing energies for
 - 1. Benzene (C_6H_6) with 42 interacting electrons
 - Lattices with 100 spins, hence 2¹⁰⁰ spin configurations

Our motivation

• QMC can be extended even further, but first the sampling and optimization strategies it employs need to be improved.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Recent developments

- Ground-state energies are needed for chemistry.
- The difficulty of finding the ground-state energy grows exponentially with number of electrons/spins.
- Quantum Monte Carlo (QMC) comes to the rescue, providing energies for
 - 1. Benzene (C_6H_6) with 42 interacting electrons
 - Lattices with 100 spins, hence 2¹⁰⁰ spin configurations

Our motivation

- QMC can be extended even further, but first the sampling and optimization strategies it employs need to be improved.
 - 1. Long convergence times.
 - 2. Loss of stability.
 - 3. Convergence to unreasonable solutions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recent developments

- Ground-state energies are needed for chemistry.
- The difficulty of finding the ground-state energy grows exponentially with number of electrons/spins.
- Quantum Monte Carlo (QMC) comes to the rescue, providing energies for
 - 1. Benzene (C_6H_6) with 42 interacting electrons
 - Lattices with 100 spins, hence 2¹⁰⁰ spin configurations

Our motivation

- QMC can be extended even further, but first the sampling and optimization strategies it employs need to be improved.
 - 1. Long convergence times.
 - 2. Loss of stability.
 - 3. Convergence to unreasonable solutions.
- We need to understand QMC mathematically in order to improve it.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Introduction	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000000000000000000000000000000000000
Extreme eiger	value problem		

In QMC applications, we need to solve discrete eigenvalue problems involving matrices with dimensions up to $10^{108}\times10^{108}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Examples	FCIQMC	Variational Monte Carlo
0	000000000	0000000000	000000000000000000000000000000000000000
Extreme eiger	value problem		

In QMC applications, we need to solve discrete eigenvalue problems involving matrices with dimensions up to $10^{108} \times 10^{108}$.

Even storing a single vector of this size would be unmanageable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Examples	FCIQMC	Variational Monte Carlo
00			
Extreme e	igenvalue proble	em	

In QMC applications, we need to solve discrete eigenvalue problems involving matrices with dimensions up to $10^{108} \times 10^{108}$.

Even storing a single vector of this size would be unmanageable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question: How do such large matrices arise?

Consider the *transverse-field lsing model* for spin-1/2 particles on a periodic 1-D lattice, specified by

$$\mathcal{H} = -\sum_{i \sim j} \sigma_i^z \sigma_j^z - h \sum_i \sigma_i^x$$

- $\sigma^{\rm x}_i$ and $\sigma^{\rm z}_i$ are Pauli operators for the i-th spin
- $-i \sim j$ signifies that i and j are neighboring spins
- -h is a real-valued parameter

Consider the transverse-field Ising model for spin-1/2 particles on a periodic 1-D lattice, specified by

$$\mathcal{H} = -\sum_{i \sim j} \sigma_i^z \sigma_j^z - h \sum_i \sigma_i^x$$

- $\sigma^{\rm x}_i$ and $\sigma^{\rm z}_i$ are Pauli operators for the i-th spin
- $-i \sim j$ signifies that i and j are neighboring spins
- h is a real-valued parameter

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question: How can we represent \mathcal{H} as a matrix?

	Examples	FCIQMC	Variational Monte Carlo
	000000000		
The quantum	spin problem		

	Examples	FCIQMC	Variational Monte Carlo
	00000000		
The quantum	spin problem		

Consider a wavefunction

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_N\rangle,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

which is a tensor product of $|+\rangle$ and $|-\rangle$ states on the individual spins.

	Examples	FCIQMC	Variational Monte Carlo
00	00000000	0000000000	000000000000000000000000000000000000000
The quantum	spin problem		

Consider a wavefunction

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_N\rangle,$$

which is a tensor product of $|+\rangle$ and $|-\rangle$ states on the individual spins.

Example 1.

$$|\psi\rangle = |+-+-\ldots+-\rangle$$

Example 2.

$$|\psi\rangle = |++--\ldots--\rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Examples	FCIQMC	Variational Monte Carlo
The quantum	spin problem		

Consider a wavefunction

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_N\rangle,$$

which is a tensor product of $|+\rangle$ and $|-\rangle$ states on the individual spins.

Example 1.

$$|\psi\rangle = |+-+-\ldots+-\rangle$$

Example 2.

$$|\psi\rangle = |++--\ldots --\rangle$$

 \implies The tensor product wavefunctions form a (complete) orthonormal basis of size 2^N .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

	Examples	FCIQMC	Variational Monte Carlo
00	00000000	0000000000	000000000000000000000000000000000000000
The quantum	spin problem		

Introduce the raising and lowering operators

- σ_i^+ , which raises $|\psi_i\rangle$ from $|-\rangle$ to $|+\rangle$,
- σ_i^- , which lowers $|\psi_i
 angle$ from |+
 angle to |angle,

and insist that

$$\sigma_i^+\sigma_i^+=\sigma_i^-\sigma_i^-=\mathbf{0}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

	Examples	FCIQMC	Variational Monte Carlo
00	00000000	0000000000	000000000000000000000000000000000000000
The quantum	spin problem		

Introduce the raising and lowering operators

- σ_i^+ , which raises $|\psi_i\rangle$ from $|-\rangle$ to $|+\rangle$,
- $-\sigma_i^-$, which lowers $|\psi_i\rangle$ from $|+\rangle$ to $|-\rangle$,

and insist that

$$\sigma_i^+\sigma_i^+=\sigma_i^-\sigma_i^-=\mathbf{0}.$$

 $\implies \, \mathcal{H}$ has the matrix representation

$$\mathcal{H} = -\sum_{i \sim j} \sigma_i^z \sigma_j^z - h \sum_i \sigma_i^x$$
$$= -\sum_{i \sim j} \sigma_i^z \sigma_j^z - h \sum_i (\sigma_i^+ + \sigma_i^-)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Introduction 00 Examples

FCIQMC 000000000000 Variational Monte Carlo

The quantum spin problem

To see the sparsity pattern of $\mathcal H,$ operate on the left and right with basis vectors:

Introduction 00

Examples

FCIQMC 000000000000 Variational Monte Carlo

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The quantum spin problem

To see the sparsity pattern of $\mathcal H,$ operate on the left and right with basis vectors:

-~ If ψ^1 and ψ^2 differ by 0 spins,

$$\langle \psi^1 | \mathcal{H} | \psi^2 \rangle = \langle \psi^1 | - \sum_{i \sim j} \sigma_i^z \sigma_j^z | \psi^2 \rangle.$$

Introduction E: 00 0

Examples

FCIQMC 00000000000 Variational Monte Carlo

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The quantum spin problem

To see the sparsity pattern of $\mathcal H,$ operate on the left and right with basis vectors:

-~ If ψ^1 and ψ^2 differ by 0 spins,

$$\langle \psi^1 | \mathcal{H} | \psi^2 \rangle = \left\langle \psi^1 \right| - \sum_{i \sim j} \sigma^z_i \sigma^z_j \left| \psi^2 \right\rangle.$$

-~ If ψ^1 and ψ^2 differ by 1 spin,

$$\langle \psi^1 | \mathcal{H} | \psi^2 \rangle = -h.$$

Introduction 00

Examples

FCIQMC 00000000000 Variational Monte Carlo

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The quantum spin problem

To see the sparsity pattern of $\mathcal H,$ operate on the left and right with basis vectors:

-~ If ψ^1 and ψ^2 differ by 0 spins,

$$\langle \psi^1 | \mathcal{H} | \psi^2 \rangle = \left\langle \psi^1 \right| - \sum_{i \sim j} \sigma^z_i \sigma^z_j \left| \psi^2 \right\rangle.$$

-~ If ψ^1 and ψ^2 differ by 1 spin,

$$\langle \psi^1 | \mathcal{H} | \psi^2 \rangle = -h.$$

-~ If ψ^1 and ψ^2 differ by 2+ spins,

$$\langle \psi^1 | \mathcal{H} | \psi^2 \rangle = 0.$$

Introduction 00 Examples

FCIQMC 00000000000 Variational Monte Carlo

The quantum spin problem

To see the sparsity pattern of $\mathcal H,$ operate on the left and right with basis vectors:

-~ If ψ^1 and ψ^2 differ by 0 spins,

$$\langle \psi^1 | \mathcal{H} | \psi^2 \rangle = \left\langle \psi^1 \right| - \sum\nolimits_{i \sim j} \sigma^z_i \sigma^z_j \left| \psi^2 \right\rangle.$$

-~ If ψ^1 and ψ^2 differ by 1 spin,

$$\langle \psi^1 | \mathcal{H} | \psi^2 \rangle = -h.$$

-~ If ψ^1 and ψ^2 differ by 2+ spins,

$$\langle \psi^1 | \mathcal{H} | \psi^2 \rangle = 0.$$

 \implies The matrix \mathcal{H} has N+1 nonzero entries per column.

	Examples	FCIQMC	Variational Monte Carlo
	000000000		
The quantum	spin problem		

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

2 spins

$$\begin{pmatrix} -2 & -h & -h \\ -h & 2 & -h \\ -h & 2 & -h \\ & -h & -h & -2 \end{pmatrix}$$

Introd	
00	

Examples

FCIQMC 00000000000 Variational Monte Carlo

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The quantum spin problem

3 spins

Examples

FCIQMC 000000000000 Variational Monte Carlo

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The quantum spin problem

3 spins

For a system of N spins, the matrix has dimensions $2^N \times 2^N$,

Examples

FCIQMC 00000000000 Variational Monte Carlo

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The quantum spin problem

3 spins

For a system of N spins, the matrix has dimensions $2^N \times 2^N$,

but there are just N + 1 nonzero entries per column.

The electronic structure problem

Consider the Born-Oppenheimer model for N electrons orbiting a field of fixed nuclei, specified by

$$\mathcal{H} = -\frac{1}{2}\sum_{i} \nabla_{\boldsymbol{r}_{i}}^{2} - \sum_{i,\mathcal{A}} \frac{Z_{\mathcal{A}}}{|\boldsymbol{r}_{i} - \boldsymbol{R}_{\mathcal{A}}|} + \sum_{j>i} \frac{1}{|\boldsymbol{r}_{i} - \boldsymbol{r}_{j}|}.$$

- **R**_A is the location of nucleus A.
- Z_A is the atomic number of A.
- **r**_i is the location of electron *i*.

The electronic structure problem

Consider the Born-Oppenheimer model for N electrons orbiting a field of fixed nuclei, specified by

$$\mathcal{H} = -\frac{1}{2}\sum_{i} \nabla_{\boldsymbol{r}_{i}}^{2} - \sum_{i,\mathcal{A}} \frac{Z_{\mathcal{A}}}{|\boldsymbol{r}_{i} - \boldsymbol{R}_{\mathcal{A}}|} + \sum_{j>i} \frac{1}{|\boldsymbol{r}_{i} - \boldsymbol{r}_{j}|}.$$

- \mathbf{R}_A is the location of nucleus A.
- Z_A is the atomic number of A.
- **r**_i is the location of electron *i*.

Allow each electron to occupy a spin up or down state

$$|\omega_i\rangle = |\uparrow\rangle$$
 or $|\omega_i\rangle = |\downarrow\rangle$,

and insist on the antisymmetry property

$$\psi(\cdots, \mathbf{x}_i, \cdots, \mathbf{x}_j, \cdots) = -\psi(\cdots, \mathbf{x}_j, \cdots, \mathbf{x}_i, \cdots),$$

where $|\mathbf{x}_i\rangle = |\mathbf{r}_i, \omega_i\rangle$ denotes the position and spin of electron *i*.

	Examples	FCIQMC	Variational Monte Carlo			
	0000000000					
The electronic structure problem						

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question: How can we represent \mathcal{H} as a matrix?

	Examples	FCIQMC	Variational Monte Carlo				
00	0000000000	0000000000	000000000000000000000000000000000000000				
The electronic structure problem							

Consider an orthonormal set of single-electron spatial orbitals

 $|\phi_1\rangle, \, |\phi_2\rangle, \, \ldots, \, |\phi_M\rangle$

and the associated spin orbitals

$$\begin{aligned} |\chi_1\rangle &= |\phi_1\rangle \otimes |\uparrow\rangle, \\ |\chi_2\rangle &= |\phi_1\rangle \otimes |\downarrow\rangle, \\ \dots, \\ |\chi_{2M}\rangle &= |\phi_M\rangle \otimes |\downarrow\rangle. \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Question: How can we represent \mathcal{H} as a matrix?

Next introduce the basis of Slater determinants

$$|ij\cdots k\rangle = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_i(\mathbf{x}_1) & \chi_j(\mathbf{x}_1) & \cdots & \chi_k(\mathbf{x}_1) \\ \chi_i(\mathbf{x}_2) & \chi_j(\mathbf{x}_2) & \cdots & \chi_k(\mathbf{x}_2) \\ \vdots & \vdots & \vdots \\ \chi_i(\mathbf{x}_N) & \chi_j(\mathbf{x}_N) & \cdots & \chi_k(\mathbf{x}_N) \end{vmatrix}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 Introduction
 Examples
 FCIQMC
 Variational Monte Carlo

 00
 0000000000
 0000000000
 00000000000

 The electronic structure problem

Question: How can we represent \mathcal{H} as a matrix?

Next introduce the basis of Slater determinants

$$|ij\cdots k\rangle = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_i(\mathbf{x}_1) & \chi_j(\mathbf{x}_1) & \cdots & \chi_k(\mathbf{x}_1) \\ \chi_i(\mathbf{x}_2) & \chi_j(\mathbf{x}_2) & \cdots & \chi_k(\mathbf{x}_2) \\ \vdots & \vdots & \vdots \\ \chi_i(\mathbf{x}_N) & \chi_j(\mathbf{x}_N) & \cdots & \chi_k(\mathbf{x}_N) \end{vmatrix}$$

Slater determinants satisfy the antisymmetry property

$$|\cdots i \cdots j \cdots \rangle = -|\cdots j \cdots i \cdots \rangle.$$

 Introduction
 Examples
 FCIQMC
 Variational Monte Carlo

 00
 0000000000
 0000000000
 00000000000

 The electronic structure problem

Question: How can we represent \mathcal{H} as a matrix?

Next introduce the basis of Slater determinants

$$|ij\cdots k\rangle = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_i(\mathbf{x}_1) & \chi_j(\mathbf{x}_1) & \cdots & \chi_k(\mathbf{x}_1) \\ \chi_i(\mathbf{x}_2) & \chi_j(\mathbf{x}_2) & \cdots & \chi_k(\mathbf{x}_2) \\ \vdots & \vdots & \vdots \\ \chi_i(\mathbf{x}_N) & \chi_j(\mathbf{x}_N) & \cdots & \chi_k(\mathbf{x}_N) \end{vmatrix}$$

Slater determinants satisfy the antisymmetry property

$$|\cdots i \cdots j \cdots \rangle = -|\cdots j \cdots i \cdots \rangle.$$

 \implies Slater determinants form an (incomplete) orthonormal basis of size $\binom{2M}{N}.$

Question: How can we represent \mathcal{H} as a matrix?

Introduce the raising and lowering operators

- $-a_i^+$, which satisfies $a_i^+|j\cdots k
 angle=|ij\cdots k
 angle$ if i is not yet occupied,
- $-a_i^-$, which satisfies $a_i^+|ij\cdots k\rangle = |j\cdots k\rangle$,

and insist that

$$a_i^+a_i^+=a_i^-a_i^-=0.$$
Question: How can we represent \mathcal{H} as a matrix?

Introduce the raising and lowering operators

- $(-a_i^+)$, which satisfies $a_i^+|j\cdots k
 angle=|ij\cdots k
 angle$ if i is not yet occupied,
- $-a_i^-$, which satisfies $a_i^+|ij\cdots k\rangle = |j\cdots k\rangle$,

and insist that

$$a_i^+ a_i^+ = a_i^- a_i^- = 0.$$

 \implies In the basis of Slater determinants, ${\cal H}$ has the matrix representation

$$\mathcal{H} = \sum_{i,j=1}^{2M} \langle i|h|j\rangle a_i^+ a_j + \frac{1}{2} \sum_{i,j,k,l=1}^{2M} \langle ij|kl\rangle a_i^+ a_j^+ a_l a_k$$

where $\langle i|h|j\rangle$ and $\langle ij|kl\rangle$ are integrals over one or two electron positions.

The electronic structure problem

To see the sparsity pattern of $\mathcal H,$ operate on the left and right with basis vectors:

$$\langle \psi^{1} | \mathcal{H} | \psi^{2} \rangle = \left\langle \psi^{1} \left| \underbrace{\sum_{i,j=1}^{2M} \langle i | h | j \rangle a_{i}^{+} a_{j}}_{\text{null / single excitation}} + \frac{1}{2} \underbrace{\sum_{i,j,k,l=1}^{2M} \langle i j | kl \rangle a_{i}^{+} a_{j}^{+} a_{l} a_{k}}_{\text{null / single / double excitation}} \right| \psi^{2} \right\rangle$$

The electronic structure problem

To see the sparsity pattern of $\mathcal H,$ operate on the left and right with basis vectors:

$$\left\langle \psi^{1} | \mathcal{H} | \psi^{2} \right\rangle = \left\langle \psi^{1} \left| \underbrace{\sum_{i,j=1}^{2M} \langle i | h | j \rangle a_{i}^{+} a_{j}}_{\text{null / single excitation}} + \frac{1}{2} \underbrace{\sum_{i,j,k,l=1}^{2M} \langle i j | kl \rangle a_{i}^{+} a_{j}^{+} a_{l} a_{k}}_{\text{null / single / double excitation}} \right| \psi^{2} \right\rangle$$

- Double excitations lead to

$$\langle ij\cdots |\mathcal{H}|kl\cdots \rangle = \langle ij|kl \rangle - \langle ij|lk \rangle.$$

The electronic structure problem

To see the sparsity pattern of $\mathcal H,$ operate on the left and right with basis vectors:

$$\left\langle \psi^{1} | \mathcal{H} | \psi^{2} \right\rangle = \left\langle \psi^{1} \left| \underbrace{\sum_{i,j=1}^{2M} \langle i | h | j \rangle a_{i}^{+} a_{j}}_{\text{null / single excitation}} + \frac{1}{2} \underbrace{\sum_{i,j,k,l=1}^{2M} \langle i j | kl \rangle a_{i}^{+} a_{j}^{+} a_{l} a_{k}}_{\text{null / single / double excitation}} \right| \psi^{2} \right\rangle$$

- Double excitations lead to

$$\langle ij \cdots | \mathcal{H} | kl \cdots \rangle = \langle ij | kl \rangle - \langle ij | lk \rangle.$$

 $-\,$ Single excitations lead to

$$\langle ik_1k_2\cdots|\mathcal{H}|jk_1k_2\cdots\rangle = \langle i|h|j\rangle + \sum_{n=1}^{N-1} [\langle ik_n|jk_n\rangle - \langle ik_n|k_nj\rangle]$$

The electronic structure problem

To see the sparsity pattern of $\mathcal H,$ operate on the left and right with basis vectors:

$$\left\langle \psi^{1} | \mathcal{H} | \psi^{2} \right\rangle = \left\langle \psi^{1} \left| \underbrace{\sum_{i,j=1}^{2M} \langle i | h | j \rangle a_{i}^{+} a_{j}}_{\text{null / single excitation}} + \frac{1}{2} \underbrace{\sum_{i,j,k,l=1}^{2M} \langle i j | kl \rangle a_{i}^{+} a_{j}^{+} a_{l} a_{k}}_{\text{null / single / double excitation}} \right| \psi^{2} \right\rangle$$

- Double excitations lead to

$$\langle ij\cdots |\mathcal{H}|kl\cdots \rangle = \langle ij|kl \rangle - \langle ij|lk \rangle.$$

 $-\,$ Single excitations lead to

$$\langle ik_1k_2\cdots|\mathcal{H}|jk_1k_2\cdots\rangle = \langle i|h|j\rangle + \sum_{n=1}^{N-1} [\langle ik_n|jk_n\rangle - \langle ik_n|k_nj\rangle]$$

- Null excitations lead to

$$\langle i_1 i_2 \cdots | \mathcal{H} | i_1 i_2 \cdots \rangle = \sum_{n=1}^N \langle i_n | h | i_n \rangle + \sum_{m,n=1}^N [\langle i_m i_n | i_m i_n \rangle - \langle i_m i_n | i_n i_m \rangle].$$

The electronic structure problem

To see the sparsity pattern of $\mathcal H,$ operate on the left and right with basis vectors:

$$\left\langle \psi^{1} | \mathcal{H} | \psi^{2} \right\rangle = \left\langle \psi^{1} \left| \underbrace{\sum_{i,j=1}^{2M} \langle i | h | j \rangle a_{i}^{+} a_{j}}_{\text{null / single excitation}} + \frac{1}{2} \underbrace{\sum_{i,j,k,l=1}^{2M} \langle i j | kl \rangle a_{i}^{+} a_{j}^{+} a_{l} a_{k}}_{\text{null / single / double excitation}} \right| \psi^{2} \right\rangle$$

- Double excitations lead to

$$\langle ij\cdots |\mathcal{H}|kl\cdots \rangle = \langle ij|kl \rangle - \langle ij|lk \rangle.$$

 $-\,$ Single excitations lead to

$$\langle ik_1k_2\cdots |\mathcal{H}|jk_1k_2\cdots \rangle = \langle i|h|j\rangle + \sum_{n=1}^{N-1} [\langle ik_n|jk_n\rangle - \langle ik_n|k_nj\rangle]$$

- Null excitations lead to

$$\langle i_1 i_2 \cdots | \mathcal{H} | i_1 i_2 \cdots \rangle = \sum_{n=1}^N \langle i_n | h | i_n \rangle + \sum_{m,n=1}^N [\langle i_m i_n | i_m i_n \rangle - \langle i_m i_n | i_n i_m \rangle].$$

 \implies The matrix \mathcal{H} has $\mathcal{O}(N^2 M^2)$ nonzero entries per column.

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	000000000	000000000000000000000000000000000000000
Tradition	al methods		

For small matrices, there are iterative eigenvalue solvers, e.g., power method, subspace iteration, Lanczos algorithm, Jacobi-Davidson method.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000000000000000000000000000000000000
Traditiona	al methods		

For small matrices, there are iterative eigenvalue solvers, e.g., power method, subspace iteration, Lanczos algorithm, Jacobi-Davidson method.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

```
The power method is the simplest method for finding \lambda_{max}(\mathbf{A}):
```

	Examples	FCIQMC	Variational Monte Carlo
		000000000	
Tradition	al methods		

For small matrices, there are iterative eigenvalue solvers, e.g., power method, subspace iteration, Lanczos algorithm, Jacobi-Davidson method.

The *power method* is the simplest method for finding $\lambda_{max}(\mathbf{A})$:

Power method 1. $x^{t+1} = Ax^t$ 2. $x^{t+1} = x^{t+1} / ||x^{t+1}||$

For small matrices, there are iterative eigenvalue solvers, e.g., power method, subspace iteration, Lanczos algorithm, Jacobi-Davidson method.

The *power method* is the simplest method for finding $\lambda_{max}(\mathbf{A})$:

Power method

- 1. $x^{t+1} = Ax^{t}$
- 2. $\mathbf{x}^{t+1} = \mathbf{x}^{t+1} / \|\mathbf{x}^{t+1}\|$
 - Historical eigenvalue estimator

$$\hat{\lambda}^t = rac{\langle \mathbf{x}^0, \mathbf{A} \mathbf{x}^t \rangle}{\langle \mathbf{x}^0, \mathbf{x}^t
angle}$$

• Modern eigenvalue estimator

$$\hat{\lambda}^t = \frac{\langle \boldsymbol{x}^t, \boldsymbol{A} \boldsymbol{x}^t \rangle}{\langle \boldsymbol{x}^t, \boldsymbol{x}^t \rangle}.$$

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	000000000	000000000000000000000000000000000000000
Convergence	of power metho	d	

Convergence of power method

Consider a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with largest-magnitude eigenvalues $|\lambda_1| \ge |\lambda_2| \ge \cdots$ and eigenvectors $\mathbf{v}^1, \mathbf{v}^2, \ldots$, and set

$$R = \Big| \frac{\lambda_2}{\lambda_1} \Big|, \qquad \theta = \angle (\boldsymbol{x}^0, \boldsymbol{v}^1) = \arccos \Big(\frac{\langle \boldsymbol{x}^0, \boldsymbol{v}^1 \rangle}{\|\boldsymbol{x}^0\| \| \boldsymbol{v}^1\|} \Big).$$

1. Eigenvector estimates $\pmb{x}^0, \pmb{x}^1, \ldots$ satisfy

$$\tan \angle (\mathbf{x}^t, \mathbf{v}^1) \le R^t \tan \theta.$$

2. Historical or modern eigenvalue estimates $\hat{\lambda}^0, \hat{\lambda}^1, \ldots$ satisfy

$$\left|\frac{\hat{\lambda}^t - \lambda_1}{\lambda_1}\right| \leq \frac{2R^t \tan^2 \theta}{1 - R^t \tan^2 \theta} \quad \text{or} \quad \left|\frac{\hat{\lambda}^t - \lambda_1}{\lambda_1}\right| \leq 2R^{2t} \tan^2 \theta.$$

Conversion	of more worth of	al	
00	000000000	000000000	000000000000000000000000000000000000000
	Examples	FCIQMC	Variational Monte Carlo

Convergence of power method

Convergence of power method

Consider a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with largest-magnitude eigenvalues $|\lambda_1| \ge |\lambda_2| \ge \cdots$ and eigenvectors $\mathbf{v}^1, \mathbf{v}^2, \ldots$, and set

$$R = \Big| \frac{\lambda_2}{\lambda_1} \Big|, \qquad \theta = \angle (\boldsymbol{x}^0, \boldsymbol{v}^1) = \arccos \Big| \frac{\langle \boldsymbol{x}^0, \boldsymbol{v}^1 \rangle}{\|\boldsymbol{x}^0\| \|\boldsymbol{v}^1\|} \Big|.$$

1. Eigenvector estimates $\pmb{x}^0, \pmb{x}^1, \dots$ satisfy

$$\tan \angle (\boldsymbol{x}^t, \boldsymbol{v}^1) \leq R^t \tan \theta.$$

2. Historical or modern eigenvalue estimates $\hat{\lambda}^0, \hat{\lambda}^1, \ldots$ satisfy

$$\frac{\hat{\lambda}^t - \lambda_1}{\lambda_1} \Big| \leq \frac{2 \frac{R^t}{1 - R^t} \tan^2 \theta}{1 - R^t \tan^2 \theta} \quad \text{or} \quad \Big| \frac{\hat{\lambda}^t - \lambda_1}{\lambda_1} \Big| \leq 2 \frac{R^{2t}}{1 - R^t} \tan^2 \theta.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000000000000000000000000000000000000
Limitation	is of nower met	hod	

We can estimate the ground state for small systems by applying the power method to $\mathbf{A} = \mathbf{I} - \epsilon \mathbf{H}$ for small enough $\epsilon > 0$,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

	6		
00	000000000	000000000	000000000000000000000000000000000000000
Introduction	Examples	FCIQMC	Variational Monte Carlo

We can estimate the ground state for small systems by applying the power method to $\mathbf{A} = \mathbf{I} - \epsilon \mathbf{H}$ for small enough $\epsilon > 0$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

but this leads to increasingly dense vectors at each iteration.

	6		
00	000000000	000000000	000000000000000000000000000000000000000
Introduction	Examples	FCIQMC	Variational Monte Carlo

We can estimate the ground state for small systems by applying the power method to $\mathbf{A} = \mathbf{I} - \epsilon \mathbf{H}$ for small enough $\epsilon > 0$,

but this leads to increasingly dense vectors at each iteration.

Question: How can we adapt the power method to larger matrices?

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduce random walkers $\xi_t^1, \ldots, \xi_t^{N_t} \in \{1, 2, \ldots, d\}$ with positive or negative signs $S_t^1, \ldots, S_t^{N_t} \in \{+1, -1\}$.

 Introduction
 Examples
 FCIQMC
 Variational Monte Carlo

 00
 0000000000
 000000000
 0000000000

 Full Configuration Interaction Quantum Monte Carlo
 Variational Monte Carlo

Introduce random walkers $\xi_t^1, \ldots, \xi_t^{N_t} \in \{1, 2, \ldots, d\}$ with positive or negative signs $S_t^1, \ldots, S_t^{N_t} \in \{+1, -1\}$.

- 1. **Birth:** For each walker $\xi_t^i = j$:
 - a) With probability p_{jk} , spawn N_{jk} particles at a new location $k \neq j$, where

$$N_{jk} = \lfloor |\mathbf{A}_{jk}|/p_{jk} + U \rfloor, \qquad U \sim \text{Unif}(0, 1).$$

b) Assign the walkers the sign S_t^i if $A_{jk} > 0$ or $-S_t^j$ if $A_{jk} < 0$.

 Introduction
 Examples
 FCIQMC
 Variational Monte Carlo

 00
 0000000000
 000000000
 0000000000

 Full Configuration Interaction Quantum Monte Carlo

Introduce random walkers $\xi_t^1, \ldots, \xi_t^{N_t} \in \{1, 2, \ldots, d\}$ with positive or negative signs $S_t^1, \ldots, S_t^{N_t} \in \{+1, -1\}$.

- 1. **Birth:** For each walker $\xi_t^i = j$:
 - a) With probability p_{jk} , spawn N_{jk} particles at a new location $k \neq j$, where

$$N_{jk} = \lfloor |\mathbf{A}_{jk}|/p_{jk} + U \rfloor, \qquad U \sim \text{Unif}(0,1).$$

b) Assign the walkers the sign S_t^i if $A_{jk} > 0$ or $-S_t^j$ if $A_{jk} < 0$. 2. **Death:** For each walker $\xi_t^i = j$:

a) Replace ξ_t^i with N_{jj} walkers, where

$$N_{jj} = \lfloor |\mathbf{A}_{jj}| + U
floor, \qquad U \sim \text{Unif}(0, 1).$$

b) Assign the walkers the sign S_t^i if $\pmb{A}_{jj} > 0$ or $-S_t^i$ if $\pmb{A}_{jj} < 0$.

Introduce random walkers $\xi_t^1, \ldots, \xi_t^{N_t} \in \{1, 2, \ldots, d\}$ with positive or negative signs $S_t^1, \ldots, S_t^{N_t} \in \{+1, -1\}$.

- 1. **Birth:** For each walker $\xi_t^i = j$:
 - a) With probability p_{jk} , spawn N_{jk} particles at a new location $k \neq j$, where

$$N_{jk} = \lfloor |\mathbf{A}_{jk}|/p_{jk} + U \rfloor, \qquad U \sim \mathsf{Unif}(0, 1).$$

b) Assign the walkers the sign S_t^i if $A_{jk} > 0$ or $-S_t^j$ if $A_{jk} < 0$. 2. **Death:** For each walker $\xi_t^i = j$:

a) Replace ξ_t^i with N_{jj} walkers, where

$$N_{jj} = \lfloor |\mathbf{A}_{jj}| + U
floor, \qquad U \sim Unif(0, 1).$$

b) Assign the walkers the sign S_t^i if $\boldsymbol{A}_{jj} > 0$ or $-S_t^i$ if $\boldsymbol{A}_{jj} < 0$.

3. Annihilation: Cancel walkers on the same site with opposite signs.

FCIQMC approximates $\mathbf{x}^{t+1} = \mathbf{A}\mathbf{x}^t$ in the sense that

$$\mathsf{E}[\mathbf{X}^{t+1}] = \mathbf{A}\mathbf{X}^t, \qquad ext{where}$$

$$\begin{cases} \boldsymbol{X}^{t} = \sum_{i=1}^{N_{t}} S_{t}^{i} \delta_{\xi_{t}^{i}} \\ \boldsymbol{X}^{t+1} = \sum_{i=1}^{N_{t+1}} S_{t+1}^{i} \delta_{\xi_{t+1}^{i}} \end{cases}$$

.

FCIQMC approximates $\mathbf{x}^{t+1} = \mathbf{A}\mathbf{x}^t$ in the sense that

$$\mathsf{E}[\mathbf{X}^{t+1}] = \mathbf{A}\mathbf{X}^{t}, \qquad \text{where} \qquad \begin{cases} \mathbf{X}^{t} = \sum_{i=1}^{N_{t}} S_{t}^{i} \delta_{\xi_{t}^{i}} \\ \mathbf{X}^{t+1} = \sum_{i=1}^{N_{t+1}} S_{t+1}^{i} \delta_{\xi_{t+1}^{i}} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

– The **birth** step perform multiplication by $\boldsymbol{A}_{off-diag}$.

Full Configuration Interaction Quantum Monte Carlo

FCIQMC approximates $\mathbf{x}^{t+1} = \mathbf{A}\mathbf{x}^t$ in the sense that

$$\mathsf{E}[\mathbf{X}^{t+1}] = \mathbf{A}\mathbf{X}^{t}, \qquad \text{where} \qquad \begin{cases} \mathbf{X}^{t} = \sum_{i=1}^{N_{t}} S_{t}^{i} \delta_{\xi_{t}^{i}} \\ \mathbf{X}^{t+1} = \sum_{i=1}^{N_{t+1}} S_{t+1}^{i} \delta_{\xi_{t+1}^{i}} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- The **birth** step perform multiplication by **A**_{off-diag}.
- The **death** step performs multiplication by **A**_{diag}.

FCIQMC approximates $\mathbf{x}^{t+1} = \mathbf{A}\mathbf{x}^t$ in the sense that

$$\mathsf{E}[\mathbf{X}^{t+1}] = \mathbf{A}\mathbf{X}^{t}, \qquad \text{where} \qquad \begin{cases} \mathbf{X}^{t} = \sum_{i=1}^{N_{t}} S_{t}^{i} \delta_{\xi_{t}^{i}} \\ \mathbf{X}^{t+1} = \sum_{i=1}^{N_{t+1}} S_{t+1}^{i} \delta_{\xi_{t+1}^{i}} \end{cases}$$

- The **birth** step perform multiplication by $\boldsymbol{A}_{off-diag}$.
- The **death** step performs multiplication by **A**_{diag}.
- The **annihilation** step performs addition $\mathbf{A} = \mathbf{A}_{diag} + \mathbf{A}_{off-diag}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

FCIQMC approximates $\mathbf{x}^{t+1} = \mathbf{A}\mathbf{x}^t$ in the sense that

$$\mathsf{E}[\mathbf{X}^{t+1}] = \mathbf{A}\mathbf{X}^{t}, \quad \text{where} \quad \begin{cases} \mathbf{X}^{t} = \sum_{i=1}^{N_{t}} S_{t}^{i} \delta_{\xi_{t}^{i}} \\ \mathbf{X}^{t+1} = \sum_{i=1}^{N_{t+1}} S_{t+1}^{i} \delta_{\xi_{t+1}^{i}} \end{cases}$$

- The **birth** step perform multiplication by $\boldsymbol{A}_{off-diag}$.
- The **death** step performs multiplication by **A**_{diag}.
- The **annihilation** step performs addition $\mathbf{A} = \mathbf{A}_{diag} + \mathbf{A}_{off-diag}$.
- To stabilize the walker population, FCIQMC adapts the shift, i.e.,

$$\mathbf{A} = \mathbf{I} - \epsilon (\mathbf{H} - \delta_t \mathbf{I}), \qquad \delta_t = \delta_{t-1} - .01 \log \left(\frac{N_t}{N_{t-1}}\right).$$

<i>c</i>			
00	000000000	0000000000	000000000000000000000000000000000000000
	Examples	FCIQMC	Variational Monte Carlo

Convergence of FCIQMC

Question: Does FCIQMC converge?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Introduction OO	Examples 000000000	FCIQMC ○○○○ ○ ●○○○○	Variational Monte Carlo
Convergenc	e of FCIQMC		
Question:	Does FCIQMC co	nverge?	
1. The sy	stem $((\xi_t^i)_{1 \le i \le N_t}, ($	$(S_t^i)_{1 \leq i \leq N_t}, \delta_t)$ is Markov	vian.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

	Examples	FCIQMC	Variational Monte Carlo
		000000000	
Convergence	of FCIQMC		

Question: Does FCIQMC converge?

- 1. The system $((\xi_t^i)_{1 \le i \le N_t}, (S_t^i)_{1 \le i \le N_t}, \delta_t)$ is Markovian.
- 2. We anticipate the system converges to a stationary measure μ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000000000000000000000000000000000000
Convergence	of FCIQMC		

Question: Does FCIQMC converge?

- 1. The system $((\xi_t^i)_{1 \le i \le N_t}, (S_t^i)_{1 \le i \le N_t}, \delta_t)$ is Markovian.
- 2. We anticipate the system converges to a stationary measure μ .
- 3. Moreover, we anticipate

 \circ

$$\mathsf{E}_{\mu}[\boldsymbol{X}^{0}] = \mathsf{E}_{\mu}\Big[\sum\nolimits_{i=1}^{N_{0}} S_{0}^{i} \delta_{X_{0}^{i}}\Big]$$

lies close to the ground state.

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000000000000000000000000000000000000
Convergence			

Question: Does FCIQMC converge?

- 1. The system $((\xi_t^i)_{1 \le i \le N_t}, (S_t^i)_{1 \le i \le N_t}, \delta_t)$ is Markovian.
- 2. We anticipate the system converges to a stationary measure μ .
- 3. Moreover, we anticipate

О

$$\mathsf{E}_{\mu}[\boldsymbol{X}^{0}] = \mathsf{E}_{\mu}\Big[\sum\nolimits_{i=1}^{N_{0}} S_{0}^{i} \delta_{X_{0}^{i}}\Big]$$

lies close to the ground state.

4. Then, it makes sense to estimate the ground-state energy using

$$\hat{\lambda}^{t} = \frac{\sum_{s=t_{\min}}^{t} \langle \mathbf{X}^{0}, \mathbf{A}\mathbf{X}^{s} \rangle}{\sum_{s=t_{\min}}^{t} \langle \mathbf{X}^{0}, \mathbf{X}^{s} \rangle},$$

which is a ratio of **convergent** averages of a Markov chain, with convergence rate $\sim t^{-1/2}$.

 Introduction
 Examples
 FCIQMC
 Variational Monte Carlo

 00
 0000000000
 0000000000
 00000000000

 Full Configuration Interaction Fast Randomized Iteration

Question: Why not approximate $\mathbf{x}^{t+1} = \mathbf{A}\mathbf{x}^t$ more directly?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Full Configuration Interaction Fast Randomized Iteration

Question: Why not approximate $x^{t+1} = Ax^t$ more directly?

Introduce a random compression operator $\Phi:\mathbb{R}^d
ightarrow\mathbb{R}^d$ such that

- (a) $\Phi(\mathbf{x})$ has at most *m* nonzero entries.
- (b) $\mathsf{E}\Phi(\mathbf{x}) = \mathbf{x}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Full Configuration Interaction Fast Randomized Iteration

Question: Why not approximate $x^{t+1} = Ax^t$ more directly?

Introduce a random compression operator $\Phi:\mathbb{R}^d
ightarrow\mathbb{R}^d$ such that

- (a) $\Phi(\mathbf{x})$ has at most *m* nonzero entries.
- (b) $\mathsf{E}\Phi(\mathbf{x}) = \mathbf{x}$.

FCIFRI (Lim & Weare, 2017)

1.
$$\boldsymbol{X}^{t+1} = \boldsymbol{A} \boldsymbol{\Phi}(\boldsymbol{X}^{t})$$

2. $\boldsymbol{X}^{t+1} = \boldsymbol{X}^{t+1} / \| \boldsymbol{X}^{t+1} \|$

Full Configuration Interaction Fast Randomized Iteration

Question: Why not approximate $\mathbf{x}^{t+1} = \mathbf{A}\mathbf{x}^t$ more directly?

Introduce a random compression operator $\Phi:\mathbb{R}^d
ightarrow\mathbb{R}^d$ such that

- (a) $\Phi(\mathbf{x})$ has at most *m* nonzero entries.
- (b) $\mathsf{E}\Phi(\mathbf{x}) = \mathbf{x}$.

FCIFRI (Lim & Weare, 2017)

1.
$$\boldsymbol{X}^{t+1} = \boldsymbol{A} \boldsymbol{\Phi}(\boldsymbol{X}^{t})$$

2. $\boldsymbol{X}^{t+1} = \boldsymbol{X}^{t+1} / \| \boldsymbol{X}^{t+1} \|_{2}$

Again, we approximate the dominant eigenvalue of ${f A}$ using

$$\hat{\lambda}^{t} = \frac{\sum_{s=t_{\min}}^{t} \langle \boldsymbol{X}^{0}, \boldsymbol{A}\boldsymbol{X}^{s} \rangle}{\sum_{s=t_{\min}}^{t} \langle \boldsymbol{X}^{0}, \boldsymbol{X}^{s} \rangle}.$$

and anticipate a $\sim t^{-1/2}$ convergence rate.

Full Configuration Interaction Fast Randomized Iteration

Question: Why not approximate $\mathbf{x}^{t+1} = \mathbf{A}\mathbf{x}^t$ more directly?

Introduce a random compression operator $\Phi:\mathbb{R}^d
ightarrow\mathbb{R}^d$ such that

- (a) $\Phi(\mathbf{x})$ has at most *m* nonzero entries.
- (b) $\mathsf{E}\Phi(\mathbf{x}) = \mathbf{x}$.

FCIFRI (Lim & Weare, 2017)

1.
$$\boldsymbol{X}^{t+1} = \boldsymbol{A} \boldsymbol{\Phi}(\boldsymbol{X}^{t})$$

2. $\boldsymbol{X}^{t+1} = \boldsymbol{X}^{t+1} / \| \boldsymbol{X}^{t+1} \|_{1}$

Again, we approximate the dominant eigenvalue of \boldsymbol{A} using

$$\hat{\lambda}^{t} = \frac{\sum_{s=t_{\min}}^{t} \langle \boldsymbol{X}^{0}, \boldsymbol{A} \boldsymbol{X}^{s} \rangle}{\sum_{s=t_{\min}}^{t} \langle \boldsymbol{X}^{0}, \boldsymbol{X}^{s} \rangle}.$$

and anticipate a $\sim t^{-1/2}$ convergence rate.

Question: How should we choose the compression operator Φ ?

Proposition (optimal compression)

For any $\mathbf{x} \in \mathbb{R}^d$, let α be a permutation of $\{1, \ldots, d\}$ such that

$$|\boldsymbol{x}_{\alpha(1)}| \geq |\boldsymbol{x}_{\alpha(2)}| \geq \cdots \geq |\boldsymbol{x}_{\alpha(d)}|.$$

Then, the compression operator Φ that minimizes $E \|\Phi(\mathbf{x}) - \mathbf{x}\|^2$ is characterized as follows:

Proposition (optimal compression)

For any $\boldsymbol{x} \in \mathbb{R}^d$, let α be a permutation of $\{1, \ldots, d\}$ such that

$$|\boldsymbol{x}_{\alpha(1)}| \geq |\boldsymbol{x}_{\alpha(2)}| \geq \cdots \geq |\boldsymbol{x}_{\alpha(d)}|.$$

Then, the compression operator Φ that minimizes $E \|\Phi(\mathbf{x}) - \mathbf{x}\|^2$ is characterized as follows:

(a) The largest-magnitude entries are preserved exactly, i.e.,

$$\Phi(\mathbf{x})_{\alpha(i)} = \mathbf{x}_{\alpha(i)}, \qquad i = 1, \dots, k.$$
Proposition (optimal compression)

For any $\pmb{x} \in \mathbb{R}^d$, let lpha be a permutation of $\{1, \ldots, d\}$ such that

$$|\boldsymbol{x}_{\alpha(1)}| \geq |\boldsymbol{x}_{\alpha(2)}| \geq \cdots \geq |\boldsymbol{x}_{\alpha(d)}|.$$

Then, the compression operator Φ that minimizes $E \|\Phi(x) - x\|^2$ is characterized as follows:

(a) The largest-magnitude entries are preserved exactly, i.e.,

$$\Phi(\mathbf{x})_{\alpha(i)} = \mathbf{x}_{\alpha(i)}, \qquad i = 1, \dots, k.$$

(b) The smallest-magnitude entries are randomly perturbed, i.e., $\Phi(\mathbf{x})_i = \mathbf{x}_i / \mathbf{p}_i$ with probability \mathbf{p}_i and $\Phi(\mathbf{x})_i = 0$ otherwise, where

$$\boldsymbol{p}_i = \frac{(m-k)|\boldsymbol{x}_i|}{\sum_{j=k+1}^d |\boldsymbol{x}_{\alpha(j)}|}$$

Proposition (optimal compression)

For any $\pmb{x} \in \mathbb{R}^d$, let lpha be a permutation of $\{1,\ldots,d\}$ such that

$$|\boldsymbol{x}_{\alpha(1)}| \geq |\boldsymbol{x}_{\alpha(2)}| \geq \cdots \geq |\boldsymbol{x}_{\alpha(d)}|.$$

Then, the compression operator Φ that minimizes $E \|\Phi(x) - x\|^2$ is characterized as follows:

(a) The largest-magnitude entries are preserved exactly, i.e.,

$$\Phi(\mathbf{x})_{\alpha(i)} = \mathbf{x}_{\alpha(i)}, \qquad i = 1, \dots, k.$$

(b) The smallest-magnitude entries are randomly perturbed, i.e., $\Phi(\mathbf{x})_i = \mathbf{x}_i / \mathbf{p}_i$ with probability \mathbf{p}_i and $\Phi(\mathbf{x})_i = 0$ otherwise, where

$$\boldsymbol{p}_i = \frac{(m-k)|\boldsymbol{x}_i|}{\sum_{j=k+1}^d |\boldsymbol{x}_{\alpha(j)}|}$$

(c) The number k is as small as possible, while ensuring $\boldsymbol{p}_{\alpha(k+1)} \leq 1$.

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Empirical te	ests		

Figure: FCIFRI ground-state energy estimates for Neon (8e, 22o).

・ロト・四ト・モート ヨー うへの

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000000000000000000000000000000000000
Limitations			

Figure: FCIFRI ground-state energy estimates for Neon (8e, 22o).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	
Limitations			

Figure: FCIFRI ground-state energy estimates for Neon (8e, 22o).

1. FCIFRI is more accurate than FCIQMC but FCIQMC is cheaper than FCIFRI. In practice, we combine them.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	Examples	FCIQMC	Variational Monte Carlo
OO	000000000	○○○○○○○○○○	
Limitations			

Figure: FCIFRI ground-state energy estimates for Neon (8e, 22o).

- 1. FCIFRI is more accurate than FCIQMC but FCIQMC is cheaper than FCIFRI. In practice, we combine them.
- 2. There is not a mathematical understanding of when these methods succeed versus fail (i.e., what matrix properties).

 Introduction
 Examples
 FCIQMC

 00
 0000000000
 0000000000

Variational Monte Carlo

Introducing variational Monte Carlo

The ground state: The ground-state wavefunction ψ solves a Hermitian eigenvalue problem $\lambda \psi = \mathcal{H} \psi$ with λ as small as possible.

Variational Monte Carlo

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introducing variational Monte Carlo

The ground state: The ground-state wavefunction ψ solves a Hermitian eigenvalue problem $\lambda \psi = \mathcal{H} \psi$ with λ as small as possible. **The variational principle:** The ground-state wavefunction ψ minimizes

$$\mathcal{E}\left[\psi
ight] = rac{\langle\psi,\mathcal{H}\psi
angle}{\langle\psi,\psi
angle}.$$

Introducing variational Monte Carlo

The ground state: The ground-state wavefunction ψ solves a Hermitian eigenvalue problem $\lambda \psi = \mathcal{H} \psi$ with λ as small as possible. **The variational principle:** The ground-state wavefunction ψ minimizes

$$\mathcal{E}\left[\psi
ight] = rac{\langle\psi,\mathcal{H}\psi
angle}{\langle\psi,\psi
angle}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Variational Monte Carlo: VMC minimizes $\mathcal{E}[\psi]$ over a wavefunction class ψ_{θ} , where θ is a vector of real- or complex-valued parameters.

Introducing variational Monte Carlo

The ground state: The ground-state wavefunction ψ solves a Hermitian eigenvalue problem $\lambda \psi = \mathcal{H} \psi$ with λ as small as possible. **The variational principle:** The ground-state wavefunction ψ minimizes

$$\mathcal{E}\left[\psi
ight] = rac{\langle\psi,\mathcal{H}\psi
angle}{\langle\psi,\psi
angle}.$$

Variational Monte Carlo: VMC minimizes $\mathcal{E}[\psi]$ over a wavefunction class ψ_{θ} , where θ is a vector of real- or complex-valued parameters.

Variational Monte Carlo (VMC)

1. Draw samples from the wavefunction density

$$\rho_{\boldsymbol{\theta}}\left(\boldsymbol{x}\right) \propto \left|\psi_{\boldsymbol{\theta}}\left(\boldsymbol{x}\right)\right|^{2}.$$

Use the random samples to estimate the energy gradient
 g = ∇_θ E [ψ_θ] and potentially other quantities for the optimization.
 Update the θ parameters to reduce the energy.

Introduction 00 Examples 0000000000 FCIQMC 00000000000 Variational Monte Carlo

Introducing variational Monte Carlo

Main example: We will apply VMC to the transverse-field Ising model for spin-1/2 particles on a periodic 1-D lattice, specified by

$$\mathcal{H} = -\sum_{i\sim j}\sigma_i^z\sigma_j^z - h\sum_i\sigma_i^x$$

- σ^{x}_{i} and σ^{z}_{i} are Pauli operators
- $-i \sim j$ signifies that *i* and *j* are neighbors
- h is a real-valued parameter

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 00 Examples 00000000000 FCIQMC 00000000000 Variational Monte Carlo

Introducing variational Monte Carlo

Main example: We will apply VMC to the transverse-field Ising model for spin-1/2 particles on a periodic 1-D lattice, specified by

$$\mathcal{H} = -\sum_{i \sim j} \sigma_i^z \sigma_j^z - h \sum_i \sigma_i^x$$

 $-\sigma_i^x$ and σ_i^z are Pauli operators

 $-i \sim j$ signifies that *i* and *j* are neighbors

- h is a real-valued parameter

Ansatz: ψ is a restricted Bolzmann machine (RBM) ansatz

$$\psi_{\boldsymbol{w},\boldsymbol{b}}(\boldsymbol{\sigma}) = \prod_{i=1}^{\alpha} \prod_{\mathcal{T}} \cosh\left(\sum_{j} \boldsymbol{w}_{ij} (\mathcal{T}\boldsymbol{\sigma})_{j} + \boldsymbol{b}_{i}\right).$$

where \mathcal{T} ranges over translation operators on the lattice, and \boldsymbol{w} and \boldsymbol{b} are vectors of complex-valued parameters, called *weights* and *biases*.

(日) (四) (日) (日) (日)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\rightarrow\,$ VMC estimated energies decrease and improve over time.

- $\rightarrow\,$ VMC estimated energies decrease and improve over time.
- \rightarrow The variance in the energies also decreases. This is because of the vanishing variance principle, a special feature of VMC (proved later).

- $\rightarrow\,$ VMC estimated energies decrease and improve over time.
- \rightarrow The variance in the energies also decreases. This is because of the vanishing variance principle, a special feature of VMC (proved later).

Question: How precisely do we update the θ parameters?

1. Fix a vector of parameters θ and consider a small update $\theta + \delta$. The resulting (intermediate-normalized) wavefunction is

$$\widehat{\psi}_{\theta+\delta} = \frac{\langle \psi_{\theta}, \psi_{\theta} \rangle}{\langle \psi_{\theta}, \psi_{\theta+\delta} \rangle} \psi_{\theta+\delta}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1. Fix a vector of parameters θ and consider a small update $\theta + \delta$. The resulting (intermediate-normalized) wavefunction is

$$\widehat{\psi}_{\theta+\delta} = \frac{\langle \psi_{\theta}, \psi_{\theta} \rangle}{\langle \psi_{\theta}, \psi_{\theta+\delta} \rangle} \psi_{\theta+\delta}.$$

2. Apply a Taylor series expansion

$$\widehat{\psi}_{\theta+\delta} = \widehat{\psi} + \sum_{i} \delta_{i} \widehat{\psi}_{i} + \frac{1}{2} \sum_{ij} \delta_{i} \delta_{j} \widehat{\psi}_{ij} + \mathcal{O}(|\delta|^{3}),$$

where

$$\begin{split} \widehat{\psi} &= \widehat{\psi}_{\theta} = \psi_{\theta}, \\ \widehat{\psi}_{i} &= \partial_{\theta_{i}} \widehat{\psi}_{\theta} = \partial_{\theta_{i}} \psi_{\theta} - \frac{\langle \psi_{\theta}, \partial_{\theta_{i}} \psi_{\theta} \rangle}{\langle \psi_{\theta}, \psi_{\theta} \rangle} \psi_{\theta}, \\ \widehat{\psi}_{ij} &= \partial_{\theta_{i}\theta_{j}}^{2} \widehat{\psi}_{\theta} = \dots. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

3. Use the Taylor series expansion for $\hat{\psi}_{\theta+\delta}$ to calculate

$$\underbrace{\underbrace{\mathcal{E}\left[\widehat{\psi}_{\theta+\delta}\right] - \mathcal{E}\left[\widehat{\psi}_{\theta}\right]}_{\text{energy difference}} = \underbrace{\underbrace{\delta^{*}g + g^{*}\delta}_{\text{gradient terms}} + \underbrace{\delta^{*}H\delta + \Re(\delta^{T}\overline{J}\delta)}_{\text{Hessian terms}} + \mathcal{O}(|\delta|^{3}),$$

$$g_{i} = \frac{\langle\widehat{\psi}_{i},\widehat{\mathcal{H}}\,\widehat{\psi}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle}, \quad H_{ij} = \frac{\langle\widehat{\psi}_{i},\widehat{\mathcal{H}}\,\widehat{\psi}_{j}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle}, \quad J_{ij} = \frac{\langle\widehat{\psi}_{ij},\widehat{\mathcal{H}}\,\widehat{\psi}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle},$$
where $\widehat{\mathcal{H}} = \mathcal{H} - \mathcal{E}\left[\widehat{\psi}\right].$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3. Use the Taylor series expansion for $\hat{\psi}_{\theta+\delta}$ to calculate

$$\underbrace{\mathcal{E}\left[\widehat{\psi}_{\theta+\delta}\right] - \mathcal{E}\left[\widehat{\psi}_{\theta}\right]}_{\text{energy difference}} = \underbrace{\underbrace{\delta^{*}g + g^{*}\delta}_{\text{gradient terms}} + \underbrace{\delta^{*}H\delta + \Re(\delta^{T}\overline{J}\delta)}_{\text{Hessian terms}} + \mathcal{O}(|\delta|^{3}),$$

$$g_{i} = \frac{\langle\widehat{\psi}_{i},\widehat{\mathcal{H}}\widehat{\psi}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle}, \quad H_{ij} = \frac{\langle\widehat{\psi}_{i},\widehat{\mathcal{H}}\widehat{\psi}_{j}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle}, \quad J_{ij} = \frac{\langle\widehat{\psi}_{ij},\widehat{\mathcal{H}}\widehat{\psi}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle},$$
where $\widehat{\mathcal{H}} = \mathcal{H} - \mathcal{E}\left[\widehat{\psi}\right].$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Three main takeaways:

3. Use the Taylor series expansion for $\hat{\psi}_{\theta+\delta}$ to calculate

$$\underbrace{\mathcal{E}\left[\widehat{\psi}_{\theta+\delta}\right] - \mathcal{E}\left[\widehat{\psi}_{\theta}\right]}_{\text{energy difference}} = \underbrace{\delta^{*}g + g^{*}\delta}_{\text{gradient terms}} + \underbrace{\delta^{*}H\delta + \Re(\delta^{T}\overline{J}\delta)}_{\text{Hessian terms}} + \mathcal{O}(|\delta|^{3}),$$

$$g_{i} = \frac{\langle\widehat{\psi}_{i},\widehat{H}\,\widehat{\psi}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle}, \quad H_{ij} = \frac{\langle\widehat{\psi}_{i},\widehat{H}\,\widehat{\psi}_{j}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle}, \quad J_{ij} = \frac{\langle\widehat{\psi}_{ij},\widehat{H}\,\widehat{\psi}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle},$$
where $\widehat{\mathcal{H}} = \mathcal{H} - \mathcal{E}\left[\widehat{\psi}\right].$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Three main takeaways:

1. For real $\boldsymbol{\theta}$, the gradient is $2\boldsymbol{g}$ and the Hessian is $2\boldsymbol{H} + 2\boldsymbol{J}$.

3. Use the Taylor series expansion for $\hat{\psi}_{\theta+\delta}$ to calculate

$$\underbrace{\begin{array}{l} \underbrace{\mathcal{E}\left[\widehat{\psi}_{\theta+\delta}\right] - \mathcal{E}\left[\widehat{\psi}_{\theta}\right]}_{\text{energy difference}} = \underbrace{\boldsymbol{\delta}^{*}\boldsymbol{g} + \boldsymbol{g}^{*}\boldsymbol{\delta}}_{\text{gradient terms}} + \underbrace{\boldsymbol{\delta}^{*}\boldsymbol{H}\boldsymbol{\delta} + \Re(\boldsymbol{\delta}^{T}\,\overline{\boldsymbol{J}}\,\boldsymbol{\delta})}_{\text{Hessian terms}} + \mathcal{O}(|\boldsymbol{\delta}|^{3}), \\ \boldsymbol{g}_{i} = \frac{\langle\widehat{\psi}_{i},\widehat{\mathcal{H}}\,\widehat{\psi}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle}, \quad \boldsymbol{H}_{ij} = \frac{\langle\widehat{\psi}_{i},\widehat{\mathcal{H}}\,\widehat{\psi}_{j}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle}, \quad \boldsymbol{J}_{ij} = \frac{\langle\widehat{\psi}_{ij},\widehat{\mathcal{H}}\,\widehat{\psi}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle}, \\ \text{where } \widehat{\mathcal{H}} = \mathcal{H} - \mathcal{E}\left[\widehat{\psi}\right].$$

Three main takeaways:

- 1. For real $\boldsymbol{\theta}$, the gradient is $2\boldsymbol{g}$ and the Hessian is $2\boldsymbol{H} + 2\boldsymbol{J}$.
- 2. For complex θ , the Wirtinger gradient is $\left(\frac{g}{g}\right)$, and the Wirtinger Hessian is $\left(\frac{H}{J}\frac{J}{H}\right)$.

3. Use the Taylor series expansion for $\hat{\psi}_{\theta+\delta}$ to calculate

$$\underbrace{\begin{array}{l} \underbrace{\mathcal{E}\left[\widehat{\psi}_{\theta+\delta}\right] - \mathcal{E}\left[\widehat{\psi}_{\theta}\right]}_{\text{energy difference}} = \underbrace{\boldsymbol{\delta}^{*}\boldsymbol{g} + \boldsymbol{g}^{*}\boldsymbol{\delta}}_{\text{gradient terms}} + \underbrace{\boldsymbol{\delta}^{*}\boldsymbol{H}\boldsymbol{\delta} + \Re(\boldsymbol{\delta}^{T}\,\overline{\boldsymbol{J}}\,\boldsymbol{\delta})}_{\text{Hessian terms}} + \mathcal{O}(|\boldsymbol{\delta}|^{3}), \\ \boldsymbol{g}_{i} = \frac{\langle\widehat{\psi}_{i},\widehat{\mathcal{H}}\,\widehat{\psi}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle}, \quad \boldsymbol{H}_{ij} = \frac{\langle\widehat{\psi}_{i},\widehat{\mathcal{H}}\,\widehat{\psi}_{j}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle}, \quad \boldsymbol{J}_{ij} = \frac{\langle\widehat{\psi}_{ij},\widehat{\mathcal{H}}\,\widehat{\psi}\rangle}{\langle\widehat{\psi},\widehat{\psi}\rangle}, \\ \text{where } \widehat{\mathcal{H}} = \mathcal{H} - \mathcal{E}\left[\widehat{\psi}\right].$$

Three main takeaways:

- 1. For real $\boldsymbol{\theta}$, the gradient is $2\boldsymbol{g}$ and the Hessian is $2\boldsymbol{H} + 2\boldsymbol{J}$.
- 2. For complex θ , the Wirtinger gradient is $\left(\frac{g}{g}\right)$, and the Wirtinger Hessian is $\left(\frac{H}{J}\frac{J}{H}\right)$.

3. $\mathbf{g} \to \mathbf{0}$ and $\mathbf{J} \to \mathbf{0}$ as $\hat{\psi}$ approaches any eigenstate of \mathcal{H} .

Examples

FCIQMC 00000000000 Variational Monte Carlo

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Gradients and Hessians

Proposition (ground state regularity)

The vector \boldsymbol{g} and matrix \boldsymbol{J} are bounded by

$$|\boldsymbol{g}_{i}| \leq \frac{\|\widehat{\psi}_{i}\|}{\|\widehat{\psi}\|} \min_{\lambda \in \mathbb{R}} \frac{\|(\mathcal{H} - \lambda)\widehat{\psi}\|}{\|\widehat{\psi}\|}, \qquad |\boldsymbol{J}_{ij}| \leq \frac{\|\widehat{\psi}_{ij}\|}{\|\widehat{\psi}\|} \min_{\lambda \in \mathbb{R}} \frac{\|(\mathcal{H} - \lambda)\widehat{\psi}\|}{\|\widehat{\psi}\|}.$$

Therefore, $\boldsymbol{g} \to \boldsymbol{0}$ and $\boldsymbol{J} \to \boldsymbol{0}$ as $\min_{\lambda \in \mathbb{R}} \| (\mathcal{H} - \lambda) \, \widehat{\psi} \, \| / \| \widehat{\psi} \| \to 0$, assuming uniformly bounded $\| \widehat{\psi}_i \| / \| \widehat{\psi} \|$ and $\| \widehat{\psi}_{ij} \| / \| \widehat{\psi} \|$ terms.

FCIQMC 00000000000 Variational Monte Carlo

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Gradients and Hessians

Proposition (ground state regularity)

The vector \boldsymbol{g} and matrix \boldsymbol{J} are bounded by

$$\begin{aligned} |\boldsymbol{g}_{i}| &\leq \frac{\|\widehat{\psi}_{i}\|}{\|\widehat{\psi}\|} \min_{\lambda \in \mathbb{R}} \frac{\|(\mathcal{H} - \lambda)\widehat{\psi}\|}{\|\widehat{\psi}\|}, \qquad |\boldsymbol{J}_{ij}| \leq \frac{\|\widehat{\psi}_{ij}\|}{\|\widehat{\psi}\|} \min_{\lambda \in \mathbb{R}} \frac{\|(\mathcal{H} - \lambda)\widehat{\psi}\|}{\|\widehat{\psi}\|}. \end{aligned}$$

Therefore, $\boldsymbol{g} \to \boldsymbol{0}$ and $\boldsymbol{J} \to \boldsymbol{0}$ as $\min_{\lambda \in \mathbb{R}} \|(\mathcal{H} - \lambda)\widehat{\psi}\| / \|\widehat{\psi}\| \to 0, \end{aligned}$

assuming uniformly bounded $\|\widehat{\psi}_i\|/\|\widehat{\psi}\|$ and $\|\widehat{\psi}_{ij}\|/\|\widehat{\psi}\|$ terms.

The Hessian structure has implications for VMC optimization.

and the state of the second state	la sul s	
		000000 00000000000 00000000000000000000
Examples	FCIQMC	Variational Monte Carlo

Gradient descent methods: Choose δ to minimize

$$\underbrace{\mathcal{E}_{\text{linear}}[\hat{\psi}_{\theta+\delta}] - \mathcal{E}[\hat{\psi}_{\theta}]}_{\text{linearized energy difference}} = \underbrace{\delta^* g + g^* \delta}_{\text{gradient}},$$

plus a penalization term that keeps the update small.

Gradient descent methods: Choose δ to minimize

plus a penalization term that keeps the update small.

1. The penalization term is either

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $\epsilon > 0$ is a tunable parameter.

 Introduction
 Examples
 FCIQMC
 Variational Monte Carlo

 00
 00000000000
 00000000000
 00000000000

 Various optimization methods
 Variational Monte Carlo
 00000000000

Gradient descent methods: Choose δ to minimize

$$\underbrace{\mathcal{E}_{\text{linear}}[\hat{\psi}_{\theta+\delta}] - \mathcal{E}[\hat{\psi}_{\theta}]}_{\text{linearized energy difference}} = \underbrace{\delta^* g + g^* \delta}_{\text{gradient}},$$

plus a penalization term that keeps the update small.

1. The penalization term is either

$$\underbrace{\epsilon^{-1}_{\text{GD}} |\boldsymbol{\delta}|^2}_{\text{GD}} \qquad \text{or} \qquad \underbrace{\epsilon^{-1}_{-1} \angle \left(\hat{\psi}_{\boldsymbol{\theta}}, \hat{\psi}_{\boldsymbol{\theta}+\boldsymbol{\delta}}\right)^2}_{\text{natural GD}},$$

where $\epsilon > 0$ is a tunable parameter.

2. The term $\angle (\hat{\psi}_{\theta}, \hat{\psi}_{\theta+\delta})^2$ is approximated using

$$\angle (\hat{\psi}_{\boldsymbol{\theta}}, \hat{\psi}_{\boldsymbol{\theta}+\boldsymbol{\delta}})^2 = \boldsymbol{\delta}^* \boldsymbol{S} \boldsymbol{\delta} + \mathcal{O}(|\boldsymbol{\delta}|^3), \qquad \boldsymbol{S}_{ij} = \frac{\langle \hat{\psi}_i, \hat{\psi}_j \rangle}{\langle \hat{\psi}, \hat{\psi} \rangle}.$$

Natural GD ('stochastic reconfiguration') uses the penalization $\epsilon^{-1} \delta^* (\mathbf{S} + \eta \mathbf{I}) \delta$, where $\eta > 0$ helps keep the updates small.

Various optimization methods

GD and natural GD

Choose δ to solve $\min_{\delta} \left[\delta^* m{g} + m{g}^* \delta + rac{\delta^* m{R} \delta}{\epsilon}
ight],$

where $\mathbf{R} = \mathbf{I}$ in GD and $\mathbf{R} = \mathbf{S} + \eta \mathbf{I}$ in natural GD. Equivalently, set

$$\boldsymbol{\delta} = -\epsilon \boldsymbol{R}^{-1} \boldsymbol{g}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Rayleigh-Gauss-Newton method: Choose δ to minimize

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

plus a penalization term that keeps the update small.

Rayleigh-Gauss-Newton method: Choose δ to minimize

plus a penalization term that keeps the update small.

1. The missing Hessian term $\Re(\delta^T \overline{J} \delta)$ is small in practice and $\rightarrow \mathbf{0}$ as ψ approaches the true ground state.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Rayleigh-Gauss-Newton method: Choose δ to minimize

plus a penalization term that keeps the update small.

1. The missing Hessian term $\Re(\delta^T \overline{J} \delta)$ is small in practice and $\rightarrow \mathbf{0}$ as ψ approaches the true ground state.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2. As a penalization term, we use $\epsilon^{-1} \delta^* (\mathbf{S} + \eta \mathbf{I}) \delta$.

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000 000 0000000000000000000000000000

RGN method (Webber & Lindsey, 2021)

Choose δ to solve

$$\min_{\boldsymbol{\delta}} \left[\delta^* \boldsymbol{g} + \boldsymbol{g}^* \boldsymbol{\delta} + \delta^* \boldsymbol{H} \boldsymbol{\delta} + \frac{\delta^* \boldsymbol{R} \boldsymbol{\delta}}{\epsilon} \right],$$

where $\pmb{R}=\pmb{S}+\eta\pmb{I}.$ Equivalently, set

$$oldsymbol{\delta} = -\left(oldsymbol{H} + \epsilon^{-1}oldsymbol{R}
ight)^{-1}oldsymbol{g}$$
 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000000000000000000000000000000000000
Convergence	rate analysis		

Observation: GD, natural GD, and RGN can all be written as:

$$\boldsymbol{P}^{i}\left(\boldsymbol{\theta}^{i+1}-\boldsymbol{\theta}^{i}
ight)=-\boldsymbol{g}\left(\boldsymbol{\theta}^{i}
ight), \qquad i=1,2,\ldots$$

where $\theta^{i+1} - \theta^i$ is the parameter update, $-\boldsymbol{g}(\theta^i)$ is the negative energy gradient, and \boldsymbol{P}^i is the preconditioning matrix.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000000000000000000000000000000000000
Convergence	rate analysis		

Observation: GD, natural GD, and RGN can all be written as:

$$\boldsymbol{P}^{i}\left(\boldsymbol{\theta}^{i+1}-\boldsymbol{\theta}^{i}
ight)=-\boldsymbol{g}\left(\boldsymbol{\theta}^{i}
ight),\qquad i=1,2,\ldots$$

where $\theta^{i+1} - \theta^i$ is the parameter update, $-g(\theta^i)$ is the negative energy gradient, and P^i is the preconditioning matrix.

Method	Preconditioner P
Gradient descent	$\epsilon^{-1}I$
Natural gradient descent	$\epsilon^{-1} \left(oldsymbol{S} + \eta oldsymbol{I} ight)$
Rayleigh-Gauss-Newton	$\boldsymbol{H} + \epsilon^{-1} \left(\boldsymbol{S} + \eta \boldsymbol{I} \right)$

Table: Different preconditioners for energy minimization.

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000000000000000000000000000000000000
Convergence	rate analysis		

Observation: GD, natural GD, and RGN can all be written as:

$$\boldsymbol{P}^{i}\left(\boldsymbol{\theta}^{i+1}-\boldsymbol{\theta}^{i}
ight)=-\boldsymbol{g}\left(\boldsymbol{\theta}^{i}
ight),\qquad i=1,2,\ldots$$

where $\theta^{i+1} - \theta^i$ is the parameter update, $-\boldsymbol{g}(\theta^i)$ is the negative energy gradient, and \boldsymbol{P}^i is the preconditioning matrix.

Method	Preconditioner P
Gradient descent	$\epsilon^{-1}I$
Natural gradient descent	$\epsilon^{-1} \left(oldsymbol{S} + \eta oldsymbol{I} ight)$
Rayleigh-Gauss-Newton	$\boldsymbol{H} + \epsilon^{-1} \left(\boldsymbol{S} + \eta \boldsymbol{I} \right)$

Table: Different preconditioners for energy minimization.

This motivates a convergence rate analysis for general parameter updates $\mathbf{P}^{i} \left(\theta^{i+1} - \theta^{i} \right) = -\mathbf{g} \left(\theta^{i} \right)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00
Examples

FCIQMC 0000000000 Variational Monte Carlo

Convergence rate analysis

Proposition (convergence rate)

Consider the parameter updates $\mathbf{P}^i \left(\theta^{i+1} - \theta^i \right) = -\mathbf{g} \left(\theta^i \right)$, where $(\mathbf{P}^1)^{-1}, (\mathbf{P}^2)^{-1}, \ldots$ are uniformly bounded. Assume $\theta^1, \theta^2, \ldots$ converges to a local energy minimizer θ^* , and the Hessian or Wirtinger Hessian is positive definite at θ^* . Then,

$$\limsup_{i\to\infty}\frac{\mathcal{E}\left[\psi_{\boldsymbol{\theta}^{i+1}}\right]-\mathcal{E}\left[\psi_{\boldsymbol{\theta}^{*}}\right]}{\mathcal{E}\left[\psi_{\boldsymbol{\theta}^{i}}\right]-\mathcal{E}\left[\psi_{\boldsymbol{\theta}^{*}}\right]}\leq\limsup_{i\to\infty}\left\|\boldsymbol{I}-(\boldsymbol{H}+\boldsymbol{J})^{\frac{1}{2}}\boldsymbol{P}_{i}^{-1}(\boldsymbol{H}+\boldsymbol{J})^{\frac{1}{2}}\right\|_{2}^{2}$$

or

$$\limsup_{i \to \infty} \frac{\mathcal{E}\left[\psi_{\theta^{i+1}}\right] - \mathcal{E}\left[\psi_{\theta^*}\right]}{\mathcal{E}\left[\psi_{\theta^i}\right] - \mathcal{E}\left[\psi_{\theta^*}\right]} \le \limsup_{i \to \infty} \left\| I - \left(\frac{H}{J}\frac{J}{H}\right)^{\frac{1}{2}} \left(\frac{P_i}{0}\frac{0}{P_i}\right)^{-1} \left(\frac{H}{J}\frac{J}{H}\right)^{\frac{1}{2}} \right\|_2^2$$

in the real and complex cases, respectively, where $H = H(\theta^*)$ and $J = J(\theta^*)$.

	Examples	FCIQMC	Variational Monte Carlo
			000000000000000000000000000000000000000
Convergence	rate analysis		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The convergence rate analysis ensures the following:

	Examples	FCIQMC	Variational Monte Carlo	
00	000000000	0000000000	000000000000000000000000000000000000000	
Convergence rate analysis				

The convergence rate analysis ensures the following:

1. If RGN is applied with ϵ^i converging to infinity and ψ_{θ^i} converging to the ground state, the energies converge *superlinearly*:

$$\limsup_{i \to \infty} \frac{\mathcal{E}\left[\psi_{\boldsymbol{\theta}^{i+1}}\right] - \mathcal{E}\left[\psi_{\boldsymbol{\theta}^{*}}\right]}{\mathcal{E}\left[\psi_{\boldsymbol{\theta}^{i}}\right] - \mathcal{E}\left[\psi_{\boldsymbol{\theta}^{*}}\right]} = 0.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

	Examples	FCIQMC	Variational Monte Carlo	
00	000000000	0000000000	000000000000000000000000000000000000000	
Convergence rate analysis				

The convergence rate analysis ensures the following:

1. If RGN is applied with ϵ^i converging to infinity and ψ_{θ^i} converging to the ground state, the energies converge *superlinearly*:

$$\limsup_{i\to\infty}\frac{\mathcal{E}\left[\psi_{\boldsymbol{\theta}^{i+1}}\right]-\mathcal{E}\left[\psi_{\boldsymbol{\theta}^{*}}\right]}{\mathcal{E}\left[\psi_{\boldsymbol{\theta}^{i}}\right]-\mathcal{E}\left[\psi_{\boldsymbol{\theta}^{*}}\right]}=0.$$

2. Other methods have a *slower linear* convergence rate, quantified by the mismatch between the preconditioner P^i and Hessian.

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000000000000000000000000000000000000
Empirical	tests		

We applied different VMC optimizers to the 10×1 TFI model, which is small enough that \mathcal{E} , **g**, **S**, and **H** can be computed by exact summation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We applied different VMC optimizers to the 10×1 TFI model, which is small enough that \mathcal{E} , **g**, **S**, and **H** can be computed by exact summation.

Figure: RGN energies converge quickly in ferromagnetic (h = 0.5, left), transitional (h = 1.0, center), and paramagnetic (h = 1.5, right) regimes.

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000000000000000000000000000000000000
Stochasti	c sampling		

(ロ)、(型)、(E)、(E)、 E) の(()

Question: How can we estimate \mathcal{E} , \boldsymbol{g} , \boldsymbol{S} , and \boldsymbol{H} stochastically?

Question: How can we estimate \mathcal{E} , \boldsymbol{g} , \boldsymbol{S} , and \boldsymbol{H} stochastically?

1. Generate samples $\sigma_1, \sigma_2, \ldots, \sigma_T$ from the wavefunction density

$$ho(oldsymbol{\sigma}) = rac{ert \psi(oldsymbol{\sigma}) ert^2}{\langle \psi, \psi
angle}$$

using Markov chain Monte Carlo, i.e., propose moving from σ to σ' with probability $p(\sigma, \sigma')$ and accept the move with probability

$$\min\Bigl\{rac{
ho({m \sigma}') {m
ho}({m \sigma}',{m \sigma})}{
ho({m \sigma}) {m
ho}({m \sigma},{m \sigma}')},1\Bigr
brace$$

A D N A 目 N A E N A E N A B N A C N

Otherwise, stay put.

2. Approximate \mathcal{E} , \boldsymbol{g} , \boldsymbol{S} , and \boldsymbol{H} using

$$\begin{split} \hat{\mathcal{E}} &= \mathbb{E}_{\hat{\rho}}[E_{L}(\boldsymbol{\sigma})], \\ \hat{\boldsymbol{g}}_{i} &= \operatorname{cov}_{\hat{\rho}}[\boldsymbol{\nu}_{i}(\boldsymbol{\sigma}), E_{L}(\boldsymbol{\sigma})], \\ \hat{\boldsymbol{S}}_{ij} &= \operatorname{cov}_{\hat{\rho}}[\boldsymbol{\nu}_{i}(\boldsymbol{\sigma}), \boldsymbol{\nu}_{j}(\boldsymbol{\sigma})], \\ \hat{\boldsymbol{H}}_{ij} &= \operatorname{cov}_{\hat{\rho}}[\boldsymbol{\nu}_{i}(\boldsymbol{\sigma}), E_{L,j}(\boldsymbol{\sigma})] - \hat{\boldsymbol{g}}_{i} \mathbb{E}_{\hat{\rho}}[\boldsymbol{\nu}_{j}(\boldsymbol{\sigma})] - \hat{\mathcal{E}}\hat{\boldsymbol{S}}_{ij}. \end{split}$$

 $\mathbb{E}_{\hat{\rho}}$ and $\operatorname{cov}_{\hat{\rho}}$ are expectations and covariances over the data, and

$$E_L(\sigma) = rac{\mathcal{H}\psi(\sigma)}{\psi(\sigma)}, \quad E_{L,i}(\sigma) = rac{\mathcal{H}\partial_{m{ heta}_i}\psi(\sigma)}{\psi(\sigma)}, \quad m{
u}_i(\sigma) = rac{\partial_{m{ heta}_i}\psi(\sigma)}{\psi(\sigma)}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Examples

FCIQMC 00000000000 Variational Monte Carlo

Analysis of sampling

Proposition (sampling error)

Assume the MCMC sampler is geometrically ergodic with respect to ρ , and for some $\epsilon > 0$, $\mathbb{E}_{\rho} |E_L(\sigma)|^{4+\epsilon} < \infty$ and $\sup_i \mathbb{E}_{\rho} |\nu_i(\sigma)|^{4+\epsilon} < \infty$. Then, as $T \to \infty$,

$$\sqrt{T} \left(\hat{\mathcal{E}}_{\mathcal{T}} - \mathcal{E}
ight) \stackrel{\mathcal{D}}{
ightarrow} \mathcal{N} \left(0, \mathbf{v}^2
ight), \qquad \sqrt{T} \left(\hat{\boldsymbol{g}}_{\mathcal{T}} - \boldsymbol{g}
ight) \stackrel{\mathcal{D}}{
ightarrow} \mathcal{N} \left(\boldsymbol{0}, \boldsymbol{\Sigma}
ight),$$

where the asymptotic variances v^2 and Σ are given by

$$\begin{split} v^2 &= \sum_{t=0}^{\infty} \operatorname{cov}_{\sigma_0 \sim \rho} \left[E_L(\sigma_0), E_L(\sigma_t) \right] + \sum_{t=1}^{\infty} \operatorname{cov}_{\sigma_0 \sim \rho} \left[E_L(\sigma_t), E_L(\sigma_0) \right], \\ \Sigma_{ij} &= \sum_{t=0}^{\infty} \operatorname{cov}_{\sigma_0 \sim \rho} \left[\mathbf{g}_i'(\sigma_0), \mathbf{g}_j'(\sigma_t) \right] + \sum_{t=1}^{\infty} \operatorname{cov}_{\sigma_0 \sim \rho} \left[\mathbf{g}_i'(\sigma_t), \mathbf{g}_j'(\sigma_0) \right], \end{split}$$

and \boldsymbol{g}' is defined as

$$oldsymbol{g}'(oldsymbol{\sigma}) = \overline{(oldsymbol{
u}(oldsymbol{\sigma}) - \mathbb{E}_{oldsymbol{\sigma}' \sim
ho}[oldsymbol{
u}(oldsymbol{\sigma}')])} \left(E_L(oldsymbol{\sigma}) - \mathcal{E}
ight).$$

The proposition has two main takeaways:

The proposition has two main takeaways:

1. The 'vanishing variance principle': When ψ approaches an eigenstate, var $\hat{\mathcal{E}}_{\mathcal{T}}$ approaches zero regardless of the MCMC sampler.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The proposition has two main takeaways:

1. The 'vanishing variance principle': When ψ approaches an eigenstate, var $\hat{\mathcal{E}}_{T}$ approaches zero regardless of the MCMC sampler.

2. Variance reduction: To reduce the variance in $\hat{\mathcal{E}}_{T}$ and \hat{g}_{T} , (a) increase the number of samples or (b) reduce time-correlations among samples.

-

The proposition has two main takeaways:

1. The 'vanishing variance principle': When ψ approaches an eigenstate, var $\hat{\mathcal{E}}_{T}$ approaches zero regardless of the MCMC sampler.

2. Variance reduction: To reduce the variance in $\hat{\mathcal{E}}_{T}$ and $\hat{\boldsymbol{g}}_{T}$, (a) increase the number of samples or (b) reduce time-correlations among samples.

Variance reduction is essential for achieving the best VMC energies.

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000000000000000000000000000000000000
Empirical	tests		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1. We used an MCMC sampler with random proposals based on flipping a single spin.

	Examples	FCIQMC	Variational Monte Carlo
00	000000000	0000000000	000000000000000000000000000000000000000
Empirical test	S		

- 1. We used an MCMC sampler with random proposals based on flipping a single spin.
- 2. We combined 50 MCMC samplers per core across 48 cores and performed 4000 MCMC steps per parameter update.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 1. We used an MCMC sampler with random proposals based on flipping a single spin.
- 2. We combined 50 MCMC samplers per core across 48 cores and performed 4000 MCMC steps per parameter update.

Figure: VMC ground-state energy estimates for TFI models on a 200×1 lattice.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introductio 00 Examples

Variational Monte Carlo

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Limitations

Figure: VMC ground-state energy estimates for TFI models on a 200 $\times\,1$ lattice.

Introductio 00 Examples

Variational Monte Carlo

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Limitations

Figure: VMC ground-state energy estimates for TFI models on a 200×1 lattice.

1. In principle, VMC converges nicely using natural GD or especially RGN.

Intro	d		ti	

Examples

FCIQMC 00000000000 Variational Monte Carlo

Limitations

Figure: VMC ground-state energy estimates for TFI models on a 200×1 lattice.

- 1. In principle, VMC converges nicely using natural GD or especially RGN.
- 2. In practice, it is challenging to (a) choose an ansatz, (b) gather enough samples, and (c) perform the linear algebra calculations.