Random Walks
J‘dRe—V(R)/kBT

o It difficult to directly sample the Boltzmann distribution for
many particles .

- If we sample from another distribution, the overlap will be
order exp(-aN), where N is the number of variables. The
error bars will get exponentially larger as N increases.

e Markov chains (random walks), detailed balance and
transition rules.

— This method was introduced by Metropolis et al. in 1953 who
applied it to a hard sphere liquid.

— It is one of the most powerful and used algorithms in all of
computer science.
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Equation of State Calculations by Fast Computing Machines

NicaoLAs METROPOLIS, ARIANNA W. ROSENBLUTH, MARsHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EpWARD TELLER,® Depariment of Physics, Universily of Chicago, Chicago, Ilinois
{Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

1. INTRODUCTION

THE purpose of this paper is to describe a general
method, suitable for fast electronic computing

machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,
only two-body forces are considered, and the potential
field of a molecule is assumed spherically symmetric.
These are the usual assumptions made in theories of
liquids. Subject to the above assumptions, the method
is not restricted to any range of temperature or density.
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system.
Work on the two-dimensional case with a Lennard-
Jomes potential is in progress and will be reported in a
later paper. Also, the problem in three dimensions is
being inmtigated.

. No' at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California.
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II. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number N may be as high as
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface
effects we suppose the complete substance to be periodic,
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we
define d 45, the minimum distance between particles 4
and B, as the shortest distance between 4 and any of
the particles B, of which there is one in each of the
squares which comprise the complete substance. If we
have a potential which falls off rapidly with distance,
there will be at most one of the distances AB which
can make a substantial contribution; hence we need
consider only the minimum distance d 5.

ch will use the two-dimensional nomenclature here since it
is easier to visualize. The extension to three dimensions is obvious-



Markov chain or Random Walk

Markov chain is a random walk through phase space:
S;2S, 253 2S, ...
Here “s” is the state of the system.

e The transition probability is P(s,2s,,;) a stochastic matrix:
P(s—>s')=0 ZP(S%S'):I
e In a Markov chain, the distribution of s_,; depends only on s,

(by definition).

e Letf, (s) be the probability after “"n” steps. It evolves
according to a “master equation.”

f . (s’) =2.f(s)P(s>s’) or f  ,=Pf

e The stationary states are eigenfunctions of P: P ¢=¢€¢
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Properties of Random Walk

e Because P is positive, the eigenvalues have € < 1.
An equilibrium state must have € =1.

e How many equilibrium states are there?

- If P is ergodic, then f will converge to a unique stationary
distribution. Only one eigenfunction has €=1.

e In contrast to molecular dynamics ergodicity can be
proven if:

— One can move everywhere in a finite number of steps with
non-zero probability. No barriers!

— Non-periodic transition rules (e.g. hopping on bi-partite lattice).

— Average return time is finite. (No expanding universe.)
This is guaranteed for a finite system.

e If ergodic, convergence is geometrical and monotonic.
f,(s) =n(s) + 2., E,C.0.(S)

If € < 1, then after “n” iterations, this is 0!

Hence, € = 1 in the stationary state.
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Metropolis algorithm

Three key concepts:
1. Sample by using an ergodic random walk.
2. Determine equilibrium state by using detailed balance.
3. Achieve detailed balance by using rejections.

Detailed balance: 171 (s) P(s 2> s’) =n (s’)P (s’ = s ).
Rate balance from s to s’.
Put 7 (s) into the master equation. (Or sum above Eqg. on s.)

2_1(s)P(s>s’) =n(s’)2Z P (s’ >s)=n(s’)

e Hence, r(s) is an eigenfunction of P.

e Then if P(s = s’) is ergodic, then 7 (s) is the unique steady
state solution.

e Possible to stay in same state: P(s 2s) =1-3._..P(s'>s)

5
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Rejection Method

Metropolis achieves detailed balance by rejecting moves.

General Approach:

1. Choose distribution to sample, e.qg., rn(s) = exp[-BH(s)]/Z

2. Impose detailed balance on transition: K(s=>s’) = K(s’ =>s)
where K(s=>s’) = n(s) P(s=>s’)
(probability of being at s) * (transition probability of going to s’).

3. Break up transition probability into sampling and acceptance:

P(s>s’) = T(s>s’) A(s=>s’)

(probability of generating s’ from s) * (probability of accepting move)

The optimal acceptance probability that gives detailed balance is:

T(s'—>s)m(s")

ﬂ'(S ) ]
> T(s—sY7(s)

| =min[1,7=

A(s = s')=min[l

Normalization of n(s) is not needed or used!
If T'1s constant!
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Quantum Monte Carlo

We need to go beyond classical simulations since
the microscopic world is quantum mechanical.

The methods I will describe are the simplest

generalization of classical molecular dynamics
and Monte Carlo.
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There are many types of QMC

e Lattice models: DetMC, DiagMC, Lattice Gauge MC
e Second quantized methods: FCI-QMC, AF-QMC,---.

I will only introduce continuum methods for strongly
correlated systems:

e Non-zero temperature: path integral MC
e Zero temperature: projector quantum MC
— Variational MC
— Diffusion MC

e \We can treat 10° bosons, 103 fermions.
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Imaginary Time Path Integrals

PHYSICAL REVIEW

oA journal of experimental and theoretical physics established by E. L. Nichols in 1893
SEPTEMBER 15, 1953

Steund Series, Vou. 91, No. 6

Atomic Theory of the a Transition in Helium

. R. P. FEyNMAN
Califermia Institute of Technology, Pasadena, California
(Received May 1S, 1953)

It is siown from first principles that, in spitc of the large interatomic forces, liquid He* should exhibit a
transition analogous to the transition in an ideal Bose-Einstein gas. The exact partition function is written
as an integral over trajectories, using the space-time approach to quantum mechanics. It is next argued
that the motion of vne atom through the others is not opposed by a potential barrice because the others
may move out of the way. This just increases the cffective inertia of the moving atom. This permits a
simpler form to be written for the partition function. A rough analysis of this form shows the existence of a
transition, but of the tkird ordcr. Tt is possible that a more complete analysis would show that the transiiion
impliad by the simplitied partstion iunction is actually like the experimental one.,
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Quantum Simulations

e We do Classical Monte Carlo simulations to evaluate
averages such as:

<V >= % j dRV (R)e "™ with B=1/(k,T)

e Quantum mechanically for T>0, we need both to generate
the distribution and do the average:

1
<V >= EJdR V(R)p(R;p)
p(R; 5 ) = diagonal density matrix

e Simulation is possible since the density matrix is positive.
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The thermal density matrix

Find exact many-body
eigenstates of H.

Probability of
occupying state a is

exp(-BE,)

All equilibrium
properties can be
calculated in terms of
thermal o-d density
matrix

Convolution theorem
relates high
temperature to lower
temperature.
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H¢,=E,g,
PR B) = |6, (R)| e "

Pp = e operator notation

off-diagonal density matrix:

p(R,R;B)=Y ¢, (R, (R)e

P(R,R'"; ) >0 (without statistics)
PR, R B+ ,) =

= [dR'p(R,R'; ) p(R', R;; 3,)
or with operators: e A" = g Al g Aol
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Trotter s formula (1959)

e We can use the effects of operators P = e P+

separately as long as we take small " aAM
enough time steps. p=Ilim, [e_TTe_TV}

e M is number of time slices. T=B/M

7 is the “time-step”

We now have to evaluate the density matrix for potential and
kinetic matrices by themselves:

o7 —3/2 (V742
Do by FT's <I” e’ r'> = (47[17:) e (r=r") /427
V is “diagonal” <r e’ r'> =0(r— r')e_TV(”)
E t finite n i hly: 20,
rror at finite n is roughly —T—[T,V]
e 2

Ceperley Tutorial IPAM
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Using this for the density matrix.

e We sample the distribution:

M M
_2 S(RI 9Ri+1 ;T) _z S(Rl ’Ri+1 ;T)
e = //Z  with Z = Jde...dRMe i=!

Where the “primitive” link action is:

R —-R,)’
S(RO,RI):( 04/%1) +%|:V(RO)+V(R1):|

e Similar to a classical integrand where each particle
turns into a “polymer.”

- K.E. is spring term holding the polymer together.
- P.E. is the inter-polymer potential.
e Trace implies R;=R,,,; = closed or ring polymers

Ceperley Tutorial IPAM 15



“Distinguishable” particles

Each atom is a ring
polymer; an exact
representation of a
quantum wavepacket in
imaginary time.

The dots represent the
“start” of the path (but all
points are equivalent)

The lower the real
temperature, the longer
the “string” and the more

spread out the wavepacket.

-
N

Ceperley Tutorial IPAM

10

—10

N

D = Al

L TNV

A

%

A
b

#\Kllkll

R T A

— 106 O 0
x (&)

[
-

16



Quantum statistics

For quantum many-body problems, not all states are allowed: only
totally symmetric or antisymmetric ones. Statistics are the origin of
BEC, superfluidity, the lambda transition.

Use permutation operator to project out the correct states:

Pf(R)= > 4/ (PR)

M
_ZS(Ri’RiH)

Z= i#JdRI...dRMe
P=1

Means the path closes on itself with a permutation. R,=PR,,,,

Too many permutations to sum over; we sample them.

PIMC task: sample path { R;,R,,...R,, and P} with Metropolis Monte
Carlo (MCMC) using “action”, S, to accept/reject.
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Bosonic Path Integrals

Average by
sampling over all
paths and over
connections.

Trial moves involve
reconnecting paths
differently.

At the superfluid
transition a
“macroscopic”
permutation
appears.

This is reflection of
bose condensation
within PIMC.
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“Direct” Fermion Path Integrals

M
~ > S®R;Riy)

Z= Z“) [dR,..dR e

R,=PR,, P permutation,
S(R;, R,,,) is “boltzmannon action”

e Bosons are easy: simply sample P.

e Fermions: sample the “action” and carry (-1)” as a weight.

e Observable is even P - odd P. Scales exponentially in N and T-'!
e THIS IS THE SIGN PROBLEM

CPUtlme oc 8_2 2N[F,—Fz/kgT

£ = statistical error

F= free energy
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First Major QMC Calculation

PhD thesis of W. McMillan (1964) University of Illinois.
Variational Monte Carlo calculation of ground state of liquid “He.
Applied MC techniques from classical liquid theory.

Ceperley, Chester and Kalos (1976) generalized to fermions.

PHYSICAL REVIIW VOLUME 133, NUMBER 24 1Y V2RIL 1763

Ground State of Liquid He't

W. L. McMiLLan®
Department of Physics, University of [limoss, 'rbana, [Uinois
(Received 16 November 1964)

The properties of the ground state of liquid Het are studied using a variational wave function of the form
IL;i¢;/(r;,). The Lennard-Jones 12-6 potential is used with parameters determined from the gas data by
deBoer and Michiels. The configuration space integrals are performed by a Monte Carlo technique for 32
and 108 atoms in a cube with periodic boundary conditions. With f(r) =exp[— (2.6 §,7)%], the ground-
state energy is found to be —0.78 X 107!® ergs/atom, which is 20C; above the experimental value. The liquid
structure factor and the two-particle correlation function are in reasonably good agreement with the x-ray
and neutron scattering experiments.
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Variational Monte Carlo (VMC)

Variational Principle. Given an appropriate

trial function: J dR <W ‘H ‘ W>

— Continuous v = > E 0

— Proper symmetry J dR <Wl//>

— Normalizable 5

— Finite variance > J‘dR <l// ‘H ‘ l//> >
Quantum chemistry uses a product of single o = -E V
particle functions, e.g. Hartree-Fock de <WW>
With MC we can use any “computable”
function.

— Sample R from |y]?> using MCMC. EL (R) =N I:W_l (R)HW(R):I

— Take average of local energy:

— Optimize y to get the best upper bound Lk V= <E L (R)>W2 = 0

Better wavefunction, lower variance! “Zero
variance” principle. (non-classical)
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Jastrow trial function for liquid “He

Whenever 2 atoms get close together
wavefunction should vanish. _ —u(ry)
The function u(r) is similar to W(R) N H €

classical potential. The Jastrow i<J
. . 2 o)
Local energy has the form: E‘// (R) — Z V(r;.j) 2V u(rij) . 2’2 Gi
i<j i

We want finite variance of the local Gi = 2 Vl'u(rij)
energy.

If v(r) diverges as r® how should u(r)
diverge? Assume:

U(r)=oar™
Gives a cusp condition on u and
value of m.
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Fermions: antisymmetric trial function

At mean field level the
wavefunction i1s a Slater
determinant.

Orbitals for homogenous systems
are a filled set of plane waves.

We can compute this energy
analytically (HF).

To include correlation we
multiply by Jastrow. We need MC
to evaluate properties.

New feature: how to compute the
derivatives of a deteminant and
sample the determinant. Use
tricks from linear algebra.

Reduces complexity to O(N?).

Y (R)= Det{eikirjni (O'j )}

PBC: k-L=27nn+{6}

L T 2uy)
¥, (R) = Det{e""}e

Slater-Jastrow trial function.

det(g. (1)) = det(0, (r,)) 20 (1) 1
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Dependence of energy on wavefunction

3d Electron fluid at a density r,=10
Kwon, Ceperley, Martin, Phys. Rev. B58,6800, 1998

Wavefunctions -0.107
— Slater-Jastrow (SJ) _—
— three-body (3) w

— backflow (BF)

Energy <y |H| y> converges to groun
state

Variance <y [H-E]?y> to zero.
Using 3B-BF gains a factor of 4.
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Advantages and problems with
variational methods

e Powerful method since you

. : e Optimization is time consuming
can use any trial function

e Energy is insensitive to order

e Scaling (computational parameter
efforF vs. size) is almost e Non-energetic properties are
classical less accurate. O(1) vs. O(2) for
e Learn directly about what energy.
works in wavefunctions e Difficult to find out how

accurate results are.

e Favors simple states over more
complicated states, e.g.

- Solid over liquid
— Polarized over unpolarized

e No sign problem

What goes nto the trial wave function comes out!
We need a more automatic method!

Projector Monte Carlo  OR ~ machine learning techniques
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Projector Monte Carlo

*Originally suggested by Fermi and implemented in 1950 by

Donsker and Kac for H atom.

*Practical methods and applications developed by Kalos:

PHYSICAL REVIEW A VOLUME 9, NUMBER 5§ MAY 1974

Helium at zero temperature with hard-sphere and other forces

M. H. Kalos*
Courant Institute of Mathematical Sciences, New Yark Untversity, New York, New York 10012

D. Levesque and L. Verlet :
Laboratoirve de Physique Théorique et Hautes Energies, Orsay, France
(Received 22 August 1973)

Various theoretical and numerical problems relating to heliumlike systems in thelr ground
states are treated, New developments in the numerical solution of the Schrodinger equation
permit the solution of 256-body systems with hard-sphere forces, Using periodic boundary
conditions, fluid and crystal states can be described; results for the energy and radial-dis-
tribution functions are given. A new method of correcting for low=lying phonon excitations
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Diffusion Monte Carlo (DMC)

Expand into exact
eigenstates of H.

Then the evolution is
simple in this basis.

Long time limit is
lowest energy state
that overlaps with the
initial state, usually
the ground state.

How to carry out on
the computer?

Ceperley Tutorial IPAM

w(R,t)=e """y (R,0)
H¢0{ — EO(¢0(
w(R,0)=Y6,(R){a,|w(0))

w(R,1)=Y @, (R)e" " (¢, |yp(0))

lim, . W(R,1) = ¢,(R)e" ™ (¢, |y(0))

E, = E,. = normalization fixed
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Monte Carlo process

e Now consider the variable “t” as a
continuous time (it is really
imaginary time).

e Take derivative with respect to time _81//(R,t) =(H-E,)W(R,t)

to get evolution. ot
e This is a diffusion + branching 5
process. _ 2
e Justify in terms of Trotter’s formyla. H = z 2m,Vi +V(R)
Requires interpretation of the (oW (R,1) h’
wavefunction as a probability — = —2_ fW(RJ)
density. ) ot ~2m.
But is it? Only in the boson ground — al/j(R’t) =(V(R)- ET)W(RJ)

state. Otherwise there are nodes. ~ ot
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Basic DMC algorithm

Construct an ensemble (population P(0)) sampled from
the trial wavefunction. {R;,R, ,Rp}

Go through ensemble and diffuse each one (timestep 1)
R' =R ++ 2A7{ (t) ~— Normal random #

Uniform random #

—o(V(R)-Ey) +y ?ﬂoor function

number of copies= €
Trial energy E; adjusted to keep population fixed.

j dRHG(R,?)
7 [dRg(R,1)

E, =lim ~(V(R))

9(=)
Problems:
— Branching is uncontrolled

— Population unstable
— What do we do about fermi statistics?
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Importance Sampling

Kalos 1970, Ceperley 1979

e Why should we sample the wavefunction? The physically
correct pdfis |y]?2.

e Importance sample (multiply) by trial wave function.

J(R) =y (R)G(R, 1) lim,_ f(R,1) =y, (R)@(R)

R
_ af(at’t) =y, (R)H[f(R,t)/l//T (R)] Commute y through H
Jof (R, 1 -
_ f(at ):_,sz—zV(szlan(R)H(wT 1HWT)f(R,t)
Evolution = diffusion + drift + branching

We have three terms in the evolution equation. Trotter’s
formula still applies.
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Fermions in DMC

e How can we do fermion simulations? The initial condition can
be made real but not positive (for more than 1 electron in the
same spin state)

e In transient estimate or released-node methods one carries
along the sign as a weight and samples the modulus.

#(1) =& " sign(g(R, 0)) | 4(R,0) |

e Do not forbid crossing of the nodes, but carry along sign when
walks cross.

e What's wrong with node release:

— Because walks don't die at the nodes, the computational
effort increases (bosonic noise)

— The signal/noise ratio goes to zero exponentially in t.
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General statement of the
“fermion problem”

e Given a system with N fermions and a known
Hamiltonian and a property O. (usually the energy).

e How much time T will it take to estimate O to an
accuracy €?How does T scale with N and €?

e If you can map the quantum system onto an equivalent
problem in classical statistical mechanics then:

T < N%™ With 0 <o < 4
This would be a “solved” quantum problem!

*All approximations must be controlled!
*Algebraic scaling in N!

¢.g. properties of Boltzmann or Bose systems in equilibrium.
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Fixed-node DMC

e Initial distribution from VMC. f(R,0)=|w; (R
e Impose the fixed-node BC. #(R)=0 when w,(R)=0.

o Will give the best upper

bound to the exact energy Epy 2 E,

E,, =E, if ¢,(R)W(R)=0 all R

of(R,t) has a discontinuous gradient at the nodal location.
eAccurate method because Bose correlations are done exactly.
eScales well, like the VMC method, as N3. Classical complexity.

eCan be generalized from the continuum to lattice, finite
temperature, magnetic fields, ...

eOne needs trial functions with accurate nodes.

Ceperley Tutorial IPAM 77



Dependence of energy on wavefunction

3d Electron fluid at a density r,=10

Kwon, Ceperley, Martin, Phys. Rev. B58,6800, 1998

Wavefunctions -0.107
— Slater-Jastrow (SJ) _ ]
— three-body (3) w
— backflow (BF) 2
— fixed-node (FN) \w
Energy <y |H| yv> converges to g 01085 -
state
Variance <y [H-E]?y> to zero. 0,100 E
Using 3B-BF gains a factor of 4.

Using DMC gains a factor of 4.
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Summary of T=0 methods:

Variational(VMC), Fixed-node(FN), Released-node(RN)

1.E+01

1.E+00 -

1.E-01 -

1.E-02 -

/'

Better trial function
1.E-03+4+ T

1LE-04 - applications

I.E'OS I I I I T T
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

error (au)

computer time (sec)
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Richard M. Martin, Lucia Reining, and David M. Ceperley

e Methods of classical simulation carry -
over to quantum simulation. InteraCtlng

e BUT they are only exact for Electrons
thermodynamic properties Of some Theory and Computational Approaches
quantum systems because of the
sign problem.

e Otherwise they are variational

e See Interacting Electrons
(Cambridge) Chapters 22-25 for
details and examples:
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