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Model and previous work

• Let PN be a uniform random N × N permutation matrix and let

χN(z) = det(zIN − PN) denote its characteristic polynomial.

• Consider the random field XN : R/Z→ [−∞,∞)

XN(t) = log |χN(e(−t))| = log | det(IN − e(t)PN)|

where e(t) := exp(2πit).

• Hambly–Keevash–O’Connell–Stark ’99 obtained a CLT:

For fixed t ∈ R/Z of finite type,

XN(t)√
π2

12 logN
→ N(0, 1)

(and similarly for the imaginary part of logχN).

• Note XN is badly behaved at rational points (atom at −∞).

• Multidimensional CLT obtained by Dang–Zeindler ’13.
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Numerical simulations

Figure 1: Simulated XN(t) with N = 104 for t ∈ [0.1, 0.11].

Cycle structure of PN : 6310, 1914, 909, 668, 79, 47, 33, 19, 12, 5, 3, 1.

(Generated using the Chinese restaurant process.) 2



Numerical simulations

Figure 2: Simulated XN(t) with N = 109 for t ∈ [0.2, 0.35].

Cycle structure of PN : 892,060,223, 78,087,020, 19,479,718, 9,152,317,

630,684, 352,623, 114,502, 104,059, 8,973, 8,193, 1,641, 33, 5, 3, 2, 2, 1, 1. 3



Main result: Law of large numbers for the maximum of XN

XN(t) = log | det(IN − e(t)PN)|.

Theorem (C., Zeitouni ’18)

1

logN
sup

t∈R/Z
XN(t)→ xc ≈ 0.677 in probability.

(Informally:

sup
|z|=1

|χN(z)| = Nxc+o(1) with high probability.)
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Related work: Maximum of the CUE field

Replacing PN with a Haar unitary UN , we obtain the CUE field:

X cue
N (t) = log | det(IN − e(t)UN)|.

Conjecture (Fyodorov–Hiary–Keating ’12):

MN := sup
t∈R/Z

X cue
N (t)−

(
logN − 3

4
log logN

)
converges in distribution.

sup
t∈R/Z

X cue
N (t) = logN + oP(logN) Arguin–Belius–Bourgade ’15

= logN − 3

4
log logN + oP(log logN) Paquette–Zeitouni ’15

= logN − 3

4
log logN + OP(1) Chhaibi–Madaule–Najnudel ’16

Related work of Arguin–Belius–Bourgade–Soundararajan–Radziwi l l’16 on the

Riemann ζ function.

All proofs proceed by exposing an underlying branching structure.

Note that, unlike XN , distribution of X cue
N is invariant under rotations.
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Maximal displacement for branching random walk (BRW)

• XN and X cue
N are logarithmically

correlated fields

• Archetypical log-correlated field is

(binary, Gaussian) BRW, which we

view as a random field X brw
n (t),

t ∈ [0, 1].

• For each t ∈ [0, 1], X brw
n (t) ∼ N(0, n).

Decorrelation of increments: Denoting by anc(s, t) ∈ [1, n] the generation

where lineages of s, t split, we have

Cov
(
Xn(s)− Xm(s), Xn(t)− Xm(t)

)
= 0 for any anc(s, t) < m < n.
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Maximal displacement for branching random walk (BRW)

Theorem (Hammersley ’74, Kingman ’75, Biggins ’77)

1

n
sup

t∈[0,1)
X brw
n (t)→ bc =

√
2 log 2 in probability.

• We recall some key proof ideas going back to Bramson ’78.

• Let Tn = {k2−n ∈ [0, 1)} and put Sn(b) = {t ∈ Tn : X brw
n (t) ≥ bn}.

• Upper bound. First moment method (union bound):

E |Sn(bc + ε)| = 2n P(X brw
n (1) ≥ (bc + ε)n) ≤ e−c(ε)n.

Then apply Markov’s inequality.

• Lower bound. Same computation shows E |Sn(bc − ε)| ≥ ec
′(ε)n, so

we’d be done if we can establish concentration, i.e.

Var |Sn(bc − ε)|
(E |Sn(bc − ε)|)2

= o(1).

But this is false. (See the board...) 7



Maximal displacement for branching random walk (BRW)

• Modified second moment: Rather than counting high points Sn(b),

we should only count points that make steady progress toward bcn.

• Toy computation: Let X
(1)
n = X brw

n/2 , X
(2)
n = X brw

n − X brw
n/2 , and put

E2(t) =
{
X (1)
n (t), X (2)

n (t) ≥ bn

2

}
.

For pairs (s, t) with anc(s, t) < n/2, we can bound

P(E2(s) ∩ E2(t)) = P
(
X

(1)
n/2(s),X

(1)
n/2(t) ≥ bn

2

)
P
(
X (2)
n (s),X (2)

n (t) ≥ bn

2

)
≤ P

(
X

(1)
n/2(s) ≥ bn

2

)
P
(
X (2)
n (s) ≥ bn

2

)2
where we used the decorrelation of increments.

• Proceeding in a similar manner, we can show the greatest

contribution to the second moment of the number of “steadily

advancing” particles comes from pairs (s, t) whose lineages split

early on. 8



First steps: Discretize and pass to Poisson model

XN(t) = log | det(IN − e(t)PN)|, t ∈ R/Z.

• It is enough to show

max
t∈TN

XN(t) = (1 + o(1)) logN w.h.p.

where TN is a mesh for R/Z of size |TN | = O(N).

• XN only depends on the cycle structure of PN :

XN(t) =
∑

1≤`≤N

C`(PN) log |1− e(`t)|,

where C`(PN) is the number of cycles of length ` in PN .

• Arratia–Tavare ’92: Let Z` be independent Poi(1/`) variables.

Then

dTV
(
(C`(PN))`≤L, (Z`)`≤L

)
→ 0 if L = o(N).
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First steps: Discretize and pass to Poisson model

• Let ω(1) ≤W ≤ No(1) be a slowly growing function of N and split

XN(t) =
∑

`≤N/W

C`(PN) log |1− e(`t)|+
∑

N/W<`≤N

C`(PN) log |1− e(`t)|

=: X≤N (t) + X>
N (t).

Letting

YN(t) =
∑
`≤N

Z` log |1− e(`t)|,

we have X≤N (t) ≈ YN/W (t) in distribution.

• Second moment computation shows

X>
N (t) ≤

∑
N/W<`≤N

C`(PN) ≤ O(logW ) = o(logN) w.h.p.

so for the upper bound it suffices to consider the Poisson field YN .
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Upper bound: first attempt

• Let S(YN , x) = {t ∈ TN : YN(t) ≥ x logN}. We want to show that

for any fixed ε > 0,

|S(YN , xc + ε)| = 0 w.h.p.

• First moment:

E |S(YN , x)| =
∑
t∈TN

P(YN(t) ≥ x logN).

• To estimate tail events, estimate MGFs:

E eβYN (t) =
∏
`≤N

E exp(βZ` log |1−e(`t)|) = exp

(∑
`≤N

1

`

(
|1−e(`t)|β−1

))
.

• For t irrational, the sum is ∼ (logN)
( ∫ 1

0
|1− e(u)|βdu − 1

)
.

• This eventually shows E |S(YN , 1 + ε)| = o(1).
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Fix: Condition on a “typical” distribution of cycle lengths

• Problem: First moment is thrown off by “clumping” events, where

there is an atypically large number of cycles of comparable length

(the corresponding waves t 7→ log |1− e(`t)| add constructively).

• Solution: Consider a sequence of windows Ik = [eδk , eδ(k+1)) ⊂ [N]

with δ small (actually o(1)) and put

N (Ik) =
∑
`∈Ik

Z`, YIk (t) =
∑
`∈Ik

Z` log |1− e(`t)|.

Expect EN (Ik) ≈ δ cycles in each window. We condition on a

“typical” sequence (N (Ik))k≥1 (with N (Ik) ∈ {0, 1} for most k).

• Let K = {k : N (Ik) = 1}. Then |K| ≈ logN, and for k ∈ K, the

increments

YIk (t) = log |1− e(`kt)|, P(`k = `) ∝ 1`∈Ik
`

are still independent and have comparable contribution to the

fluctuations of YN . 12



Upper bound

• Under the conditioning on (N (Ik))k we have

E eβYN (t) ≈
∏
k∈K

E exp
(
βYIk (t)

)
=
∏
k∈K

(
1∑
`∈Ik

1
`

∑
`∈Ik

|1− e(`t)|β

`

)
.

• If t is irrational then

1∑
`∈Ik

1
`

∑
`∈Ik

|1− e(`t)|β

`
=

∫ 1

0

|1− e(u)|βdu + oβ,t(1).

• As we’ll be taking a union bound over t ∈ TN , we need to quantify

dependence of the error on t. We get satisfactory errors outside

low-frequency Bohr sets

Bξ(η) = {t ∈ R/Z : ‖ξt‖R/Z ≤ η}.

We call t ∈ Maj(ξ0, η) :=
⋃
ξ≤ξ0 Bξ(η) major arc points.
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Upper bound: Major and minor arcs

• While YN(t) is badly behaved on major arcs, we can show

sup
t∈Maj(ξ0,η)

YN(t) ≤ −c(ξ0, η) log2 N w.h.p.

• On the complementary set of minor arcs, YN behaves like a

sequence of iid variables:

YIk (t) = log |1− e(`kt)| ≈ log |1− e(uk)|, uk ∼ Unif (R/Z).

• Letting λ(β) = logE exp
(
β log |1− e(u)|

)
= log

∫ 1

0
|1− e(u)|βdu,

for major arcs we have a first moment estimate for |S(YN , x) \Maj |:∑
t∈TN\Maj(ξ0,η)

P (YN(t) ≥ x logN) ≈ |TN | exp
(
−λ∗(x)|K|

)
≈ N1−λ∗(x).

where λ∗ is the Legendre transform of λ.

• xc ≈ 0.677 is the unique solution to λ∗(x) = 1.
14



Lower bound: Early, middle, and late generations

For M ≤ N, denote the truncated field

X≤M(t) =
∑
`≤M

C`(PN) log |1− e(`t)|,

and the set of “survivors”

S≤M(x) = {t ∈ TN : X≤M(t) ≥ x logM}.

We show S≤N(xc − ε) is nonempty by tracking the population of

survivors across three epochs:

1. Early generations: |S≤Nc (−C )|&N w.h.p.

2. Middle generations: |S≤N/W (xc − ε)| ≥ Nc(ε) w.h.p.

3. Late generations: |S≤N(xc − 2ε)| ≥ 1 w.h.p.

For early and middle generations we can replace X≤M with YM .
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Lower bound: Middle generations

• We follow the second moment argument for BRW. Requires

approximate decorrelation of tail events for increments

∆m,n(t) :=
∑

k∈K∩[m,n) YIk (t).

• For ξ0 ∈ N put

dξ0(s, t) = min
ξ,ξ′∈{−ξ0,...,ξ0}\{0}

‖ξs + ξ′t‖R/Z.

Lower bound on dξ0(s, t) gives quantitative linear indepedence of

1, s, t over Z.

• If m = ω(1), s, t /∈ Maj(ξ0, η) and dξ0(s, t) > η for ξ0 = ω(n2) and

η � e−δm, then we have an estimate of the form

P
(
∆m,n(s),∆m,n(t) ≥ x

)
≤ (1 + o(1))P(∆m,n(s) ≥ x)2.
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Lower bound: Late generations (|S≤N(xc − 2ε)| ≥ 1)

• Poisson model is no longer available. We condition on the Nc(ε)

survivors of Middle Ages S≤N/W := S≤N/W (xc − ε) and want to

show they aren’t all wiped out by the high frequency tail

X>
N = XN − X≤N/W .

• Note that log |1− e(`t)| ≤ −ε logN for t in the Bohr set

B`(N
−ε) = {t ∈ R/Z : ‖`t‖R/Z ≤ N−ε}.

So if S≤N/W ⊂ B`(N
−ε) for some ` ∈ (N/W ,N], there is a chance

the whole population gets wiped out.

• We employ a structural dichotomy for S≤N/W : Either

• (Structured case) S≤N/W has large overlap with B`(N
−ε) for

≥ N/W 3 different frequencies ` ∈ (N/W ,N], or

• (Unstructured case) it doesn’t.

In the unstructured case, we can show it is unlikely any of the

exceptional frequencies are selected (using the switchings method).
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Lower bound: Late generations

(Structured case)

S≤N/W has large overlap with B`(N
−ε) for ≥ N/W 3 different

frequencies ` ∈ (N/W ,N].

In this case we can use pigeonholing and a Vinogradov-type lemma to

show the S≤N/W must actually contain an element that is major arc,

specifically an element of Bξ(η) for some

ξ = WO(1), η = WO(1)N−ε−1.

But such major arc points are unlikely to be in S≤N/W in the first place.
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