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Random Walks 
 

•  It difficult to directly sample the Boltzmann distribution for 
many particles . 
-  If we sample from another distribution, the overlap will be 

order exp(-aN), where N is the number of variables. The 
error bars will get exponentially larger as N increases. 

•  Markov chains  (random walks), detailed balance and 
transition rules. 
–  This method was introduced by Metropolis et al. in 1953 who 

applied it to a hard sphere liquid. 
–  It is one of the most powerful and used algorithms in all of 

computer science. 
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Markov chain or Random Walk 
•  Markov chain is a random walk through phase space:  

s1!s2 !s3 !s4 !… 
Here “s” is the state of the system. 
 

•  The transition probability is P(sn!sn+1)  a stochastic matrix: 

•  In a Markov chain, the distribution of sn+1 depends only on sn 
(by definition).  

•  Let fn(s) be the probability after “n” steps. It evolves 
according to a “master equation.” 

  fn+1(s’)  = Σs fn(s) P(s! s’)   or   fn+1 =P fn 
 
•  The stationary states are eigenfunctions of P:   P φ=ε φ

  
P(s→ s ') ≥ 0        P(s→ s ') = 1

s'
∑
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•  Because P is positive, the eigenvalues have ε ≤ 1.  
An equilibrium state must have ε =1. 
 

•  How many equilibrium states are there? 
–  If P is ergodic, then f will converge to a unique stationary 

distribution. Only one eigenfunction has  ε=1. 
 

•  In contrast to molecular dynamics ergodicity can be 
proven if: 
–  One can move everywhere in a finite number of steps with 

non-zero probability. No barriers! 
–  Non-periodic transition rules (e.g. hopping on bi-partite lattice). 
–  Average return time is finite. (No expanding universe.)   

This is guaranteed for a finite system. 
 

•  If ergodic, convergence is geometrical and monotonic. 

  fn(s) = π(s)  + Σk εnkckφk(s)  
If ε < 1, then after “n” iterations, this is 0! 
Hence, ε = 1 in the stationary state. 

Properties of  Random Walk 
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Metropolis algorithm 

Detailed balance: π (s) P(s ! s’) = π (s’)P (s’ ! s ). 
           Rate balance from s to s’. 

Put π (s) into the master equation. (Or sum above Eq. on s.) 
 

  Σs π (s) P(s ! s’)  = π (s’) Σs P (s’ ! s) = π (s’)  
 

•  Hence,  π(s) is an eigenfunction of P. 
•  Then if P(s ! s’) is ergodic, then π (s) is the unique steady 

state solution. 
•  Possible to stay in same state: P(s ! s) = 1 – Σs’≠s P (s‘! s) 

Three key concepts: 
1.  Sample by using an ergodic random walk. 
2.  Determine equilibrium state by using detailed balance. 
3.  Achieve detailed balance by using rejections. 
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Rejection Method 
Metropolis achieves detailed balance by rejecting moves. 
     General Approach:   
    1. Choose distribution to sample, e.g.,      π(s) = exp[–βH(s)]/Z 
    2. Impose detailed balance on transition: K(s!s’) = K(s’!s) 
     where K(s!s’) = π(s) P(s!s’)      
      (probability of being at s) * (transition probability of going to s’). 
    3. Break up transition probability into sampling and acceptance: 

  P(s!s’) = T(s!s’) A(s!s’) 
           (probability of generating s’ from s) * (probability of accepting move) 

The optimal acceptance probability that gives detailed balance is: 

Normalization of π(s) is not needed or used! 

A(s→ s ') =min[1, T (s '→s)π (s ')
T (s→s ')π (s) ]=min[1,

π (s ')
π (s) ]

If T is constant! 
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We need to go beyond classical simulations since 
the microscopic world is quantum mechanical. 

 
The methods I will describe are the simplest 

generalization of classical molecular dynamics 
and Monte Carlo. 

 



There are many types of QMC 
•  Lattice models: DetMC, DiagMC, Lattice Gauge MC 
•  Second quantized methods: FCI-QMC, AF-QMC,…. 

I will only introduce continuum methods for strongly 
correlated systems: 
 
•  Non-zero temperature: path integral MC 
•  Zero temperature: projector quantum MC 

–  Variational MC 
–  Diffusion MC 

•  We can treat 105 bosons, 103 fermions. 
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Imaginary Time Path Integrals 
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Quantum Simulations 
•  We do Classical Monte Carlo simulations to evaluate 

averages such as: 

•  Quantum mechanically for T>0, we need both to generate 
the distribution and do the average: 

•  Simulation is possible since the density matrix is positive. 

  
<V >= 1

Z
dRV (R)e−βV ( R)∫ with β = 1/ (kBT )

  

<V >= 1
Z

dR V (R)ρ R;β( )∫
ρ R;β( ) = diagonal density matrix
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The thermal density matrix 
 
•  Find exact many-body 

eigenstates of H. 
•  Probability of 

occupying state α is 
exp(-βEα) 

•  All equilibrium 
properties can be 
calculated in terms of 
thermal o-d density 
matrix  

•  Convolution theorem 
relates high 
temperature to lower 
temperature. 

2
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Trotter’s formula (1959) 

•  We can use the effects of operators  
separately as long as we take small  
enough time steps. 
 
•  M is number of time slices. 
•  τ  is the “time-step” 

•  We now have to evaluate the density matrix for potential and 
kinetic matrices by themselves: 

•  Do by FT’s 

•  V is “diagonal” 

•  Error at finite n is roughly: 
  

   

ρ̂ = e−β (T!+V! )

ρ̂ = lim M→∞ e−τ T!e−τV!⎡
⎣

⎤
⎦

M

τ = β / M

   

r e−τ T! r ' = 4πλτ( )−3/2
e− r−r '( )2 /4λτ

r e−τ V! r ' = δ (r − r ')e−τV (r )

2
ˆ ˆ,

2
T V

e
τ ⎡ ⎤− ⎣ ⎦
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•  We sample the distribution: 

 
Where the “primitive” link action is: 

•  Similar to a classical integrand where each particle 
turns into a “polymer.”  
–  K.E. is spring term holding the polymer together. 
–  P.E. is the inter-polymer potential. 

•  Trace implies R1=Rm+1  ð closed or ring polymers 

  e
− S(Ri ,Ri+1 ;τ )

i=1

M

∑
/ Z   with   Z = dR

1∫ ...dR
M
e
− S(Ri ,Ri+1 ;τ )

i=1

M

∑

 
S(R0,R1) =

(R0 − R1)2

4λτ
+ τ2 V(R0 )+ V(R1)⎡⎣ ⎤⎦

Using this for the density matrix. 
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“Distinguishable” particles 
•  Each atom is a ring 

polymer; an exact 
representation of a 
quantum wavepacket in 
imaginary time. 

•  The dots represent the 
“start” of the path (but all 
points are equivalent) 

•  The lower the real 
temperature, the longer 
the “string” and the more 
spread out the wavepacket. 
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Quantum statistics 

•  For quantum many-body problems, not all states are allowed: only 
totally symmetric or antisymmetric ones. Statistics are the origin of 
BEC, superfluidity, the lambda transition. 

•  Use permutation operator to project out the correct states: 

 
 
 
 
 
 
•  Means the path closes on itself with a permutation. R1=PRM+1 
•  Too many permutations to sum over; we sample them. 
•  PIMC task: sample path { R1,R2,…RM and P} with Metropolis Monte 

Carlo (MCMC) using “action”, S,  to accept/reject.   

   

P! f (R) = 1
N !

P=1

N!

∑ f (PR)

Z = 1
N !

P=1

N!

∑ dR1∫ ...dR Me
− S(Ri ,Ri+1)

i=1

M

∑
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Bosonic Path Integrals 
•  Average by 

sampling over all 
paths and over 
connections. 

•  Trial moves involve 
reconnecting paths 
differently. 

•  At the superfluid 
transition a 
“macroscopic” 
permutation 
appears. 

•  This is reflection of 
bose condensation 
within PIMC. 
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“Direct” Fermion Path Integrals 
 
 
 
 
R0=PRM,  P permutation, 
S(Ri, Ri+1) is “boltzmannon action”  
 
•  Bosons are easy: simply sample P. 
•  Fermions: sample the “action” and carry (-1)P   as a weight. 
•  Observable is even P - odd P.  Scales exponentially in N and T-1! 
•  THIS IS THE SIGN PROBLEM 

  

CPUtime ∝ε−2e2N[FF −FB ]/kBT

ε =  statistical error
F= free energy

i i 1P
1

N! S(R ,R )
( 1)

1 M!
p 1

Z dR ...dR

M

i
N e

+
=

−
−

=

∑
=∑ ∫
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First Major QMC Calculation 
•  PhD thesis of W. McMillan (1964) University of Illinois. 
•  Variational Monte Carlo calculation of ground state of liquid 4He. 
•  Applied MC techniques from classical liquid theory. 
•  Ceperley, Chester and Kalos (1976) generalized to fermions. 
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Variational Monte Carlo (VMC) 

•  Variational Principle. Given an appropriate 
trial function: 
–  Continuous 
–  Proper symmetry 
–  Normalizable 
–  Finite variance 

•  Quantum chemistry uses a product of single 
particle functions, e.g. Hartree-Fock 

•  With MC we can use any “computable” 
function. 

–  Sample  R from |ψ|2 using MCMC. 
–  Take average of local energy: 
–  Optimize ψ  to get the best upper bound   

•  Better wavefunction, lower variance! “Zero 
variance” principle. (non-classical)  

ψ ψ

ψψ

ψ ψ
σ

ψψ
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∫
∫

∫
∫
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Jastrow trial function for  liquid 4He 
•  Whenever 2 atoms get close together 

wavefunction should vanish. 
•  The function u(r) is similar to 

classical potential. The Jastrow 
•  Local energy has the form: 

•  We want finite variance of the local 
energy. 

 If v(r) diverges as r-n how should u(r) 
diverge?  Assume: 
  U(r)=αr-m 

 Gives a cusp condition on u and 
value of m. 
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Fermions: antisymmetric trial function 
•  At mean field level the 

wavefunction is a Slater 
determinant. 

•   Orbitals for homogenous systems 
are a filled set of plane waves. 

•  We can compute this energy 
analytically (HF). 

•  To include correlation we 
multiply by Jastrow. We need MC 
to evaluate properties. 

•  New feature: how to compute the 
derivatives of a deteminant and 
sample the determinant. Use 
tricks from linear algebra. 

•  Reduces complexity to O(N2). 
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Dependence of energy on wavefunction 

 3d Electron fluid at a density rs=10 

    Kwon, Ceperley, Martin, Phys. Rev. B58,6800, 1998 

•  Wavefunctions 
–  Slater-Jastrow (SJ) 
–  three-body (3) 
–  backflow (BF) 

•  Energy <ψ |H| ψ> converges to ground 
state 

•  Variance <ψ [H-E]2ψ> to zero. 
•  Using 3B-BF gains a factor of 4. 
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Advantages and problems with 
variational methods 

•  Powerful method since you 
can use any trial function 

•  Scaling (computational 
effort vs. size) is almost 
classical 

•  Learn directly about what 
works in wavefunctions 

•  No sign problem 

•  Optimization is time consuming 
•  Energy is insensitive to order 

parameter 
•  Non-energetic properties are 

less accurate. O(1) vs. O(2) for 
energy. 

•  Difficult to find out how 
accurate results are. 

•  Favors simple states over more 
complicated states, e.g. 
–  Solid over liquid 
–  Polarized over unpolarized 

What goes into the trial wave function comes out!  

We need a more automatic method!  

Projector Monte Carlo    OR       machine learning techniques 
60 
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Projector Monte Carlo 
• Originally suggested by Fermi and implemented in 1950 by 
Donsker and Kac for H atom. 

• Practical methods and applications developed by Kalos: 

61 
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Diffusion Monte Carlo (DMC) 

•  Expand into exact 
eigenstates of H. 

•  Then the evolution is 
simple in this basis. 

•  Long time limit is 
lowest energy state 
that overlaps with the 
initial state, usually 
the ground state. 

•  How to carry out on 
the computer? 
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Monte Carlo process 
•  Now consider the variable “t” as a 

continuous time (it is really 
imaginary time). 

•  Take derivative with respect to time 
to get evolution. 

•  This is a diffusion + branching 
process. 

•  Justify in terms of Trotter’s formula. 

Requires interpretation of the 
wavefunction as a probability 
density. 

 
But is it?  Only in the boson ground 

state. Otherwise there are nodes.  

( , ) ( ) ( , )T
R t H E R t
t

ψ ψ∂− = −
∂

   

H = − !2

2mii
∑ ∇i

2 +V (R)

− ∂ψ (R,t)
∂t

= − !2

2mii
∑ ∇i

2ψ (R,t)

− ∂ψ (R,t)
∂t

= (V (R)− ET )ψ (R,t)
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Basic DMC algorithm 
•  Construct an ensemble (population P(0)) sampled from 

the trial wavefunction. {R1,R2,…,RP} 
•  Go through ensemble and diffuse each one (timestep τ) 

•  number of copies= 
•  Trial energy ET adjusted to keep population fixed. 

 

•  Problems: 
–  Branching is uncontrolled 
–  Population unstable 
–  What do we do about fermi statistics? 

Normal random # 
Uniform random # 
floor function 

' 2 ( )k kR R tλτζ= +
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∫
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Importance Sampling 
Kalos 1970, Ceperley 1979 

•  Why should we sample the wavefunction? The physically 
correct pdf is |ψ|2. 

•  Importance sample (multiply) by trial wave function. 

 
Evolution = diffusion    + drift         +         branching 
 
We have three terms in the evolution equation. Trotter’s 
formula still applies. 
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Fermions in DMC 
•  How can we do fermion simulations?  The initial condition can 

be made real but not positive (for more than 1 electron in the 
same spin state) 

•  In transient estimate or released-node methods one carries 
along the sign as a weight and samples the modulus. 

•  Do not forbid crossing of the nodes, but carry along sign when 
walks cross. 

•  What’s wrong with node release: 
–  Because walks don’t die at the nodes, the computational 

effort increases (bosonic noise) 
–  The signal/noise ratio goes to zero exponentially in t. 

ˆ(H E )t( ) sign( ( ,0)) | ( ,0) |Tt e R Rφ φ φ− −=
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General statement of the  
“fermion problem” 

•  Given a system with N fermions and a known 
Hamiltonian and a property O. (usually the energy). 

•  How much time T will it take to estimate O to an 
accuracy ε? How does T scale with N and ε? 

•  If you can map the quantum system onto an equivalent 
problem in classical statistical mechanics then: 

2NT −∝ εα With 0 <α < 4  
This would be a “solved” quantum problem! 
• All approximations must be controlled!  
• Algebraic scaling in N! 
e.g.  properties of Boltzmann or Bose systems in equilibrium. 
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Fixed-node DMC 

•  Initial  distribution from  VMC. 
 
•  Impose the fixed-node BC. 

•  Will give the best upper 
bound to the exact energy 
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• f(R,t) has a discontinuous gradient at the nodal location. 
• Accurate method because Bose correlations are done exactly.  
• Scales well, like the VMC method, as N3. Classical complexity. 
• Can be generalized from the continuum to lattice, finite 
temperature, magnetic fields, … 
• One needs trial functions with accurate nodes. 
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Dependence of energy on wavefunction 

 3d Electron fluid at a density rs=10 

    Kwon, Ceperley, Martin, Phys. Rev. B58,6800, 1998 

•  Wavefunctions 
–  Slater-Jastrow (SJ) 
–  three-body (3) 
–  backflow (BF) 
–  fixed-node (FN) 

•  Energy <ψ |H| ψ> converges to ground 
state 

•  Variance <ψ [H-E]2ψ> to zero. 
•  Using 3B-BF gains a factor of 4. 
•  Using DMC gains a factor of 4. 

-0.109

-0.1085

-0.108

-0.1075

-0.107

0 0.05 0.1

Variance
En
er
gy

FN -SJ 

FN-BF 



Ceperley Tutorial IPAM 

Summary of  T=0 methods: 
 

Variational(VMC), Fixed-node(FN), Released-node(RN) 
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•  Methods of classical simulation carry 
over to quantum simulation.  

•  BUT they are only exact for 
thermodynamic properties of some 
quantum systems because of the 
sign problem. 

•  Otherwise they are variational 
•  See Interacting Electrons 

(Cambridge) Chapters 22-25 for 
details and examples: 


