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Outline

• HF theory and MB theory

• DFT 

• Advanced issues in DFT

• Jianfeng Lu: Math behind HF/DFT (Tu 11)
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Basic problem

• Non-relativistic
• Born-Oppenheimer approximation
• No external B field
• First principles
• Ab initio?
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Basic Electronic Structure Problem

• Just want E(R), mostly (fixed nuclei, electrons in 
ground state):
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DFT in a Nutshell
Kieron Burke[a,b] and Lucas O. Wagner*[a,b]

The purpose of this short essay is to introduce students and

other newcomers to the basic ideas and uses of modern

electronic density functional theory, including what kinds of

approximations are in current use, and how well they work (or

not). The complete newcomer should find it orients them well,

while even longtime users and aficionados might find

something new outside their area. Important questions

varying in difficulty and effort are posed in the text, and are

answered in the Supporting Information. VC 2012 Wiley

Periodicals, Inc.

DOI: 10.1002/qua.24259

Electronic Structure Problem

For the present purposes, we define the modern electronic struc-

ture problem as finding the ground-state energy of nonrelativistic

electrons for arbitrary positions of nuclei within the Born-Oppen-

heimer approximation.[1] If this can be done sufficiently accurately

and rapidly on a modern computer, many properties can be pre-

dicted, such as bond energies and bond lengths of molecules,

and lattice structures and parameters of solids.

Consider a diatomic molecule, whose binding energy curve

is illustrated in Figure 1. The binding energy is given by

EbindðRÞ ¼ E0ðRÞ þ
ZA ZB
R

% EA % EB (1)

where E0(R) is the ground-state energy of the electrons with

nuclei separated by R, and EA and ZA are the atomic energy

and charge of atom A and similarly for B. The minimum tells us

the bond length (R0) and the well-depth (De), corrected by

zero-point energy (!hx=2), gives us the dissociation energy (D0).

The Hamiltonian for the N electrons is

Ĥ ¼ T̂ þ V̂ee þ V̂; (2)

where the kinetic energy operator is

T̂ ¼ % 1

2

XN

j¼1

r2
j ; (3)

the electron–electron repulsion operator is

V̂ee ¼
1

2

X

i 6¼j

1

jri % rjj
; (4)

and the one-body operator is

V̂ ¼
XN

j¼1

vðrjÞ: (5)

For instance, in a diatomic molecule, v(r) ¼ %ZA/r % ZB/|r % R|.

We use atomic units unless otherwise stated, setting

e2 ¼ !h ¼ me ¼ 1, so energies are in Hartrees (1 Ha ¼ 27.2 eV

or 628 kcal/mol) and distances in Bohr radii (1 a0 ¼ 0.529 Å).

The ground-state energy satisfies the variational principle:

E ¼ min
W

hWjĤjWi; (6)

where the minimization is over all antisymmetric N-particle

wavefunctions. This E was called E0(R) in Eq. (1).*

Many traditional approaches to solving this difficult many-

body problem begin with the Hartree–Fock (HF) approxima-

tion, in which W is approximated by a single Slater determi-

nant (an antisymmetrized product) of orbitals (single-particle

wavefunctions)[2] and the energy is minimized.[3] These include

configuration interaction, coupled cluster, and Møller-Plesset

perturbation theory, and are mostly used for finite systems,

such as molecules in the gas phase.[4] Other approaches use

reduced descriptions, such as the density matrix or Green’s

function, but leading to an infinite set of coupled equations

that must somehow be truncated, and these are more com-

mon in applications to solids.[5]

More accurate methods usually require more sophisti-

cated calculation, which takes longer on a computer. Thus,

there is a compelling need to solve ground-state electronic

structure problems reasonably accurately, but with a cost in

Figure 1. Generic binding energy curve. For N2, values for R0 and De are
given in Table 1. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

[a, b] K. Burke, L. O. Wagner
Department of Chemistry, University of California, Irvine, California 92697
Department of Physics, University of California, Irvine, California 92697
E-mail: lwagner@uci.edu

*Explain why a vibrational frequency is a property of the ground-state of the
electrons in a molecule.

VC 2012 Wiley Periodicals, Inc.
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Dominance of ground-state energy

• Determines which molecules and solids exist 
and many of their most basic properties

• Bond lengths / lattice parameters
• Vibrational frequencies / phonons
• Reaction rates via transition-state barriers
• Vital in chemistry, increasingly so in  materials
• Often care more about response properties in 

physics
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.Mathematical form of problem
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Hamiltonian

Hamiltonian for N electrons in the presence of external potential v(r):
Ĥ = T̂ + V̂ee + V̂ ,

where the kinetic and elec-elec repulsion energies are

T̂ = ≠1
2

Nÿ

i=1

Ò2

i , V̂ee =
1
2

Nÿ

i=1

Nÿ

j ”=i

1
|ri ≠ rj |

,

and di�erence between systems is N and the one-body potential

V̂ =
Nÿ

i=1

v(ri)

Often v(r) is electron-nucleus attraction

v(r) = ≠
ÿ

–

Z–

|r ≠ R–|

where – runs over all nuclei, plus weak applied E and B fields.
Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 7 / 39

Schrödinger equation

6N-dimensional Schrödinger equation for stationary states

{T̂ + V̂ee + V̂ } = E  ,  antisym

The one-particle density is much simpler than  :

n(r) = N

ÿ

‡1

. . .
ÿ

‡N

⁄
d

3
r2 . . . d

3
rN | (r‡1, r2‡2, . . . , rN‡N)|2

and n(r) d
3
r gives probability of finding any electron in d

3
r around r.

Wavefunction variational principle:
I E [ ] © È |Ĥ| Í is a functional

I Extrema of E [ ] are stationary states, and ground-state energy is

E = min
 

È |T̂ + V̂ee + V̂ | Í

where  is normalized and antisym.
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.Hartree-Fock approximation

• Assume wavefunction is a single Slater 
determinant of occupied orbitals: satisfies 
Pauli exclusion

• Minimize energy with orthonormal orbitalss
• Yields HF equations for those orbitals
• Solve self-consistently
• Rebuild interacting energy from orbitals and 

eigenvalues
• Names:

– HF theory, HF equations
– Self-consistent field theory (SCF)
– Molecular orbital theory
– HOMO, LUMO, frontier orbitals

Kieron Burke Tutorial:HF and DFT 7



HF energy function
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30 CHAPTER 5. MANY ELECTRONS

Note that the factor of 2 in the electron-electron repulsion is due to the sum
running over all distinct pairs, e.g., including (1,2) and (2,1), whereas each should
be counted only once. The Schrödinger equation is then

(

T̂ + V̂ee + V̂
)

Ψ(x1, . . . , xN ) = EΨ(x1, . . . , xN ). (5.10)

The ground-state energy can be extracted from the variational principle:

E = min
Ψ

〈Ψ| {T̂ + V̂ee + V̂ } |Ψ〉, (5.11)

once the minimization is performed over all normalized antisymmetic wavefunc-
tions. At the minimum, the wavefunction is the ground-state wavefunction (or is
a ground-state wavefunction in a degenerate case) of our problem.

5.2 Hartree-Fock

05NX.121030:

In the special case of non-interacting particles, we denote the wavefunction by
Φ instead of Ψ, and this will usually be a single Slater determinant of occupied
orbitals, i.e.,

Φ(x1, . . . , xN ) =

∣

∣

∣

∣

∣

∣

∣

φ1(x1) · · · φN (x1)
...

...
φ1(xN ) · · · φN (xN )

∣

∣

∣

∣

∣

∣

∣

(5.12)

For systems with equal numbers of up and down particles in a spin-independent
external potential, the full orbitals can be written as a product, φi(x) = φi(r)|σ〉,
and each spatial orbital appears twice. The Hartree-Fock energy is then

E = min
Φ

〈Φ| {T̂ + V̂ee + V̂ } |Φ〉, (5.13)

and at the minimum, the Slater determinant is the HF wavefunction. The first
contribution is just the non-interacting kinetic energy of the many orbitals, and
the last is their one-body potential energy.

It is straightforward to show that a one-body operator acts on each orbital re-
peatedly, when the wavefunction is a Slater determinant of orbitals. For example:

〈Φ| T̂ |Φ〉 =
N
∑

i=1

〈φi| t̂ |φi〉 (5.14)

because of the antisymmetric nature of the Slater determinant. Similarly,

〈Φ| V̂ |Φ〉 =
N
∑

i=1

〈φi| v̂ |φi〉, (5.15)

If we think of the operator for the density, we can write it as

n(r) =
N
∑

i=1

δ(3)(r− ri), (5.16)

and using the same rules, we see that

n(r) =
∑

σ

N
∑

i=1

|φi,σ(r)|2 (5.17)

for any single Slater determinant. On the other hand, the Coulomb repulsion is
a two-body operator, which means it has non-zero contributions from pairs of
orbitals. If we write

V̂ee =
1

2

N
∑

i,j !=i

vee(ri − rj) (5.18)

we find

〈Φ| V̂ee |Φ〉 =
1

2

N
∑

i!=j,k !=l

〈φi,φk| v̂ee |φj ,φl〉, (5.19)

where the bra’s and ket’s now contain a double integral over the two arguments
of vee. The sum vanishes unless either j = i and l = k, called a direct term,
or j = k and l = i, called an exchange term, which contributes with a negative
sign. However, since these two terms exactly cancel when all four indices match,
we can drop the $= restriction in the sums. The direct term contains a product
of |φi(r)|2 and φj(r)|2 and is the Hartree energy:

U [Φ] =
1

2

∫

d3r

∫

d3r′
n(r)n(r′)

|r− r′|
. (5.20)

This is also called the direct or Coulomb or electrostatic or classical or Hartree
contribution, with the density being the sum of the squares of the occupied or-
bitals. This is the electrostatic energy of the charge density in electromagnetic
theory, ignoring its quantum origin. The second is the Fock or exchange integral,
being

EX[φi] = −
1

2

∑

σ

∑

i,j
occ

∫

d3r

∫

d3r ′ φ
∗
iσ(r) φ

∗
jσ(r

′) φiσ(r′) φjσ(r)

|r− r′|
(5.21)



HF equations
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5.3. CORRELATION 31

for a determinant of doubly-occupied orbitals. This is a purely Pauli-exclusion
principle effect.

Exercise 22 Exchange energies for one and two electrons

1. Show that when N = 1, the usual wavefunction can be seen as a 1×1 Slater
determinant, and EX = −U .

2. Show that, for N = 2 and a spin singlet, the HF wavefunction is a doubly
occupied orbital, and that EX = −U/2.

To find the orbitals in Hartree-Fock, we must minimize the energy as a functional
of each orbital φi(r), subject to the constraint of orthonormal orbitals. Doing
this, using the techniques of chapter 2 yields the Hartree-Fock equations

(

−
1

2
∇2 + v(r) + vH(r)

)

φi(r) + fF,i[{φi}](r) = εi φ(r) (5.22)

where the last contribution to the potential is due to the Fock operator, and is
defined by

fF,i[{φi}](r) = −
N
∑

j

∫

d3r′
φ∗
j (r

′)φi(r′)

|r− r′|
φj(r). (5.23)

Note that this odd-looking animal is orbital-dependent, i.e., it is a different func-
tion of r for each occupied orbital. Also, for just one electron, the Hartree and
Fock terms in the potential cancel, as they should. In order to discuss the pro’s
and con’s of HF calculations, we must first discuss the errors it makes.

5.3 Correlation

05C.121130:

The definition of correlation energy remains the same for N electrons as for
two: It is the error made by a Hartree-Fock calculation. Table 5.3 lists a few
correlation energies for atoms. We see that correlation energies are a very small
(but utterly vital) fraction of the total energy of systems. They are usually about
20-40 mH/electron, a result we will derive later.

But we strive for chemical accuracy in our approximate solutions, i.e., errors of
less than 2 mH per bond. Another important point to note is that in fact, we

atom Z EHF E EC

H 1 -0.5 -0.5 0
He 2 -2.862 -2.904 -0.042
Li 3 -7.433 -7.478 -0.045
Be 4 -14.573 -14.667 -0.094
B 5 -24.529 -24.654 -0.125
C 6 -37.689 -37.845 -0.156
N 7 -54.401 -54.589 -0.188
O 8 -74.809 -75.067 -0.258
F 9 -99.409 -99.733 -0.324
Ne 10 -128.547 -128.937 -0.390
Na 11 -161.859 -162.255 -0.396
Mg 12 -199.614 -200.052 -0.438
Al 13 -241.876 -242.346 -0.470
Si 14 -288.854 -289.359 -0.505
P 15 -340.718 -341.258 -0.540
S 16 -397.505 -398.11 -0.605
Cl 17 -459.482 -460.148 -0.666
Ar 18 -526.817 -527.539 -0.722
Kr 36 -2752.055 -2753.94 -1.89
Xe 54 -7232.138 -7235.23 -3.09
Rn 86 -21866.745 -21872.5 -5.74

Table 5.1: Total energies in HF, exactly, and correlation energies across first
row and for noble gas atoms[].



Single-particle basis sets

• LCAO most common in chemistry

• Mostly Gaussians

• Very few use Slater-type orbitals (exponential 
decay with cusp at nucleus)

• Use planewaves for periodic codes

• Also grids, wavelets, etc.
Kieron Burke Tutorial:HF and DFT 10



Performance

• HF often gets 99% of total energy accurately.

• Remainder is EC = E – EHF ≤ 0

• But HF terrible for most energy differences

• Not great for bond lengths

• Underestimates vibrational frequencies
Kieron Burke Tutorial:HF and DFT 11



Greatest failure: Binding energy curve

• Try to calculate entire binding energy curve of 
H2

• As molecule is stretched, gap with triplet state 
gets very small

• As limit approached, exact wavefunction is 
50:50 combination of 2 Slater determinants

• Restricted HF goes to wrong limit
• Unrestricted HF gets energy right in limit but 

wrong spin densities
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Modern quantum chemistry

• Start from HF solution
• Each occupation is a ‘configuration’
• Label states by number of excitations
• Full CI:  Include as many excitations as needed 

to converge – impractical
• Coupled cluster:  CCSD(T)
• MP2, MP4,..
• CAS=minimize coefficients and orbitals within 

limited subspace
• Narang: Ab initio QC for non-equilibrium (Tu4)
Kieron Burke Tutorial:HF and DFT 13



Quantum Monte Carlo

• Start from HF wavefunction and build ‘better’ one
– Use MC to estimate parameters
– Many different flavors

• Used in materials and warm dense matter
• Beginning to be more common in molecular 

calculations
• See other talks:

– Webber: math for random methods (W9)
– Ceperley: Intro to MC (W11)
– Rossi: statistical methods – MD,MC,ML (Th 9)

Kieron Burke Tutorial:HF and DFT 14



Green’s function approaches

• Start from non-interacting G 
– Add Hartree, gives GHF

– Add all many-body diagrams, get exact G
• For weakly-correlated systems:
– Some flavor of GW
– Zgid: Green’s function methods (W 2)
– Lindsey: MBPT and GF (Th 11)

• For strongly correlated systems:
– Dynamical mean field theory
– Poor man’s version: DFT + U

Kieron Burke Tutorial:HF and DFT 15



Useful books for materials
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DFT
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Useful intro for anyone
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DFT in a Nutshell
Kieron Burke[a,b] and Lucas O. Wagner*[a,b]

The purpose of this short essay is to introduce students and

other newcomers to the basic ideas and uses of modern

electronic density functional theory, including what kinds of

approximations are in current use, and how well they work (or

not). The complete newcomer should find it orients them well,

while even longtime users and aficionados might find

something new outside their area. Important questions

varying in difficulty and effort are posed in the text, and are

answered in the Supporting Information. VC 2012 Wiley

Periodicals, Inc.

DOI: 10.1002/qua.24259

Electronic Structure Problem

For the present purposes, we define the modern electronic struc-

ture problem as finding the ground-state energy of nonrelativistic

electrons for arbitrary positions of nuclei within the Born-Oppen-

heimer approximation.[1] If this can be done sufficiently accurately

and rapidly on a modern computer, many properties can be pre-

dicted, such as bond energies and bond lengths of molecules,

and lattice structures and parameters of solids.

Consider a diatomic molecule, whose binding energy curve

is illustrated in Figure 1. The binding energy is given by

EbindðRÞ ¼ E0ðRÞ þ
ZA ZB
R

% EA % EB (1)

where E0(R) is the ground-state energy of the electrons with

nuclei separated by R, and EA and ZA are the atomic energy

and charge of atom A and similarly for B. The minimum tells us

the bond length (R0) and the well-depth (De), corrected by

zero-point energy (!hx=2), gives us the dissociation energy (D0).

The Hamiltonian for the N electrons is

Ĥ ¼ T̂ þ V̂ee þ V̂; (2)

where the kinetic energy operator is

T̂ ¼ % 1

2

XN

j¼1

r2
j ; (3)

the electron–electron repulsion operator is

V̂ee ¼
1

2

X

i 6¼j

1

jri % rjj
; (4)

and the one-body operator is

V̂ ¼
XN

j¼1

vðrjÞ: (5)

For instance, in a diatomic molecule, v(r) ¼ %ZA/r % ZB/|r % R|.

We use atomic units unless otherwise stated, setting

e2 ¼ !h ¼ me ¼ 1, so energies are in Hartrees (1 Ha ¼ 27.2 eV

or 628 kcal/mol) and distances in Bohr radii (1 a0 ¼ 0.529 Å).

The ground-state energy satisfies the variational principle:

E ¼ min
W

hWjĤjWi; (6)

where the minimization is over all antisymmetric N-particle

wavefunctions. This E was called E0(R) in Eq. (1).*

Many traditional approaches to solving this difficult many-

body problem begin with the Hartree–Fock (HF) approxima-

tion, in which W is approximated by a single Slater determi-

nant (an antisymmetrized product) of orbitals (single-particle

wavefunctions)[2] and the energy is minimized.[3] These include

configuration interaction, coupled cluster, and Møller-Plesset

perturbation theory, and are mostly used for finite systems,

such as molecules in the gas phase.[4] Other approaches use

reduced descriptions, such as the density matrix or Green’s

function, but leading to an infinite set of coupled equations

that must somehow be truncated, and these are more com-

mon in applications to solids.[5]

More accurate methods usually require more sophisti-

cated calculation, which takes longer on a computer. Thus,

there is a compelling need to solve ground-state electronic

structure problems reasonably accurately, but with a cost in

Figure 1. Generic binding energy curve. For N2, values for R0 and De are
given in Table 1. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

[a, b] K. Burke, L. O. Wagner
Department of Chemistry, University of California, Irvine, California 92697
Department of Physics, University of California, Irvine, California 92697
E-mail: lwagner@uci.edu

*Explain why a vibrational frequency is a property of the ground-state of the
electrons in a molecule.

VC 2012 Wiley Periodicals, Inc.

International Journal of Quantum Chemistry 2013, 113, 96–101 WWW.CHEMISTRYVIEWS.ORG96
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Youtube: Teaching the theory in DFT
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Thomas/Fermi Theory 1927
• Derived in 1926 without Schrodinger eqn.

• Thomas-Fermi Theory (TF):
– T ≈ TTF

– Vee≈ U = Hartree energy
– V = ∫dr r (r) v(r)
– E0 = T + Vee + V
– Minimize E0[n]  for fixed N

• Properties:
– Typical error of order 10%
– Teller’s unbinding theorem:  Molecules don’t bind.

Tutorial:HF and DFT 20

Ts
loc =

3(3π )2/3

10
d3r n5/3(r)∫

U =
1
2

d3r∫ d3r ' n(r)n(r ')
| r − r ' |∫

Kieron Burke



Hohenberg-Kohn theorems (1964)

• HK I:1-1 between n(r) and v(r)

• HK II: F[n] is independent of v(r) [universal]

• HK III: Minimize F+V for fixed N to find n(r)

• Constrained search

• TF a crude approximation to exact theory

Kieron Burke Tutorial:HF and DFT 21

Hohenberg-Kohn theorem (1964)

1 Rewrite variational principle (Levy 79):

E = min
 

È |T̂ + V̂ee + V̂ | Í

= minn

;
F [n] +

⁄
d

3
r v(r)n(r)

<

where

F [n] = min
 æn

È |T̂ + V̂ee| Í

I The minimum is taken over all positive n(r) such that
s

d
3
r n(r) = N

2 The external potential v(r) and the hamiltonian Ĥ are determined to
within an additive constant by n(r)

P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).

M. Levy, Proc. Natl. Acad. Sci. (U.S.A.) 76, 6062 (1979).
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KS equations (1965)
Kohn-Sham 1965

Define fictitious non-interacting electrons satisfying:

;
≠1

2Ò2 + vS(r)
<

„j(r) = ‘j„j(r),
Nÿ

j=1

|„j(r)|2 = n(r).

where vS(r) is defined to yield n(r).
Define TS as the kinetic energy of the KS electrons, U as their
Hartree energy and

T + Vee = TS + U + EXC

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

vS(r) = v(r) +
⁄

d
3
r

n(rÕ)

|r ≠ rÕ| + vXC[n](r), vXC(r) =
”EXC

”n(r)
Knowing EXC[n] gives closed set of self-consistent equations.
Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 14 / 39

KS potential of He atom

n(r)

!2 !1 0 1 2

!4

!2

0

v(r)

vS(r)

≠2
r

z

Every density has (at most) one KS
potential.a
Red line: vS(r) is the exact KS
potential.

a Accurate exchange-correlation
potentials and total-energy components for
the helium isoelectronic series, C. J.

Umrigar and X. Gonze, Phys. Rev. A 50,

3827 (1994).

Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 15 / 39
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Today’s basic XC approximations

• Local density approximation (LDA)
– Uses only n(r) at a point.

• Generalized gradient approx 
(GGA) 
– Uses both n(r) and |Ñn(r)|
– Should be more accurate, corrects 

overbinding of LDA
– Examples are PBE and BLYP

• Hybrid (global):
– Mixes some fraction of HF with GGA
– Examples are B3LYP and PBE0 
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I. INTRODUCTION

Ĥ = T̂ + V̂ee + V̂ (1)

T [n] ⇡ T
LDA
S [n] =

3(3⇡)2/3

10

Z
d
3
r n

5/3(r) (2)

Vee[n] ⇡ U [n] =
1

2

Z
d
3
r

Z
d
3
r
0 n(r)n(r

0)

|r� r0| (3)

V [n] =

Z
d
3
r n(r) v(r) (4)

Ĥ| i = E| i (5)

E = min
 

h |Ĥ| i (6)

E
TF = min

n

⇢
T

LDA
S [n] + U [n] +

Z
d
3
r v(r)n(r)

�
(7)

E
GGA
XC =

Z
d
3
r e

GGA
XC (n(r), |rn(r)|) (8)

E
hyb
XC = a (EX � E

GGA
X ) + E

GGA
XC (9)

2
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Cost

• With GGA, KS cheaper than HF, scales N3

• CCSD(T) scales N7

• Moderate cluster, a week for CCSD(T) 20 atoms

• Decent desktop, a morning for 200 atoms HF 
or DFT.
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Performance

• Most cases, CCSD(T) gives chemical accuracy 
(error < 1 kcal/mol) for main group chemistry if 
converged

• Gives signal if there are known unknowns

• Dissociates H2 correctly, but not N2 because of 
single-reference starting point
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Cool DFT applications
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high transition temperatures. This comes from either the predicted 
material not having the ideal chemical environment for H, or from the 
limitations of standard density functional theory tools to account for 
anharmonicity and for the quantum nature of H (ref. 23).

Covalent metals present an alternative path to realizing 
room-temperature superconductivity, with the superconduc-
tivity of the exemplary system of MgB2 being driven by strongly 
covalent-bonding/antibonding states crossing the Fermi energy24. 
Covalent hydrogen-rich organic-derived materials are another class 
of high-Tc materials that combine the advantages of covalent met-
als and metal superhydrides25,26; an example is H3S (refs. 3,27). Interest 
in these materials has been long-standing since Little’s proposal of 
superconductivity at room temperatures in one-dimensional organic 
polymers with highly polarizable side chains28 and Ginzburg’s model of 
two-dimensional alternating conducting/dielectric ‘sandwich’ layers2,29. 
The removal of the heavy metal from superstoichiometric hydrides in 
covalent hydrogen-rich systems offers a promise for ‘greener’ future 
materials synthesized using low-cost, earth-abundant organic reac-
tants. Here, we report superconductivity in a simple organic-derived 
C–S–H system with a highest Tc of  about 288 K over a large pressure 
range between ~140 GPa and ~275 GPa, characterized by electrical 
resistance, magnetic susceptibility and field-dependence electrical 
transport measurements, as well as Raman spectroscopy. A series of 
structural and electronic phase transitions from molecular to metallic 
and superconducting are confirmed.

Superconductivity in carbonaceous sulfur hydride
The photochemically synthesized C–S–H system becomes supercon-
ducting with its highest critical temperature being Tc = 287.7 ± 1.2 K at 
267 ± 10 GPa. The temperature probe’s accuracy is ±0.1 K. The supercon-
ducting transition was evidenced by a sharp drop in resistance towards 
zero for a temperature change of less than 1 K (Fig. 1a), which was measured 

during the natural warming cycle (~0.25 K min−1) from low temperature 
with a current of 10 µA–1 mA. The transition temperature determined from 
the onset of superconductivity appears to be approaching a dome shape 
as a function of pressure (Fig. 1b). It increases from 147 K at 138 ± 7 GPa 
until it levels off to ~194 K at about 220 GPa, with the pressures measured 
from the diamond edge using the Akahama 2006 scale30 and calibrated 
H2 vibron frequency (see Methods). Remarkably, a sharp increase in Tc 
is observed above 220 GPa with a rate of around 2 K GPa−1 (Fig. 1b). The 
highest pressure studied is 271 GPa, at which the material has Tc ≈ 280 K. 
A Pt lead inside the cell failed as the pressure was increased from 267 GPa, 
forcing the use of an adjacent Pt lead as a combined current–voltage probe 
(quasi-four-point measurement). We estimate the contribution from this 
shorted section of the Pt lead to be only ~0.1 Ω (Extended Data Fig. 4). 
Additionally, no change in the shape of the superconducting transition 
was observed when the current was reduced to 0.1 mA, hence indicating 
bulk—rather than filamentary—superconductivity. These results were con-
firmed by a large number of experiments with over three dozen samples 
(see Supplementary Information and Extended Data Fig. 7). We note that 
the resistance of the sample decreases with increasing pressure, showing 
that it becomes more metallic at higher pressures.

a.c. magnetic susceptibility
A superior test for superconductivity is the search for a strong diamag-
netic transition in the a.c. magnetic susceptibility. In Fig. 2a, the real 
part of the temperature-dependent a.c. magnetic susceptibility χ′(T) 
of the sample is shown for one of the experimental runs. The onset of 
superconductivity is signalled by a large (10–15 nV), sharp drop in sus-
ceptibility indicating a diamagnetic transition, which shifts to higher 
temperatures with increasing pressure. The highest transition tem-
perature measured in this way is 198 K (transition midpoint), reached 
at the highest pressure measured (189 GPa). The quality of the data is 
high given the small sample size (~80 µm in diameter and 5–10 µm in 
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Fig. 1 | Superconductivity in C–S–H at high pressures. a, Temperature- 
dependent electrical resistance of the C–S–H system at high pressures (P),  
showing superconducting transitions at temperatures as high as 287.7 ± 1.2 K at 
267 ± 10 GPa. The data were obtained during the warming cycle to minimize  
the electronic and cooling noise. We note that the left and right vertical axes 
represent results from two different experimental runs. b, microphotographs  
showing the photochemical process of superconducting C–S–H sample with 
electrical leads in a four-probe configuration for resistance measurements.  
c, Pressure dependence of Tc, as determined by the sharp drop in the electrical 

resistance (‘ρ’) and a.c. susceptibility (‘χ′’) measurements shown in Figs. 1a, 2a. 
Tc increases with pressure from ~140 GPa, then gradually levels off to ~194 K 
around 220 GPa, and then sharply increases afterwards, showing a discontinuity  
around 225 GPa. The highest Tc observed was 287.7 K at 267 GPa. The 
low-temperature quasi-four-point resistance measurement at 271 GPa (the 
highest pressure measured) shows a superconducting transition at ~280 K. The 
solid lines are to guide the eye and different colours represent different experiments.  
The red and black arrows represent room temperature (15 °C) and the freezing 
point of water, respectively. Error bars reflect uncertainty in the measured value.
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Thus far, essentially all heterogeneous catalysts of industrial
importance have been developed by trial-and-error experimenta-
tion. The classic example of this approach is the discovery of the
iron-based ammonia synthesis catalyst by Mittasch and co-workers
who tested more than 2500 different catalysts in 6500 experi-
ments.1,2 Parallel testing methods, which can speed up catalyst
screening significantly, have recently been introduced,3 but a better
scientific basis could make catalyst development substantially
more efficient.
We show that a rational catalyst development strategy can be

developed on the basis of simple, physically motivated concepts.
We use the ammonia synthesis reaction to illustrate the approach,
but the general principles should be broadly applicable.
The starting point is the volcano-shaped relation between the

ammonia synthesis activity of different catalysts and their nitrogen
adsorption energy shown in Figure 1. The curve shows (in
complete agreement with experimental evidence4) that Ru and
Os are the best catalysts among the pure metals. The dependence
of the catalytic activity on the nitrogen adsorption energy is a
consequence of a linear (Brønsted-Evans-Polanyi) relationship5
between the activation energy for the rate-limiting step, which is
N2 dissociation,6,7 and the stability of adsorbed N on the surface.
The reason for this relationship is that the transition state for N2
dissociation is very final-state-like. Therefore, the transition-state
energy essentially follows the nitrogen adsorption energy from
one metal to the next.
The volcano shape of the plot in Figure 1 implies that there is

an optimum for the nitrogen adsorption energy. This optimum
reflects a compromise between two mutually opposing ways of
achieving a high activity: a small activation barrier for N2
dissociation and a surface with low coverage of adsorbed atomic
nitrogen during ammonia synthesis. This requires a strong and a
weak N-surface interaction, respectively. At conditions relevant
in industrial processes we get closest to the optimum by using
Ru or Os as catalysts. However, these metals are very expensive
and thus less commercially attractive compared to the third-best
catalyst, Fe.
A rational approach could be to construct a surface (active sites)

with the desired intermediate nitrogen interaction energy by

combining two metals: one with too high adsorption energy and
one with too low adsorption energy. As indicated in Figure 1, a
combination of Mo (which binds N too strongly) with Co (which
binds N too weakly) should be close to optimum. This is exactly
what was found experimentally.8-10 A Co-Mo catalyst was
developed using this principle, and it had an ammonia synthesis
activity much better than that of the constituents and even better
than those of both Fe and Ru at low NH3 concentrations, see
Figure 2. In the following, we will show why this is the case.
We study the chemical behavior of alloy surfaces with mixed-

metal sites for ammonia synthesis using plane wave DFT
calculations. The RPBE exchange-correlation functional is ap-
plied,11 and Vanderbilt ultrasoft pseudopotentials12 are used to

* Corresponding author. Nymøllevej 55, DK-2800 Lyngby, Denmark,
Telephone: + 45 45 27 22 02. Fax: + 45 45 27 29 99. E-mail: chj@topsoe.dk.
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Figure 1. Calculated turnover frequencies for ammonia synthesis as a
function of the adsorption energy of nitrogen. The synthesis conditions
are 400 °C, 50 bar, gas composition H2:N2 ) 3:1 containing 5% NH3.
The numbers are obtained by combining a microkinetic model describing
ammonia synthesis rates with the linear relation existing between the
potential energy and the activation energy for N2 dissociation.5 The known
entropy barrier for N2 dissociation20 and the effect of adding electropos-
itive promoters such as K and Cs21 have been taken into account in the
model.

Figure 2. Measured turnover frequencies for promoted Ru, Co3Mo3N,
and Fe catalysts. The number of active sites is calculated from the surface
areas of the active components, assuming that 1% of the total surface
sites (1019 m-2) are active for N2 dissociation. (Inset): Surface structure
of Co3Mo3N showing the existence of mixed Co-Mo sites.19 Light
gray: N; dark gray: Co; black: Mo.
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NERSC use
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More modern XC approximations

• Weak interactions 
– Tchatchenko: MBPT (Tu 2, F11)

• Range-separated hybrids eg HSE06

• Random Phase Approximation (RPA), eg Furche, 
Goerling, Scuseria,…

• Meta-GGA, eg Perdew’s SCAN

• Local hybrid, eg DM21
Kieron Burke Tutorial:HF and DFT 28



Orbital-free DFT

• If we had accurate-enough approximation to 
TS[n], bypass solving KS equations.

• Could allow much larger systems.
• Original TF theory is of this kind
• But errors too large on absolute scale, so no-

one has ever produced a generally useful 
approximation

• Genius of KS was overcoming this difficulty by 
re-introducing orbitals (Slater)

• Work by Trickey, Carter, Wesolwski, …
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Time-dependent DFT

• Applies same methodology, but different 
theorem (Runge-Gross theorem)

• Create TDKS equations for v(r,t)
• In linear response, get low-lying optical 

excitations usefully accurately
• Built in to most quantum chemical codes
• Misses non-locality in solids
• Used in 1000’s papers/year.
• See Maitra’s recent Perspective JCP
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Thermal DFT and WDM

• Mermin generalized HK to equilibrium at finite 
temperature (1965).

• Can solve KS equations at finite T with XC free 
energy

• WDM is about 30kK to 1MK, in between 
‘normal’ phases and pure plasmas

• DFT proven very useful for simulating shocks, 
planetary interiors, fusion reactions, etc.
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Common DFT failures

• Hard to get below 1 kcal/mol even for main 
group atomization energies

• Much less accurate for transition metal 
complexes

• Fails for stretched bonds
• Fails for multiple stretched bonds 

(thermodynamic limit)
• …
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Delocalization error

• Semilocal functionals are too smooth (convex 
up)

• HF too sharp (convex down)
• Should be straight line segments
• Recently, SCAN @ HF yields very accurate 

water clusters
• Explained by DC-DFT.
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Other tutorials

• Lin Lin: Embedding (W4)
• Stamm: Error analysis (Th 2)
• Gori: Field theory methods (Th 4)
• Grigori: Large scale lin alg (F9)
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Chemistry versus materials physics

• Primary focus in materials: Response properties
– Optical versus photoemission, etc.

• Primary focus in quantum chemistry: Ground-
state energies to high accuracy
– Tells you what bonds are formed and reaction rates
– Chemical accuracy (1 kcal/mol)
– CCSD(T)  fails for multireference systems
– Accuracy for weak bonds 0.1 kcal/mol

• Given method and basis set, any good code 
reproduces numbers to about 10 digits
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Reproducibility and benchmarking

• In quantum chemistry, Pople created the concept 
of a ‘model chemistry’

• Model chemistry=a method plus a basis set
• Can get the same result to about 10 digits 

anywhere, anytime, with any professional-level 
code.

• The G2 data set is benchmark experimental and 
calculated data agreeing within 0.05 eV.

• In famous 1993 paper, Pople et al showed DFT 
could yield about 0.15 eV accuracy for covalent 
bond energies.
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Basic successes ground-state DFT

• Local, semi-local, hybrid, vdw-corrected 
approximations yield useful accuracy for weakly 
correlated systems

• Works for both solids and molecules
• Some find functionals from general rules of 

quantum mechanics (eg Perdew), some from 
fitting databases (eg Truhlar)

• Perdew functionals work comparably well for 
solids and molecules simultaneously

• Many fitted functionals work only for molecules
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Properties messed up by semilocal DFT

J.P. Perdew. “What do the 
Kohn-Sham orbitals mean? 
How do atoms 
dissociate?” In: Density 
Functional Methods in 
Physics. Ed. by R.M. 
Dreizler and J. da 
Providencia. NY: Plenum, 
1985, p. 265.

See also much recent work 
by Weitao Yang, 
generalizing to spin DFT
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WHAT DO THE KOHN-SHAM ORBITAL ENERGIES MEAN?

HOW DO ATOMS DISSOCIATE?

John P. Perdew

Department of Physics and Quantum Theory Group
Tulane University
New Orleans, Louisiana 70118, U.S.A.

1. INTRODUCTION

1Hohenberg and Kohn have demonstrated the existence of a
functional E [n] which, when minimized over trial densities n(r)
integrating ¥o N electrons, yields the exact ground-state energy
E and density for N electrons subject to an external potential
v(:). The Euler equation for the variational principle is

0 {E [n] - ~Jd3r n(r)} = O. (1)v -

or

OE /On(r) = ~. (2)v -

The Lagrange multiplier ~ is evidently the chemical potential:

~ = 3E/3N. (3)

Kohn and Sham2 have shown how to implement this variational
principle in practical calculations: Divide E [n] into pieces,v

E [n] = KO[n] + Jd3r v(r) n(r) + Urn] + E [n], (4)v - - xc

where KO[n] is the ground-state kinetic energy of hypothetical
non-interacting electrons of density n(r), U[n] is the classicalrepulsion -

265



Derivative discontinuity

Kieron Burke Tutorial:HF and DFT 39

As a function of N , the energy is a sequence of straight
line segments

R.M. Dreizler and E.K.U. Gross, Density

Functional Theory (Springer-Verlag,

Berlin, 1990).

µ =
ˆE

ˆN

= ≠
I

I, N Æ Z

A, N > Z
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Jumps in potential
The KS potential jumps suddenly as N crosses an integer

When you add a tiny fraction of an electron to a system, the KS
potential shifts uniformly, since before, ‘HOMO(N) = ≠I, but now,
‘HOMO(N + ”) = ≠A

Thus vS(r) must jump by
�XC = (I ≠ A) + (‘HOMO ≠ ‘LUMO) = ≠‘LUMO ≠ A

Very important in DFT calculations of:
I molecules approaching each other, before they bond covalently.
I single-molecule transport if molecule is weakly bound to leads.

Kieron (UC Irvine) DFT Master Class: Advanced Topics IPAM12 9 / 30Kieron Burke Tutorial:HF and DFT 40



Three gaps:  All ‘HOMO-LUMO’

• Fundamental (or charge) gap:  (I=24.6 eV for He)
– Voltage needed to get solid to conduct.
– Can also be found from I-A, but tricky for periodic codes
– AKA quasiparticle gap, well-approximated by GW, seen 

in photoemission. experiments
• Optical gap: (1s->2s singlet in He, 20.6 eV)

– Lowest excitation by light, without changing N
– Matches fundamental gap if no excitons

• Kohn-Sham gap: (1s->2s in He, 20.3 eV)
– Energy difference between KS HOMO and LUMO for 

neutral system
– Typically a great underestimate of I-A for solids
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Mott-Hubbard gap

• Classic prototype of 
condensed matter

• Infinite chain of H atoms
• When lattice spacing is 

large, must be an 
insulator

• But with one electron 
per site, always a band 
metal

interacting system, the KS system is the unique noninter-
acting system with the same density [20].) In the thermo-
dynamic limit, the KS gaps extrapolate to zero, so that
the exact N ! 1 KS system is a metal. This is consistent
with the fact that each finite KS system in Fig. 3 has one
electron per unit cell and thus a half-filled band (in contrast
to the unrestricted LSDAwhich breaks spin symmetry for
this system).

The discrepancy between the KS and exact gap was long
ago identified [21] with the exchange-correlation deriva-
tive discontinuity in DFT: Eg ¼ !s þ !XC, where !s is
the KS gap, that is, the energy difference between the
lowest unoccupied and highest occupied orbitals of the
neutral KS system. Approximate functionals such as
LSDA that are continuous in particle number miss this
effect entirely. The LSDA KS gaps are almost identical
to the exact ones shown in Fig. 3, but the LSDA funda-
mental gap drops from close to Eg for small N to near zero
at large N (details reported elsewhere).

Previous calculations have found !XC for semiconduc-
tors [22,23] with finite KS gaps !s, but our system’s gap is
entirely due to !XC, underscoring its importance for strong
correlation physics. Our results rely on no uncontrolled
approximations and so demonstrate unambiguously the
behavior of Mott insulators in DFT. Present DFT research
on this issue focuses on extracting accurate Eg from semi-
local functional calculations [24,25].

The onset of strong correlation with increasing bond
length is often identified with the Coulson-Fischer point
[26], where an unrestricted Hartree-Fock calculation spon-
taneously breaks spin symmetry. A different way to dis-
tinguish strong from weak correlation is through the
entanglement spectrum, readily accessible in DMRG.

Defining the left reduced density matrix !L¼TrRj"ih"j,
where the trace is over all grid sites in the right half of the
system, the entanglement spectrum consists of the energies
of the entanglement Hamiltonian HE ¼ # ln!L [27]. The
most probable density matrix eigenstates are those in the
low ‘‘energy’’ part of the spectrum. By classifying these
states according to their particle numberNL, we can under-
stand the dominant quantum fluctuations of the ground
state. Figure 4 shows the entanglement spectrum at the
center of a series of four-atom chains with increasing
interatomic separation. A sharp crossover at b ’ 5:5, where
the probability for charge fluctuations drops below that
of pure spin fluctuations, signals the onset of strongly
correlated behavior.
Many oxide materials of current interest are too strongly

correlated for present DFT methods, but crucial properties
must be calculated to an accuracy far beyond that of simple
model Hamiltonians. The method described here provides
a new, alternative route to studying strongly correlated
systems. All existing approximations, from heuristic cor-
rections to standard functionals, such as LDAþ U [28], to
methods developed for lattice models, such as dynamical
mean field theory [29], can be applied and tested more
easily, thoroughly, and accurately in the present setting.
Because our 1D world captures a feature crucial to density
functional approximations, namely, the continuum instead
of a lattice, such studies should provide the insight needed
to construct more accurate density functionals for real
strongly correlated materials.
We gratefully acknowledge DOE Grant No. DE-FG02-

08ER46496 (K. B., L. O.W., and S. R.W.) and NSF Grant
No. DMR-0907500 (E.M. S. and S. R.W.) for supporting
this work.
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056402-4
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One-Dimensional Continuum Electronic 
Structure with the Density-Matrix 
Renormalization Group and Its Implications 
for Density-Functional Theory E.M. 
Stoudenmire, Lucas O. Wagner, Steven R. 
White, Kieron Burke, Phys. Rev. Lett. 109, 
056402 (2012).



Steps in KS potential
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There are sharp steps in the KS potential between
separated systems

Figure: Cartoon of step in KS potential between two well-separated open-shell
fragments.

N. T. Maitra, J. Chem. Phys. 122, 234104 (2005).
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Orbital-dependent functionals

• Perdew-Zunger self-interaction correction 
(1981) improves LDA, not GGA.

• Hybrids have some fraction of exact exchange
• Orbital-dependence cures many errors of 

semilocal approximations
• But key principle is that semilocal X mimics C, 

so cancellation of errors destroyed by 100% X.
• Fraction in hybrid must be fixed and 

determined by ground-state energetics
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Stretched molecules
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mental advance in band theory may be the a priori construction of
simple but accurate approximations for the self-energy.
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KS versus GKS

• When dealing with orbital-dependent 
functionals, can treat as HF or pure KS (OEP)

• GKS treats as HF
• Both legitimate
• For ground-state energy, it typically makes 

almost no difference
• Makes large differences to eigenvalues 

spectrum!
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Confusions
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The word universal

• Always mis-applied
• Applies to exact functional, says that it does not 

depend on v(r), only n(r)
• All our approximations beyond LDA are hard-wired 

to Coulomb one-body potentials
• LDA is a universal functional as LDA becomes 

relatively exact for all systems in certain large-N
limit.

• HF is a universal approximation as HF becomes 
relatively exact for all systems as strength of 
interaction goes to zero.
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All properties are functionals of n(r)

• One of the HK theorems, certainly true.
• Means, e.g, the entire excitation spectrum.
• But the ground-state energy functional (and its 

universal piece, F[n]) is very special,  because 
we can use it to find the density and then E.

• Even knowing exact EXC[n] only gives E, n, and 
properties that can be extracted from them.

• Can regard linear response TDDFT as a way of 
finding the functional for excited states (Hardy 
I)
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Purity of functionals

• Word ‘empirical’ in DFT has little to do with 
semi-empirical models of quantum chemistry.

• B88 has an ‘empirical’ parameter that we 
derived 18 years later.

• Once a recipe is given in terms of the density, 
no matter where it comes from, it is a density 
functional that can be applied to any system.

• Intellectual purity is in the eye of the beholder.
• Do not read papers of empiricists to 

understand DFT.
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Ambiguity of energy density

• Given a functional (eg LDAX), the energy 
density is not unique, but usually there’s a 
standard one.

• Given an prescription for an energy density (eg
the XC hole), then if a functional models the 
hole, energy densities are unique

• Local Lieb-Oxford bound never existed, but 
now appears in literature.  Based on a 
misinterpretation of use in PBE.
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Role of exact conditions

• Different kinds:  Coordinate scaling of EX[n] 
against EC=-42mH for He.

• Can classify by direct application to 
approximate functional versus need to 
calculate for a specific system

• Can impose for all possible densities versus 
check for real (ie Coulomb potential) densities

• Cannot construct useful functional from exact 
conditions alone (please read PBE paper)
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Conclusions

• HF Is starting point of both traditional 
approaches
– Wavefunction, eg CCSD(T), QMC, …
– Green’s function, eg GW

• KS-DFT is totally different approach to problem
– Much lower cost allows larger systems
– Unreliable, only moderate accuracy, failures for

strong correlation
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