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The difficulty of calculating the ground-state energy

Recent developments

• Ground-state energies are
needed for chemistry.

• The difficulty of finding the
ground-state energy grows
exponentially with number of
electrons/spins.

• Quantum Monte Carlo (QMC)
comes to the rescue, providing
energies for

1. Benzene (C6H6) with 42
interacting electrons

2. Lattices with 100 spins,
hence 2100 spin
configurations

Our motivation

• QMC can be extended even
further, but first the sampling
and optimization strategies it
employs need to be improved.

1. Long convergence times.
2. Loss of stability.
3. Convergence to

unreasonable solutions.

• We need to understand QMC
mathematically in order to
improve it.
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Extreme eigenvalue problem

In QMC applications, we need to solve discrete eigenvalue problems
involving matrices with dimensions up to 10108 × 10108.

Even storing a single vector of this size would be unmanageable.

Question: How do such large matrices arise?
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The quantum spin problem

Consider the transverse-field Ising model for spin-1/2 particles on a
periodic 1-D lattice, specified by

H = −
∑
i∼j

σz
i σ

z
j − h

∑
i

σx
i

− σx
i and σz

i are Pauli operators for the
i-th spin

− i ∼ j signifies that i and j are
neighboring spins

− h is a real-valued parameter

1 2
3

4

N

...

Question: How can we represent H as a matrix?
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The quantum spin problem

Question: How can we represent H as a matrix?

Consider a wavefunction

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN〉,

which is a tensor product of |+〉 and |−〉 states on the individual spins.

Example 1.

|ψ〉 = |+−+− . . .+−〉

Example 2.

|ψ〉 = |+ +−− . . .−−〉

=⇒ The tensor product wavefunctions form a (complete) orthonormal
basis of size 2N .
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The quantum spin problem

Question: How can we represent H as a matrix?

Introduce the raising and lowering operators

− σ+
i , which raises |ψi 〉 from |−〉 to |+〉,

− σ−i , which lowers |ψi 〉 from |+〉 to |−〉,
and insist that

σ+
i σ

+
i = σ−i σ

−
i = 0.

=⇒ H has the matrix representation

H = −
∑
i∼j

σz
i σ

z
j − h

∑
i

σx
i

= −
∑
i∼j

σz
i σ

z
j − h

∑
i

(σ+
i + σ−i ) .
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The quantum spin problem

To see the sparsity pattern of H, operate on the left and right with basis
vectors:

〈ψ1|H|ψ2〉 =

〈
ψ1

∣∣∣∣∣− ∑
i∼j

σz
i σ

z
j︸ ︷︷ ︸

null excitation

− h
∑
i

(σ+
i + σ−i )︸ ︷︷ ︸

single excitation

∣∣∣∣∣ψ2

〉

− If ψ1 and ψ2 differ by 0 spins,

〈ψ1|H|ψ2〉 =
〈
ψ1
∣∣−∑

i∼j
σz
i σ

z
j

∣∣ψ2
〉
.

− If ψ1 and ψ2 differ by 1 spin,

〈ψ1|H|ψ2〉 = −h.

− If ψ1 and ψ2 differ by 2+ spins,

〈ψ1|H|ψ2〉 = 0.

=⇒ The matrix H has N + 1 nonzero entries per column.
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The quantum spin problem

2 spins


−2 −h −h
−h 2 −h
−h 2 −h

−h −h −2



3 spins



−3 −h −h −h
−h 1 −h −h
−h 1 −h −h .

−h −h 1 −h
−h 1 −h −h

−h −h 1 −h
−h −h 1 −h

−h −h −h −3


For a system of N spins, the matrix has dimensions 2N × 2N ,

but there are just N + 1 nonzero entries per column.
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The electronic structure problem

Consider the Born-Oppenheimer model for N electrons orbiting a field of
fixed nuclei, specified by

H = −1

2

∑
i

∇2
r i −

∑
i,A

ZA

|r i − RA|
+
∑
j>i

1

|r i − r j |
.

− RA is the location of nucleus A.

− ZA is the atomic number of A.

− r i is the location of electron i .

Allow each electron to occupy a spin up or down state

|ωi 〉 = | ↑〉 or |ωi 〉 = | ↓〉,

and insist on the antisymmetry property

ψ(· · · , x i , · · · , x j , · · · ) = −ψ(· · · , x j , · · · , x i , · · · ),

where |x i 〉 = |r i , ωi 〉 denotes the position and spin of electron i .
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The electronic structure problem

Question: How can we represent H as a matrix?

Consider an orthonormal set of single-electron spatial orbitals

|φ1〉, |φ2〉, . . . , |φM〉

and the associated spin orbitals

|χ1〉 = |φ1〉 ⊗ | ↑〉,
|χ2〉 = |φ1〉 ⊗ | ↓〉,
. . . ,

|χ2M〉 = |φM〉 ⊗ | ↓〉.
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The electronic structure problem

Question: How can we represent H as a matrix?

Next introduce the basis of Slater determinants

|ij · · · k〉 =
1√
N!

∣∣∣∣∣∣∣∣∣
χi (x1) χj(x1) · · · χk(x1)
χi (x2) χj(x2) · · · χk(x2)

...
...

...
χi (xN) χj(xN) · · · χk(xN)

∣∣∣∣∣∣∣∣∣

Slater determinants satisfy the antisymmetry property

| · · · i · · · j · · · 〉 = −| · · · j · · · i · · · 〉.

=⇒ Slater determinants form an (incomplete) orthonormal basis of size(
2M
N

)
.
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The electronic structure problem

Question: How can we represent H as a matrix?

Introduce the raising and lowering operators

− a+
i , which satisfies a+

i |j · · · k〉 = |ij · · · k〉 if i is not yet occupied,

− a−i , which satisfies a+
i |ij · · · k〉 = |j · · · k〉,

and insist that
a+
i a

+
i = a−i a

−
i = 0.

=⇒ In the basis of Slater determinants, H has the matrix representation

H =
2M∑
i,j=1

〈i |h|j〉a+
i aj +

1

2

2M∑
i,j,k,l=1

〈ij |kl〉a+
i a

+
j alak

where 〈i |h|j〉 and 〈ij |kl〉 are integrals over one or two electron positions.
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The electronic structure problem

To see the sparsity pattern of H, operate on the left and right with basis
vectors:

〈ψ1|H|ψ2〉 =

〈
ψ1

∣∣∣∣∣∑2M

i,j=1
〈i |h|j〉a+

i aj︸ ︷︷ ︸
null / single excitation

+
1

2

∑2M

i,j,k,l=1
〈ij |kl〉a+

i a
+
j alak︸ ︷︷ ︸

null / single / double excitation

∣∣∣∣∣ψ2

〉

− Double excitations lead to

〈ij · · · |H|kl · · · 〉 = 〈ij |kl〉 − 〈ij |lk〉.

− Single excitations lead to

〈ik1k2 · · · |H|jk1k2 · · · 〉 = 〈i |h|j〉+
∑N−1

n=1
[〈ikn|jkn〉 − 〈ikn|knj〉]

− Null excitations lead to

〈i1i2 · · · |H|i1i2 · · · 〉 =
∑N

n=1
〈in|h|in〉+

∑N

m,n=1
[〈imin|imin〉−〈imin|inim〉].

=⇒ The matrix H has O(N2M2) nonzero entries per column.
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Traditional methods

For small matrices, there are iterative eigenvalue solvers, e.g., power
method, subspace iteration, Lanczos algorithm, Jacobi-Davidson method.

The power method is the simplest method for finding λmax(A):

Power method

1. x t+1 = Ax t

2. x t+1 = x t+1/‖x t+1‖

• Historical eigenvalue estimator

λ̂t =
〈x0,Ax t〉
〈x0, x t〉

.

• Modern eigenvalue estimator

λ̂t =
〈x t ,Ax t〉
〈x t , x t〉

.
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Convergence of power method

Convergence of power method

Consider a symmetric matrix A ∈ Rn×n with largest-magnitude
eigenvalues |λ1| ≥ |λ2| ≥ · · · and eigenvectors v 1, v 2, . . ., and set

R =
∣∣∣λ2

λ1

∣∣∣, θ = ∠(x0, v 1) = arccos
( 〈x0, v 1〉
‖x0‖‖v 1‖

)
.

1. Eigenvector estimates x0, x1, . . . satisfy

tan∠(x t , v 1) ≤ R t tan θ.

2. Historical or modern eigenvalue estimates λ̂0, λ̂1, . . . satisfy∣∣∣ λ̂t − λ1

λ1

∣∣∣ ≤ 2R t tan2 θ

1− R t tan2 θ
or

∣∣∣ λ̂t − λ1

λ1

∣∣∣ ≤ 2R2t tan2 θ.
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Limitations of power method

We can estimate the ground state for small systems by applying the
power method to A = I − εH for small enough ε > 0,

but this leads to increasingly dense vectors at each iteration.

Question: How can we adapt the power method to larger matrices?
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Full Configuration Interaction Quantum Monte Carlo

Introduce random walkers ξ1
t , . . . , ξ

Nt
t ∈ {1, 2, . . . , d} with positive or

negative signs S1
t , . . . ,S

Nt
t ∈ {+1,−1}.

1. Birth: For each walker ξit = j :

a) With probability pjk , spawn Njk particles at a new location
k 6= j , where

Njk = b|Ajk |/pjk + Uc, U ∼ Unif(0, 1).

b) Assign the walkers the sign S i
t if Ajk > 0 or −S j

t if Ajk < 0.

2. Death: For each walker ξit = j :

a) Replace ξit with Njj walkers, where

Njj = b|Ajj |+ Uc, U ∼ Unif(0, 1).

b) Assign the walkers the sign S i
t if Ajj > 0 or −S i

t if Ajj < 0.

3. Annihilation: Cancel walkers on the same site with opposite signs.
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Full Configuration Interaction Quantum Monte Carlo

FCIQMC approximates x t+1 = Ax t in the sense that

E[Xt+1] = AX t , where

{
X t =

∑Nt

i=1 S
i
tδξit

X t+1 =
∑Nt+1

i=1 S i
t+1δξit+1

.

− The birth step perform multiplication by Aoff-diag.

− The death step performs multiplication by Adiag.

− The annihilation step performs addition A = Adiag + Aoff-diag.

− To stabilize the walker population, FCIQMC adapts the shift, i.e.,

A = I − ε(H − δt I ), δt = δt−1 − .01 log
( Nt

Nt−1

)
.
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Convergence of FCIQMC

Question: Does FCIQMC converge?

1. The system ((ξit)1≤i≤Nt , (S
i
t )1≤i≤Nt , δt) is Markovian.

2. We anticipate the system converges to a stationary measure µ.

3. Moreover, we anticipate

Eµ[X 0] = Eµ
[∑N0

i=1
S i

0δX i
0

]
lies close to the ground state.

4. Then, it makes sense to estimate the ground-state energy using

λ̂t =

∑t
s=tmin

〈X 0,AX s〉∑t
s=tmin

〈X 0,X s〉
,

which is a ratio of convergent averages of a Markov chain, with
convergence rate ∼ t−1/2.
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Full Configuration Interaction Fast Randomized Iteration

Question: Why not approximate x t+1 = Ax t more directly?

Introduce a random compression operator Φ : Rd → Rd such that

(a) Φ(x) has at most m nonzero entries.

(b) EΦ(x) = x .

FCIFRI (Lim & Weare, 2017)

1. X t+1 = AΦ(X t)
2. X t+1 = X t+1/‖X t+1‖1

Again, we approximate the dominant eigenvalue of A using

λ̂t =

∑t
s=tmin

〈X 0,AX s〉∑t
s=tmin

〈X 0,X s〉
.

and anticipate a ∼ t−1/2 convergence rate.

Question: How should we choose the compression operator Φ?
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Full Configuration Interaction Fast Randomized Iteration

Proposition (optimal compression)

For any x ∈ Rd , let α be a permutation of {1, . . . , d} such that

|xα(1)| ≥ |xα(2)| ≥ · · · ≥ |xα(d)|.

Then, the compression operator Φ that minimizes E‖Φ(x)− x‖2 is
characterized as follows:

(a) The largest-magnitude entries are preserved exactly, i.e.,

Φ(x)α(i) = xα(i), i = 1, . . . , k.

(b) The smallest-magnitude entries are randomly perturbed, i.e.,
Φ(x)i = x i/pi with probability pi and Φ(x)i = 0 otherwise, where

pi =
(m − k)|x i |∑d
j=k+1 |xα(j)|

.

(c) The number k is as small as possible, while ensuring pα(k+1) ≤ 1.



Introduction Examples FCIQMC Variational Monte Carlo

Full Configuration Interaction Fast Randomized Iteration

Proposition (optimal compression)

For any x ∈ Rd , let α be a permutation of {1, . . . , d} such that

|xα(1)| ≥ |xα(2)| ≥ · · · ≥ |xα(d)|.

Then, the compression operator Φ that minimizes E‖Φ(x)− x‖2 is
characterized as follows:

(a) The largest-magnitude entries are preserved exactly, i.e.,

Φ(x)α(i) = xα(i), i = 1, . . . , k.

(b) The smallest-magnitude entries are randomly perturbed, i.e.,
Φ(x)i = x i/pi with probability pi and Φ(x)i = 0 otherwise, where

pi =
(m − k)|x i |∑d
j=k+1 |xα(j)|

.

(c) The number k is as small as possible, while ensuring pα(k+1) ≤ 1.
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Figure: FCIFRI ground-state energy estimates for Neon (8e, 22o).
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Figure: FCIFRI ground-state energy estimates for Neon (8e, 22o).

1. FCIFRI is more accurate than FCIQMC but FCIQMC is cheaper than
FCIFRI. In practice, we combine them.

2. There is not a mathematical understanding of when these methods
succeed versus fail (i.e., what matrix properties).
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Introducing variational Monte Carlo

The ground state: The ground-state wavefunction ψ solves a Hermitian
eigenvalue problem λψ = Hψ with λ as small as possible.

The variational principle: The ground-state wavefunction ψ minimizes

E [ψ] =
〈ψ,Hψ〉
〈ψ,ψ〉

.

Variational Monte Carlo: VMC minimizes E [ψ] over a wavefunction
class ψθ, where θ is a vector of real- or complex-valued parameters.

Variational Monte Carlo (VMC)

1. Draw samples from the wavefunction density

ρθ (x) ∝ |ψθ (x)|2 .

2. Use the random samples to estimate the energy gradient
g = ∇θE [ψθ] and potentially other quantities for the optimization.

3. Update the θ parameters to reduce the energy.
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Introducing variational Monte Carlo

Main example: We will apply VMC to the transverse-field Ising model
for spin-1/2 particles on a periodic 1-D lattice, specified by

H = −
∑
i∼j

σz
i σ

z
j − h

∑
i

σx
i

− σx
i and σz

i are Pauli operators

− i ∼ j signifies that i and j are neighbors

− h is a real-valued parameter

1 2
3

4

N

...

Ansatz: ψ is a restricted Bolzmann machine (RBM) ansatz

ψw ,b(σ) =
α∏
i=1

∏
T

cosh

(∑
j

w ij (T σ)j + bi

)
.

where T ranges over translation operators on the lattice, and w and b
are vectors of complex-valued parameters, called weights and biases.
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Figure: VMC ground-state energy estimates for a 200 × 1 Ising model with a
transverse magnetic field (h = 1.5).

→ VMC estimated energies decrease and improve over time.

→ The variance in the energies also decreases. This is because of the
vanishing variance principle, a special feature of VMC (proved later).

Question: How precisely do we update the θ parameters?
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Gradients and Hessians

1. Fix a vector of parameters θ and consider a small update θ + δ.
The resulting (intermediate-normalized) wavefunction is

ψ̂θ+δ =
〈ψθ, ψθ〉
〈ψθ, ψθ+δ〉

ψθ+δ.

2. Apply a Taylor series expansion

ψ̂θ+δ = ψ̂ +
∑

i
δi ψ̂i +

1

2

∑
ij
δiδj ψ̂ij +O(|δ|3),

where

ψ̂ = ψ̂θ = ψθ,

ψ̂i = ∂θi ψ̂θ = ∂θiψθ −
〈ψθ, ∂θiψθ〉
〈ψθ, ψθ〉

ψθ,

ψ̂ij = ∂2
θiθj

ψ̂θ = . . . .
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Gradients and Hessians

3. Use the Taylor series expansion for ψ̂θ+δ to calculate

E
[
ψ̂θ+δ

]
− E

[
ψ̂θ

]︸ ︷︷ ︸
energy difference

= δ∗g + g∗δ︸ ︷︷ ︸
gradient terms

+ δ∗Hδ + <(δT J δ)︸ ︷︷ ︸
Hessian terms

+O(|δ|3),

g i =

〈
ψ̂i , Ĥ ψ̂

〉〈
ψ̂, ψ̂

〉 , H ij =

〈
ψ̂i , Ĥ ψ̂j

〉〈
ψ̂, ψ̂

〉 , J ij =

〈
ψ̂ij , Ĥ ψ̂

〉〈
ψ̂, ψ̂

〉 ,

where Ĥ = H− E
[
ψ̂
]
.

Three main takeaways:

1. For real θ, the gradient is 2g and the Hessian is 2H + 2J .

2. For complex θ, the Wirtinger gradient is
( g

g
)
, and the Wirtinger

Hessian is
(H J

J H

)
.

3. g → 0 and J → 0 as ψ̂ approaches any eigenstate of H.
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Gradients and Hessians

Proposition (ground state regularity)

The vector g and matrix J are bounded by

|g i | ≤
∥∥ ψ̂i

∥∥∥∥ ψ̂ ∥∥ min
λ∈R

∥∥ (H− λ) ψ̂
∥∥∥∥ ψ̂ ∥∥ , |J ij | ≤

∥∥ ψ̂ij

∥∥∥∥ ψ̂ ∥∥ min
λ∈R

∥∥ (H− λ) ψ̂
∥∥∥∥ ψ̂ ∥∥ .

Therefore, g → 0 and J → 0 as minλ∈R
∥∥ (H− λ) ψ̂

∥∥/∥∥ψ̂ ∥∥→ 0,

assuming uniformly bounded
∥∥ ψ̂i

∥∥/∥∥ ψ̂ ∥∥ and
∥∥ ψ̂ij

∥∥/∥∥ ψ̂ ∥∥ terms.

The Hessian structure has implications for VMC optimization.
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Various optimization methods

Gradient descent methods: Choose δ to minimize

Elinear

[
ψ̂θ+δ

]
− E

[
ψ̂θ

]︸ ︷︷ ︸
linearized energy difference

= δ∗g + g∗δ︸ ︷︷ ︸
gradient

,

plus a penalization term that keeps the update small.

1. The penalization term is either

ε−1 |δ|2︸ ︷︷ ︸
GD

or ε−1∠
(
ψ̂θ, ψ̂θ+δ

)2︸ ︷︷ ︸
natural GD

,

where ε > 0 is a tunable parameter.

2. The term ∠
(
ψ̂θ, ψ̂θ+δ

)2
is approximated using

∠
(
ψ̂θ, ψ̂θ+δ

)2
= δ∗Sδ +O

(
|δ|3

)
, S ij =

〈
ψ̂i , ψ̂j

〉〈
ψ̂, ψ̂

〉 .
Natural GD (‘stochastic reconfiguration’) uses the penalization
ε−1δ∗(S + ηI )δ, where η > 0 helps keep the updates small.
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plus a penalization term that keeps the update small.

1. The penalization term is either

ε−1 |δ|2︸ ︷︷ ︸
GD

or ε−1∠
(
ψ̂θ, ψ̂θ+δ

)2︸ ︷︷ ︸
natural GD

,

where ε > 0 is a tunable parameter.

2. The term ∠
(
ψ̂θ, ψ̂θ+δ

)2
is approximated using

∠
(
ψ̂θ, ψ̂θ+δ

)2
= δ∗Sδ +O

(
|δ|3

)
, S ij =

〈
ψ̂i , ψ̂j

〉〈
ψ̂, ψ̂

〉 .
Natural GD (‘stochastic reconfiguration’) uses the penalization
ε−1δ∗(S + ηI )δ, where η > 0 helps keep the updates small.
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Various optimization methods

GD and natural GD

Choose δ to solve

min
δ

[
δ∗g + g∗δ +

δ∗Rδ

ε

]
,

where R = I in GD and R = S + ηI in natural GD. Equivalently, set

δ = −εR−1g .
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Various optimization methods

Rayleigh-Gauss-Newton method: Choose δ to minimize

Equad

[
ψ̂θ+δ

]
− E

[
ψ̂θ

]︸ ︷︷ ︸
quadratic energy difference

= δ∗g + g∗δ︸ ︷︷ ︸
gradient

+ δ∗Hδ︸ ︷︷ ︸
quasi-Hessian

,

plus a penalization term that keeps the update small.

1. The missing Hessian term <(δT J δ) is small in practice and → 0 as
ψ approaches the true ground state.

2. As a penalization term, we use ε−1δ∗(S + ηI )δ.
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Various optimization methods

RGN method (Webber & Lindsey, 2021)

Choose δ to solve

min
δ

[
δ∗g + g∗δ + δ∗Hδ +

δ∗Rδ

ε

]
,

where R = S + ηI . Equivalently, set

δ = −
(
H + ε−1R

)−1 g .
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Convergence rate analysis

Observation: GD, natural GD, and RGN can all be written as:

P i
(
θi+1 − θi

)
= −g

(
θi
)
, i = 1, 2, . . .

where θi+1 − θi is the parameter update, −g
(
θi
)

is the negative energy

gradient, and P i is the preconditioning matrix.

Method Preconditioner P
Gradient descent ε−1I
Natural gradient descent ε−1 (S + ηI )
Rayleigh-Gauss-Newton H + ε−1 (S + ηI )

Table: Different preconditioners for energy minimization.

This motivates a convergence rate analysis for general parameter updates
P i
(
θi+1 − θi

)
= −g

(
θi
)
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Convergence rate analysis

Proposition (convergence rate)

Consider the parameter updates P i
(
θi+1 − θi

)
= −g

(
θi
)
, where

(P1)−1, (P2)−1, . . . are uniformly bounded. Assume θ1,θ2, . . . converges
to a local energy minimizer θ∗, and the Hessian or Wirtinger Hessian is
positive definite at θ∗. Then,

lim sup
i→∞

E [ψθi+1 ]− E [ψθ∗ ]

E [ψθi ]− E [ψθ∗ ]
≤ lim sup

i→∞

∥∥∥I − (H + J)
1
2 P−1

i (H + J)
1
2

∥∥∥2

2

or

lim sup
i→∞

E [ψθi+1 ]− E [ψθ∗ ]

E [ψθi ]− E [ψθ∗ ]
≤ lim sup

i→∞

∥∥∥I − (H J
J H

) 1
2
( P i 0

0 P i

)−1(H J
J H

) 1
2

∥∥∥2

2

in the real and complex cases, respectively, where H = H(θ∗) and
J = J(θ∗).
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Convergence rate analysis

The convergence rate analysis ensures the following:

1. If RGN is applied with εi converging to infinity and ψθi converging
to the ground state, the energies converge superlinearly:

lim sup
i→∞

E [ψθi+1 ]− E [ψθ∗ ]

E [ψθi ]− E [ψθ∗ ]
= 0.

2. Other methods have a slower linear convergence rate, quantified by
the mismatch between the preconditioner P i and Hessian.
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Empirical tests

We applied different VMC optimizers to the 10× 1 TFI model, which is
small enough that E , g , S , and H can be computed by exact summation.
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Figure: RGN energies converge quickly in ferromagnetic (h = 0.5, left),
transitional (h = 1.0, center), and paramagnetic (h = 1.5, right) regimes.
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Stochastic sampling

Question: How can we estimate E , g , S , and H stochastically?

1. Generate samples σ1,σ2, . . . ,σT from the wavefunction density

ρ(σ) =
|ψ(σ)|2

〈ψ,ψ〉

using Markov chain Monte Carlo, i.e., propose moving from σ to σ′

with probability p(σ,σ′) and accept the move with probability

min
{ρ(σ′)p(σ′,σ)

ρ(σ)p(σ,σ′)
, 1
}

Otherwise, stay put.
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Stochastic sampling

2. Approximate E , g , S , and H using

Ê = Eρ̂[EL(σ)] ,

ĝ i = covρ̂[νi (σ),EL(σ)] ,

Ŝ ij = covρ̂[νi (σ),νj(σ)] ,

Ĥ ij = covρ̂[νi (σ),EL,j(σ)]− ĝ i Eρ̂[νj(σ)]− ÊŜ ij .

Eρ̂ and covρ̂ are expectations and covariances over the data, and

EL(σ) =
Hψ(σ)

ψ(σ)
, EL,i (σ) =

H∂θiψ(σ)

ψ(σ)
, νi (σ) =

∂θiψ(σ)

ψ(σ)
.
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Analysis of sampling

Proposition (sampling error)

Assume the MCMC sampler is geometrically ergodic with respect to ρ,
and for some ε > 0, Eρ|EL(σ)|4+ε

<∞ and supi Eρ|νi (σ)|4+ε
<∞.

Then, as T →∞,

√
T
(
ÊT − E

) D→ N (0, v2
)
,

√
T
(
ĝT − g

) D→ N (0,Σ) ,

where the asymptotic variances v2 and Σ are given by

v2 =
∞∑
t=0

covσ0∼ρ [EL(σ0),EL(σt)] +
∞∑
t=1

covσ0∼ρ [EL(σt),EL(σ0)] ,

Σij =
∞∑
t=0

covσ0∼ρ
[
g ′i (σ0), g ′j(σt)

]
+
∞∑
t=1

covσ0∼ρ
[
g ′i (σt), g ′j(σ0)

]
,

and g ′ is defined as

g ′(σ) = (ν(σ)− Eσ′∼ρ[ν (σ′)]) (EL(σ)− E) .
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Analysis of sampling

The proposition has two main takeaways:

1. The ‘vanishing variance principle’: When ψ approaches an
eigenstate, var ÊT approaches zero regardless of the MCMC sampler.

2. Variance reduction: To reduce the variance in ÊT and ĝT , (a)
increase the number of samples or (b) reduce time-correlations
among samples.

Variance reduction is essential for achieving the best VMC energies.
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Empirical tests

1. We used an MCMC sampler with random proposals based on
flipping a single spin.

2. We combined 50 MCMC samplers per core across 48 cores and
performed 4000 MCMC steps per parameter update.
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Figure: VMC ground-state energy estimates for TFI models on a 200× 1 lattice.
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Limitations
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Figure: VMC ground-state energy estimates for TFI models on a 200× 1 lattice.

1. In principle, VMC converges nicely using natural GD or especially
RGN.

2. In practice, it is challenging to (a) choose an ansatz, (b) gather
enough samples, and (c) perform the linear algebra calculations.
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