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Model and previous work

e Let Py be a uniform random N x N permutation matrix and let
xn(z) = det(zly — Py) denote its characteristic polynomial.
e Consider the random field Xy : R/Z — [—00, 00)

Xn(t) = log [xn(e(—1))| = log | det(ly — e(t)Pw)|

where e(t) := exp(2rwit).
e Hambly—Keevash—O’Connell-Stark '99 obtained a CLT:
For fixed t € R/Z of finite type,

Xn(t)
\/71% log N

(and similarly for the imaginary part of log xn).

— N(0,1)

e Note Xy is badly behaved at rational points (atom at —o0).
e Multidimensional CLT obtained by Dang—Zeindler "13.



Numerical simulations
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Figure 1: Simulated Xy(t) with N = 10* for ¢ € [0.1,0.11].
Cycle structure of Py: 6310, 1914, 909, 668, 79, 47, 33, 19, 12, 5, 3, 1.
(Generated using the Chinese restaurant process.) 2
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Figure 2: Simulated Xy(t) with N = 10° for t € [0.2,0.35].
Cycle structure of Py: 892,060,223, 78,087,020, 19,479,718, 9,152,317,
630,684, 352,623, 114,502, 104,059, 8,973, 8,193, 1,641, 33,5, 3, 2, 2, 1, 1. 3



Main result: Law of large numbers for the maximum of Xj

Xn(t) = log | det(Iy — e(t)Pn)].

Theorem (C., Zeitouni '18)

sup Xn(t) — xc = 0.677 in probability.
log N teR/Z (t) ‘ /

(Informally:

sup |xn(z)| = Nxeto) with high probability.)
|z|=1



Related work: Maximum of the CUE field

Replacing Py with a Haar unitary Uy, we obtain the CUE field:

Xn(t) = log | det(In — e(t)Un)|.

Conjecture (Fyodorov-Hiary—Keating '12):

cue

My == sup Xy(t) — (Iog N — 3 log log N) converges in distribution.
teR/Z 4

sup Xy'(t) = log N + op(log N) Arguin—Belius—Bourgade '15
teR/Z

Related work of Arguin—Belius—Bourgade—Soundararajan—Radziwit'16 on the
Riemann ¢ function.

All proofs proceed by exposing an underlying branching structure.

Note that, unlike Xy, distribution of X5* is invariant under rotations.



Related work: Maximum of the CUE field

Replacing Py with a Haar unitary Uy, we obtain the CUE field:

Xn(t) = log | det(In — e(t)Un)|.

Conjecture (Fyodorov-Hiary—Keating '12):

cue

My == sup Xy(t) — (Iog N — 3 log log N) converges in distribution.
teR/Z 4

sup Xy'(t) = log N + op(log N) Arguin—Belius—Bourgade '15
teR/Z

=logN — % log log N + op(loglog N) Paquette—Zeitouni '15

Related work of Arguin—Belius—Bourgade—Soundararajan—Radziwit'16 on the
Riemann ¢ function.

All proofs proceed by exposing an underlying branching structure.

Note that, unlike Xy, distribution of X' is invariant under rotations.



Related work: Maximum of the CUE field

Replacing Py with a Haar unitary Uy, we obtain the CUE field:

Xn(t) = log | det(In — e(t)Un)|.

Conjecture (Fyodorov-Hiary—Keating '12):

cue

My == sup Xy(t) — (Iog N — 3 log log N) converges in distribution.
teR/Z 4

sup Xy'(t) = log N + op(log N) Arguin—Belius—Bourgade '15
teR/Z

=logN — % log log N + op(loglog N) Paquette—Zeitouni '15
=logN — % loglog N + Op(1) Chhaibi-Madaule-Najnudel '16

Related work of Arguin—Belius—Bourgade—Soundararajan—Radziwit'16 on the
Riemann ¢ function.

All proofs proceed by exposing an underlying branching structure.

Note that, unlike Xy, distribution of X' is invariant under rotations.



Maximal displacement for branching random walk (BRW)

e Xy and Xy'® are logarithmically
correlated fields

e Archetypical log-correlated field is
(binary, Gaussian) BRW, which we
view as a random field X2 (¢),

t €[0,1].

e For each t € [0,1], XP™(t) ~ N(O, n).

Decorrelation of increments: Denoting by anc(s, t) € [1, n] the generation
where lineages of s, t split, we have

Cov (Xn(s) — Xm(s), Xa(t) — Xm(t)) =0 for any anc(s,t) < m < n.



Maximal displacement for branching random walk (BRW)

Theorem (Hammersley ‘74, Kingman '75, Biggins '77)

1
— sup XP™(t) = b. = \/2log2 in probability.
te[0,1)

We recall some key proof ideas going back to Bramson '78.
Let T, = {k27" €[0,1)} and put S,(b) = {t € T, : XP™(¢t) > bn}.
Upper bound. First moment method (union bound):

E|Sn(be + €)| = 2" P(XP™(1) > (be + €)n) < e~ <),

Then apply Markov's inequality.
Lower bound. Same computation shows E |S,(b. — €)| > ()7, so
we'd be done if we can establish concentration, i.e.

Var [Sp(be —€)| o
5 (b — e~ °

But this is false. (See the board...) !



Maximal displacement for branching random walk (BRW)

e Modified second moment: Rather than counting high points S,(b),
we should only count points that make steady progress toward b.n.
e Toy computation: Let X,S ) — X,lf;‘év, X( ) — Xbrw Xb;‘g, and put

&(0) = {x0), xR0 = 7.

For pairs (s, t) with anc(s, t) < n/2, we can bound

bn b
B(&x(s) N £2(8)) = B (X)), XIh(8) = 20) B (XD(s), X (r) > )
1 bn bn\ ?
<P(x{}5) 2 2) B (X2(s) = )
where we used the decorrelation of increments.
e Proceeding in a similar manner, we can show the greatest
contribution to the second moment of the number of “steadily
advancing” particles comes from pairs (s, t) whose lineages split
early on. 8



First steps: Discretize and pass to Poisson model

Xn(t) = log|det(ly — e(t)Pn)|, t € R/Z.

e |t is enough to show

max Xy(t) = (1 + o(1))log N w.h.p.
teTn

where Ty is a mesh for R/Z of size | Ty| = O(N).
e Xy only depends on the cycle structure of Py:
Xu(t)= Y Ci(Pn)log|1 — e(tt)],
1<e<N

where Cy(Py) is the number of cycles of length £ in Py.

e Arratia—Tavare '92: Let Z; be independent Poi(1//) variables.
Then

drv((Ce(Pn))e<t, (Ze)e<t) =0 if L= o(N).



First steps: Discretize and pass to Poisson model

o Let w(1) < W < N°M) be a slowly growing function of N and split

Xn(t) = Z Co(Pn) log |1 — e(ft)| + Z Ce(Pn) log |1 — e(¢t)|
/W N/W<t<N

Letting

Yu(t) = Zlog|l — e(lt)],
<N

we have X5 (t) ~ Y w(t) in distribution.
e Second moment computation shows
Xy(t)< > G(Pn) < O(log W) = o(log N)  w.h.p.

N/W<t<N

so for the upper bound it suffices to consider the Poisson field Y.

10



Upper bound: first attempt

o Let S(Yn,x)={t € Tn: Yn(t) > xlog N}. We want to show that
for any fixed € > 0,

|S(Yn,xc+€)] =0 w.h.p.
e First moment:

E[S(Yn, )| = > P(Yn(t) > xlog N).

To estimate tail events, estimate MGFs:

E eAYn(t) = H Eexp(5Z;log |1—e(£t)]) = exp (Z z(l—e(ft)vj—l)).

(<N <N

e For t irrational, the sum is ~ (log N)(fo1 11— e(u)|Pdu—1).
e This eventually shows E |S(Yn, 1+ €)| = o(1).
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ix: Condition on a “typical” distribution of cycle lengths

e Problem: First moment is thrown off by “clumping” events, where
there is an atypically large number of cycles of comparable length
(the corresponding waves t — log |1 — e(¢t)| add constructively).

e Solution: Consider a sequence of windows I, = [e?%, e(k+1))  [N]
with ¢ small (actually o(1)) and put

NU)=Y"2Z,  Y(t)=)_Zlog|l —e(lt)|.

el Lely

Expect EN (/) =~ § cycles in each window. We condition on a
“typical” sequence (N (/k))k>1 (with N(lk) € {0,1} for most k).

o Let K ={k: N(lx)=1}. Then |K|=logN, and for k € K, the
increments

1l€Ik

Vi(t) =log|1 — e(t)|,  P(b =€) ox

are still independent and have comparable contribution to the

fluctuations of Yy. L2



Upper bound

e Under the conditioning on (N (/x))x we have

— o(00)|8
E eBYn(t) o H E exp (ﬁY/k(t)) _ H < 1 Z |1 E(Et)| >

1
keKx ke Zéelk L oecly

e If t is irrational then

1

1- P '
P> D [ e+ 05,0)
Zeelk € el ¢ °

e As we'll be taking a union bound over t € Ty, we need to quantify
dependence of the error on t. We get satisfactory errors outside

low-frequency Bohr sets
Be(n) = {t e R/Z: ||¢t|lr/z < n}-

We call t € Maj(&o0,7) := Ug<¢, Be(n) major arc points.
13



Upper bound: Major and minor arcs

e While Yj(t) is badly behaved on major arcs, we can show

sup  Yu(t) < —c(éo,m)log? N w.h.p.
teMaj(€o.)

e On the complementary set of minor arcs, Yy behaves like a
sequence of iid variables:

Y, (t) = log |1 — e(£xt)| = log|1 — e(uk)|, uy ~ Unif(R/Z).

e Letting \(3) = log Eexp (Blog|1 — e(u)|) = log fol |1 — e(u)|®du,
for major arcs we have a first moment estimate for |S( Yy, x) \ Maj|:

> P(Ya(t) > xlog N) & | Ty| exp (—A*(x)|K]) & NP0,
te Ty\Maj(&o,m)

where \* is the Legendre transform of \.

e x. =~ 0.677 is the unique solution to \*(x) = 1.
14



Lower bound: Early, middle, and late generations

For M < N, denote the truncated field

Xem(t) = 3 Co(Pw)log 1 — e(tt)],

<M

and the set of “survivors”

S<m(x) = {t € Ty : X<m(t) > xlog M}.

We show S<py(xc — €) is nonempty by tracking the population of
survivors across three epochs:

1. Early generations: |S<y<(—C)| 2 N w.h.p.
2. Middle generations: [S<y,w(xc — €)| > N w.h.p.
3. Late generations: |S<ny(xc —2¢)| > 1 w.h.p.
For early and middle generations we can replace X<y with Y.
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Lower bound: Middle generations

e We follow the second moment argument for BRW. Requires
approximate decorrelation of tail events for increments

Amn(t) = ZkEKﬁ[m,n) Yi(t).
e For & € N put

d§0(57 t) “§5+§/t||R/Z~

= min
&,8'e{—¢o,---,6 1 \{0}

Lower bound on dg,(s, t) gives quantitative linear indepedence of
1,s,t over Z.

o If m=w(l), s, t ¢ Maj(&,n) and dg, (s, t) > n for & = w(n?) and
1> e %™ then we have an estimate of the form

P (Am n(5)s Ama(t) > x) < (1+ 0(1)) P(Am,a(s) > x)2.
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Lower bound: Late generations (|S<ny(x. — 2¢)| > 1)

e Poisson model is no longer available. We condition on the N<(€)
survivors of Middle Ages S<y/w := S<y/w(xc — €) and want to
show they aren't all wiped out by the high frequency tail
Xy = Xn— X<njw.

e Note that log|1 — e(¢t)| < —elog N for t in the Bohr set

BN™) = {t € R/Z: ||¢tllr/z < NV,

So if Scyyw C Be(N~%) for some £ € (N/W, NJ, there is a chance
the whole population gets wiped out.
e We employ a structural dichotomy for S<p/: Either
o (Structured case) S<y,w has large overlap with B,(N~°) for
> N/W? different frequencies £ € (N/W, N], or

e (Unstructured case) it doesn't.
In the unstructured case, we can show it is unlikely any of the
exceptional frequencies are selected (using the switchings method).
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Lower bound: Late generations

(Structured case)
S<nyw has large overlap with By(N~¢) for > N/W? different

frequencies £ € (N/W, N].

In this case we can use pigeonholing and a Vinogradov-type lemma to
show the S<p,w must actually contain an element that is major arc,

specifically an element of B¢(7) for some

E _ WO(l)} n= WO(l)Nfefl.

But such major arc points are unlikely to be in S<y/w in the first place.
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