The maximum of the characteristic polynomial for a random permutation matrix

Random Matrices and Free Probability Workshop
IPAM, 2018/05/16

Nick Cook, UCLA
Based on joint work with Ofer Zeitouni

Model and previous work

- Let P_{N} be a uniform random $N \times N$ permutation matrix and let $\chi_{N}(z)=\operatorname{det}\left(z I_{N}-P_{N}\right)$ denote its characteristic polynomial.
- Consider the random field $X_{N}: \mathbb{R} / \mathbb{Z} \rightarrow[-\infty, \infty)$

$$
X_{N}(t)=\log \left|\chi_{N}(e(-t))\right|=\log \left|\operatorname{det}\left(I_{N}-e(t) P_{N}\right)\right|
$$

where $e(t):=\exp (2 \pi i t)$.

- Hambly-Keevash-O'Connell-Stark '99 obtained a CLT:

For fixed $t \in \mathbb{R} / \mathbb{Z}$ of finite type,

$$
\frac{X_{N}(t)}{\sqrt{\frac{\pi^{2}}{12} \log N}} \rightarrow N(0,1)
$$

(and similarly for the imaginary part of $\log \chi_{N}$).

- Note X_{N} is badly behaved at rational points (atom at $-\infty$).
- Multidimensional CLT obtained by Dang-Zeindler '13.

Numerical simulations

Figure 1: Simulated $X_{N}(t)$ with $N=10^{4}$ for $t \in[0.1,0.11]$.
Cycle structure of P_{N} : 6310, 1914, 909, 668, 79, 47, 33, 19, 12, 5, 3, 1. (Generated using the Chinese restaurant process.)

Numerical simulations

Figure 2: Simulated $X_{N}(t)$ with $N=10^{9}$ for $t \in[0.2,0.35]$.
Cycle structure of P_{N} : 892,060,223, 78,087,020, 19,479,718, 9,152,317, $630,684,352,623,114,502,104,059,8,973,8,193,1,641,33,5,3,2,2,1,1$.

Main result: Law of large numbers for the maximum of X_{N}

$$
X_{N}(t)=\log \left|\operatorname{det}\left(I_{N}-e(t) P_{N}\right)\right|
$$

Theorem (C., Zeitouni '18)

$$
\frac{1}{\log N} \sup _{t \in \mathbb{R} / \mathbb{Z}} X_{N}(t) \rightarrow x_{c} \approx 0.677 \quad \text { in probability. }
$$

(Informally:

$$
\sup _{|z|=1}\left|\chi_{N}(z)\right|=N^{x_{c}+o(1)} \quad \text { with high probability.) }
$$

Related work: Maximum of the CUE field

Replacing P_{N} with a Haar unitary U_{N}, we obtain the CUE field:

$$
X_{N}^{\text {cue }}(t)=\log \left|\operatorname{det}\left(I_{N}-e(t) U_{N}\right)\right| .
$$

Conjecture (Fyodorov-Hiary-Keating '12):

$$
\begin{array}{ll}
M_{N}:=\sup _{t \in \mathbb{R} / \mathbb{Z}} X_{N}^{\text {cue }}(t)-\left(\log N-\frac{3}{4} \log \log N\right) & \text { converges in distribution. } \\
\sup X_{N}^{\text {cue }}(t)=\log N+o_{P}(\log N) & \text { Arguin-Belius-Bourgade '15 }
\end{array}
$$

Related work of Arguin-Belius-Bourgade-Soundararajan-Radziwitł'16 on the Riemann ζ function.

All proofs proceed by exposing an underlying branching structure.
Note that, unlike X_{N}, distribution of $X_{N}^{\text {cue }}$ is invariant under rotations.

Related work: Maximum of the CUE field

Replacing P_{N} with a Haar unitary U_{N}, we obtain the CUE field:

$$
X_{N}^{\text {cue }}(t)=\log \left|\operatorname{det}\left(I_{N}-e(t) U_{N}\right)\right| .
$$

Conjecture (Fyodorov-Hiary-Keating '12):

$$
\begin{aligned}
& M_{N}:=\sup _{t \in \mathbb{R} / \mathbb{Z}} X_{N}^{\text {cue }}(t)-\left(\log N-\frac{3}{4} \log \log N\right) \text { converges in distribution. } \\
& \begin{aligned}
\sup _{t \in \mathbb{R} / \mathbb{Z}} X_{N}^{\text {cue }}(t) & =\log N+o_{P}(\log N) \\
& \text { Arguin-Belius-Bourgade '15 } \\
& =\log N-\frac{3}{4} \log \log N+o_{P}(\log \log N)
\end{aligned} \text { Paquette-Zeitouni '15 }
\end{aligned}
$$

Related work of Arguin-Belius-Bourgade-Soundararajan-Radziwitł'16 on the Riemann ζ function.

All proofs proceed by exposing an underlying branching structure.
Note that, unlike X_{N}, distribution of $X_{N}^{\text {cue }}$ is invariant under rotations.

Related work: Maximum of the CUE field

Replacing P_{N} with a Haar unitary U_{N}, we obtain the CUE field:

$$
X_{N}^{\text {cue }}(t)=\log \left|\operatorname{det}\left(I_{N}-e(t) U_{N}\right)\right| .
$$

Conjecture (Fyodorov-Hiary-Keating '12):

$$
\begin{array}{rlr}
M_{N}:=\sup _{t \in \mathbb{R} / \mathbb{Z}} X_{N}^{\text {cue }}(t)-\left(\log N-\frac{3}{4} \log \log N\right) & \text { converges in distribution. } \\
\begin{array}{rlr}
\sup _{t \in \mathbb{R} / \mathbb{Z}} X_{N}^{\text {cue }}(t) & =\log N+o_{P}(\log N) & \text { Arguin-Belius-Bourgade '15 } \\
& =\log N-\frac{3}{4} \log \log N+o_{P}(\log \log N) \quad \text { Paquette-Zeitouni '15 } \\
& =\log N-\frac{3}{4} \log \log N+O_{P}(1) & \text { Chhaibi-Madaule-Najnudel '16 }
\end{array}
\end{array}
$$

Related work of Arguin-Belius-Bourgade-Soundararajan-Radziwitł'16 on the Riemann ζ function.

All proofs proceed by exposing an underlying branching structure.
Note that, unlike X_{N}, distribution of $X_{N}^{\text {cue }}$ is invariant under rotations.

Maximal displacement for branching random walk (BRW)

- X_{N} and $X_{N}^{\text {cue }}$ are logarithmically correlated fields
- Archetypical log-correlated field is (binary, Gaussian) BRW, which we view as a random field $X_{n}^{\text {brw }}(t)$, $t \in[0,1]$.
- For each $t \in[0,1], X_{n}^{\text {brw }}(t) \sim N(0, n)$.

Decorrelation of increments: Denoting by anc $(s, t) \in[1, n]$ the generation where lineages of s, t split, we have

$$
\operatorname{Cov}\left(X_{n}(s)-X_{m}(s), X_{n}(t)-X_{m}(t)\right)=0 \quad \text { for any anc }(s, t)<m<n .
$$

Maximal displacement for branching random walk (BRW)

Theorem (Hammersley '74, Kingman '75, Biggins '77)

$$
\frac{1}{n} \sup _{t \in[0,1)} X_{n}^{\text {brw }}(t) \rightarrow b_{c}=\sqrt{2 \log 2} \quad \text { in probability. }
$$

- We recall some key proof ideas going back to Bramson '78.
- Let $T_{n}=\left\{k 2^{-n} \in[0,1)\right\}$ and put $\mathcal{S}_{n}(b)=\left\{t \in T_{n}: X_{n}^{\text {brw }}(t) \geq b n\right\}$.
- Upper bound. First moment method (union bound):

$$
\mathbb{E}\left|\mathcal{S}_{n}\left(b_{c}+\epsilon\right)\right|=2^{n} \mathbb{P}\left(X_{n}^{\text {brw }}(1) \geq\left(b_{c}+\epsilon\right) n\right) \leq e^{-c(\epsilon) n} .
$$

Then apply Markov's inequality.

- Lower bound. Same computation shows $\mathbb{E}\left|\mathcal{S}_{n}\left(b_{c}-\epsilon\right)\right| \geq e^{c^{\prime}(\epsilon) n}$, so we'd be done if we can establish concentration, i.e.

$$
\frac{\operatorname{Var}\left|\mathcal{S}_{n}\left(b_{c}-\epsilon\right)\right|}{\left(\mathbb{E}\left|\mathcal{S}_{n}\left(b_{c}-\epsilon\right)\right|\right)^{2}}=o(1)
$$

But this is false. (See the board...)

Maximal displacement for branching random walk (BRW)

- Modified second moment: Rather than counting high points $\mathcal{S}_{n}(b)$, we should only count points that make steady progress toward $b_{c} n$.
- Toy computation: Let $X_{n}^{(1)}=X_{n / 2}^{\text {brr }}, X_{n}^{(2)}=X_{n}^{\text {brr }}-X_{n / 2}^{\text {brw }}$, and put

$$
\mathcal{E}_{2}(t)=\left\{X_{n}^{(1)}(t), X_{n}^{(2)}(t) \geq \frac{b n}{2}\right\} .
$$

For pairs (s, t) with inc $(s, t)<n / 2$, we can bound

$$
\begin{aligned}
\mathbb{P}\left(\mathcal{E}_{2}(s) \cap \mathcal{E}_{2}(t)\right) & =\mathbb{P}\left(X_{n / 2}^{(1)}(s), X_{n / 2}^{(1)}(t) \geq \frac{b n}{2}\right) \mathbb{P}\left(X_{n}^{(2)}(s), X_{n}^{(2)}(t) \geq \frac{b n}{2}\right) \\
& \leq \mathbb{P}\left(X_{n / 2}^{(1)}(s) \geq \frac{b n}{2}\right) \mathbb{P}\left(X_{n}^{(2)}(s) \geq \frac{b n}{2}\right)^{2}
\end{aligned}
$$

where we used the decorrelation of increments.

- Proceeding in a similar manner, we can show the greatest contribution to the second moment of the number of "steadily advancing" particles comes from pairs (s, t) whose lineages split early on.

First steps: Discretize and pass to Poisson model

$$
X_{N}(t)=\log \left|\operatorname{det}\left(I_{N}-e(t) P_{N}\right)\right|, t \in \mathbb{R} / \mathbb{Z}
$$

- It is enough to show

$$
\max _{t \in T_{N}} X_{N}(t)=(1+o(1)) \log N \quad \text { w.h.p. }
$$

where T_{N} is a mesh for \mathbb{R} / \mathbb{Z} of size $\left|T_{N}\right|=O(N)$.

- X_{N} only depends on the cycle structure of P_{N} :

$$
X_{N}(t)=\sum_{1 \leq \ell \leq N} C_{\ell}\left(P_{N}\right) \log |1-e(\ell t)|,
$$

where $C_{\ell}\left(P_{N}\right)$ is the number of cycles of length ℓ in P_{N}.

- Arratia-Tavare '92: Let Z_{ℓ} be independent Poi $(1 / \ell)$ variables. Then

$$
d_{\mathrm{TV}}\left(\left(C_{\ell}\left(P_{N}\right)\right)_{\ell \leq L},\left(Z_{\ell}\right)_{\ell \leq L}\right) \rightarrow 0 \quad \text { if } L=o(N) .
$$

First steps: Discretize and pass to Poisson model

- Let $\omega(1) \leq W \leq N^{\circ(1)}$ be a slowly growing function of N and split

$$
\begin{aligned}
X_{N}(t) & =\sum_{\ell \leq N / W} C_{\ell}\left(P_{N}\right) \log |1-e(\ell t)|+\sum_{N / W<\ell \leq N} C_{\ell}\left(P_{N}\right) \log |1-e(\ell t)| \\
& =: X_{N}^{\leq}(t)+X_{N}^{>}(t) .
\end{aligned}
$$

Letting

$$
Y_{N}(t)=\sum_{\ell \leq N} Z_{\ell} \log |1-e(\ell t)|,
$$

we have $X_{N}^{\leq}(t) \approx Y_{N / W}(t)$ in distribution.

- Second moment computation shows

$$
X_{N}^{>}(t) \leq \sum_{N / W<\ell \leq N} C_{\ell}\left(P_{N}\right) \leq O(\log W)=o(\log N) \quad \text { w.h.p. }
$$

so for the upper bound it suffices to consider the Poisson field Y_{N}.

Upper bound: first attempt

- Let $\mathcal{S}\left(Y_{N}, x\right)=\left\{t \in T_{N}: Y_{N}(t) \geq x \log N\right\}$. We want to show that for any fixed $\epsilon>0$,

$$
\left|\mathcal{S}\left(Y_{N}, x_{C}+\epsilon\right)\right|=0 \quad \text { w.h.p. }
$$

- First moment:

$$
\mathbb{E}\left|\mathcal{S}\left(Y_{N}, x\right)\right|=\sum_{t \in T_{N}} \mathbb{P}\left(Y_{N}(t) \geq x \log N\right)
$$

- To estimate tail events, estimate MGFs:

$$
\mathbb{E} e^{\beta Y_{N}(t)}=\prod_{\ell \leq N} \mathbb{E} \exp \left(\beta Z_{\ell} \log |1-e(\ell t)|\right)=\exp \left(\sum_{\ell \leq N} \frac{1}{\ell}\left(|1-e(\ell t)|^{\beta}-1\right)\right) .
$$

- For t irrational, the sum is $\sim(\log N)\left(\int_{0}^{1}|1-e(u)|^{\beta} d u-1\right)$.
- This eventually shows $\mathbb{E}\left|\mathcal{S}\left(Y_{N}, 1+\epsilon\right)\right|=o(1)$.

Fix: Condition on a "typical" distribution of cycle lengths

- Problem: First moment is thrown off by "clumping" events, where there is an atypically large number of cycles of comparable length (the corresponding waves $t \mapsto \log |1-e(\ell t)|$ add constructively).
- Solution: Consider a sequence of windows $I_{k}=\left[e^{\delta k}, e^{\delta(k+1)}\right) \subset[N]$ with δ small (actually $o(1)$) and put

$$
\mathcal{N}\left(I_{k}\right)=\sum_{\ell \in I_{k}} Z_{\ell}, \quad Y_{I_{k}}(t)=\sum_{\ell \in I_{k}} Z_{\ell} \log |1-e(\ell t)|
$$

Expect $\mathbb{E} \mathcal{N}\left(I_{k}\right) \approx \delta$ cycles in each window. We condition on a "typical" sequence $\left(\mathcal{N}\left(I_{k}\right)\right)_{k \geq 1}$ (with $\mathcal{N}\left(I_{k}\right) \in\{0,1\}$ for most k).

- Let $\mathcal{K}=\left\{k: \mathcal{N}\left(I_{k}\right)=1\right\}$. Then $|\mathcal{K}| \approx \log N$, and for $k \in \mathcal{K}$, the increments

$$
Y_{l_{k}}(t)=\log \left|1-e\left(\ell_{k} t\right)\right|, \quad \mathbb{P}\left(\ell_{k}=\ell\right) \propto \frac{1_{\ell \in I_{k}}}{\ell}
$$

are still independent and have comparable contribution to the fluctuations of Y_{N}.

Upper bound

- Under the conditioning on $\left(\mathcal{N}\left(I_{k}\right)\right)_{k}$ we have

$$
\mathbb{E} e^{\beta Y_{N}(t)} \approx \prod_{k \in \mathcal{K}} \mathbb{E} \exp \left(\beta Y_{I_{k}}(t)\right)=\prod_{k \in \mathcal{K}}\left(\frac{1}{\sum_{\ell \in I_{k}} \frac{1}{\ell}} \sum_{\ell \in I_{k}} \frac{|1-e(\ell t)|^{\beta}}{\ell}\right)
$$

- If t is irrational then

$$
\frac{1}{\sum_{\ell \in I_{k}} \frac{1}{\ell}} \sum_{\ell \in I_{k}} \frac{|1-e(\ell t)|^{\beta}}{\ell}=\int_{0}^{1}|1-e(u)|^{\beta} d u+o_{\beta, t}(1) .
$$

- As we'll be taking a union bound over $t \in T_{N}$, we need to quantify dependence of the error on t. We get satisfactory errors outside low-frequency Bohr sets

$$
B_{\xi}(\eta)=\left\{t \in \mathbb{R} / \mathbb{Z}:\|\xi t\|_{\mathbb{R} / \mathbb{Z}} \leq \eta\right\} .
$$

We call $t \in \operatorname{Maj}\left(\xi_{0}, \eta\right):=\bigcup_{\xi \leq \xi_{0}} B_{\xi}(\eta)$ major arc points.

Upper bound: Major and minor arcs

- While $Y_{N}(t)$ is badly behaved on major arcs, we can show

$$
\sup _{\operatorname{Maj}\left(\xi_{0}, \eta\right)} Y_{N}(t) \leq-c\left(\xi_{0}, \eta\right) \log ^{2} N \quad \text { w.h.p. }
$$

- On the complementary set of minor arcs, Y_{N} behaves like a sequence of iid variables:

$$
Y_{l_{k}}(t)=\log \left|1-e\left(\ell_{k} t\right)\right| \approx \log \left|1-e\left(\boldsymbol{u}_{k}\right)\right|, \quad \boldsymbol{u}_{k} \sim \operatorname{Unif}(\mathbb{R} / \mathbb{Z})
$$

- Letting $\lambda(\beta)=\log \mathbb{E} \exp (\beta \log |1-e(\boldsymbol{u})|)=\log \int_{0}^{1}|1-e(u)|^{\beta} d u$, for major arcs we have a first moment estimate for $\mid \mathcal{S}\left(Y_{N}, x\right) \backslash$ Maj |:

$$
\sum_{T_{N} \backslash \operatorname{Maj}\left(\xi_{0}, \eta\right)} \mathbb{P}\left(Y_{N}(t) \geq x \log N\right) \approx\left|T_{N}\right| \exp \left(-\lambda^{*}(x)|\mathcal{K}|\right) \approx N^{1-\lambda^{*}(x)}
$$

where λ^{*} is the Legendre transform of λ.

- $x_{c} \approx 0.677$ is the unique solution to $\lambda^{*}(x)=1$.

Lower bound: Early, middle, and late generations

For $M \leq N$, denote the truncated field

$$
X_{\leq M}(t)=\sum_{\ell \leq M} C_{\ell}\left(P_{N}\right) \log |1-e(\ell t)|,
$$

and the set of "survivors"

$$
\mathcal{S}_{\leq M}(x)=\left\{t \in T_{N}: X_{\leq M}(t) \geq x \log M\right\} .
$$

We show $\mathcal{S}_{\leq N}\left(x_{c}-\epsilon\right)$ is nonempty by tracking the population of survivors across three epochs:

1. Early generations: $\left|\mathcal{S}_{\leq N^{c}}(-C)\right| \gtrsim N$ w.h.p.
2. Middle generations: $\left|\mathcal{S}_{\leq N / W}\left(x_{c}-\epsilon\right)\right| \geq N^{c(\epsilon)}$ w.h.p.
3. Late generations: $\left|\mathcal{S}_{\leq N}\left(x_{c}-2 \epsilon\right)\right| \geq 1$ w.h.p.

For early and middle generations we can replace $X_{\leq M}$ with Y_{M}.

Lower bound: Middle generations

- We follow the second moment argument for BRW. Requires approximate decorrelation of tail events for increments
$\Delta_{m, n}(t):=\sum_{k \in \mathcal{K} \cap[m, n)} Y_{I_{k}}(t)$.
- For $\xi_{0} \in \mathbb{N}$ put

$$
d_{\xi_{0}}(s, t)=\min _{\xi, \xi^{\prime} \in\left\{-\xi_{0}, \ldots, \xi_{0}\right\} \backslash\{0\}}\left\|\xi s+\xi^{\prime} t\right\|_{\mathbb{R} / \mathbb{Z}} .
$$

Lower bound on $d_{\xi_{0}}(s, t)$ gives quantitative linear indepedence of $1, s, t$ over \mathbb{Z}.

- If $m=\omega(1), s, t \notin \operatorname{Maj}\left(\xi_{0}, \eta\right)$ and $d_{\xi_{0}}(s, t)>\eta$ for $\xi_{0}=\omega\left(n^{2}\right)$ and $\eta \gg e^{-\delta m}$, then we have an estimate of the form

$$
\mathbb{P}\left(\Delta_{m, n}(s), \Delta_{m, n}(t) \geq x\right) \leq(1+o(1)) \mathbb{P}\left(\Delta_{m, n}(s) \geq x\right)^{2} .
$$

Lower bound: Late generations $\left(\left|\mathcal{S}_{\leq N}\left(x_{c}-2 \epsilon\right)\right| \geq 1\right)$

- Poisson model is no longer available. We condition on the $N^{c}(\epsilon)$ survivors of Middle Ages $\mathcal{S}_{\leq N / W}:=\mathcal{S}_{\leq N / W}\left(x_{c}-\epsilon\right)$ and want to show they aren't all wiped out by the high frequency tail $X_{N}=X_{N}-X_{\leq N / W}$.
- Note that $\log |1-e(\ell t)| \leq-\epsilon \log N$ for t in the Bohr set

$$
B_{\ell}\left(N^{-\epsilon}\right)=\left\{t \in \mathbb{R} / \mathbb{Z}:\|\ell t\|_{\mathbb{R} / \mathbb{Z}} \leq N^{-\epsilon}\right\} .
$$

So if $\mathcal{S}_{\leq N / W} \subset B_{\ell}\left(N^{-\varepsilon}\right)$ for some $\ell \in(N / W, N]$, there is a chance the whole population gets wiped out.

- We employ a structural dichotomy for $\mathcal{S}_{\leq N / W}$: Either
- (Structured case) $\mathcal{S}_{\leq N / W}$ has large overlap with $B_{\ell}\left(N^{-\epsilon}\right)$ for $\geq N / W^{3}$ different frequencies $\ell \in(N / W, N]$, or
- (Unstructured case) it doesn't.

In the unstructured case, we can show it is unlikely any of the exceptional frequencies are selected (using the switchings method).

Lower bound: Late generations

(Structured case)

$\mathcal{S}_{\leq N / W}$ has large overlap with $B_{\ell}\left(N^{-\epsilon}\right)$ for $\geq N / W^{3}$ different frequencies $\ell \in(N / W, N]$.

In this case we can use pigeonholing and a Vinogradov-type lemma to show the $\mathcal{S}_{\leq N / W}$ must actually contain an element that is major arc, specifically an element of $B_{\xi}(\eta)$ for some

$$
\xi=W^{O(1)}, \quad \eta=W^{O(1)} N^{-\epsilon-1} .
$$

But such major arc points are unlikely to be in $\mathcal{S}_{\leq N / W}$ in the first place.

