Small perturbations of non-Hermitian matrices

Ofer Zeitouni
Based on joint work with Anirban Basak and Elliot Paquette

IPAM
May 2018
An empirical fact

\[J_N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \\
\end{pmatrix}, \quad P_N(z) = \det(zI - J_N) = z^N, \quad \text{roots}=0. \]
An empirical fact

\[J_N = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & 0 & 1 \\
0 & \cdots & \cdots & \cdots & 0 & 0
\end{pmatrix} \]

\[P_N(z) = \det(zI - J_N) = z^N, \quad \text{roots}=0. \]

\[\hat{T}_N := U_N T_N U_N^* \] where \(U_N \) is random unitary matrix, Haar-distributed. Of course, \(\text{Spec}(\hat{T}_N) = \text{Spec}(T_N) \).
An empirical fact

\[J_N = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & 0 & 1 \\
0 & \cdots & \cdots & \cdots & 0
\end{pmatrix} \]

, \(P_N(z) = \det(zI - J_N) = z^N \), roots=0.

\[\hat{T}_N := U_N T_N U_N^* \] where \(U_N \) is random unitary matrix, Haar-distributed. Of course, \(\text{Spec}(\hat{T}_N) = \text{Spec}(T_N) \).
An empirical fact

\[J_N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}, \quad P_N(z) = \det(zI - J_N) = z^N, \quad \text{roots}=0. \]

\[\hat{T}_N := U_N T_N U_N^* \text{ where } U_N \text{ is random unitary matrix, Haar-distributed. Of course, } \text{Spec}(\hat{T}_N) = \text{Spec}(T_N). \]

Goes back to Trefethen et al.s - pseudo-spectrum.
A – matrix with singular values denoted $\sigma_1(A) \geq \sigma_2(A) \geq \ldots$,

$$\|A\| = \sup_{\|v\|_2 = 1} \|Av\|_2 = \sigma_1(A).$$
A – matrix with singular values denoted $\sigma_1(A) \geq \sigma_2(A) \geq \ldots,$

$$\|A\| = \sup_{|v|_2 = 1} |Av|_2 = \sigma_1(A).$$

If A is symmetric then $\sigma_i(A) = |\lambda_i(A)|$ and $\|A\| = \max(\lambda_{\text{max}}, -\lambda_{\text{min}}).$
Background: Spectrum stability for symmetric matrices

A – matrix with singular values denoted $\sigma_1(A) \geq \sigma_2(A) \geq \ldots$,

$$\|A\| = \sup_{\|v\|_2=1} |Av|_2 = \sigma_1(A).$$

If A is symmetric then $\sigma_i(A) = |\lambda_i(A)|$ and $\|A\| = \max(\lambda_{\text{max}}, -\lambda_{\text{min}})$.

Weyl inequalities: $\sigma_{i+j-1}(A + B) \leq \sigma_i(A) + \sigma_j(B)$.

Ofer Zeitouni
Small Perturbations
IPAM
A – matrix with **singular values** denoted \(\sigma_1(A) \geq \sigma_2(A) \geq \ldots \),

\[
\|A\| = \sup_{|v|_2=1} |Av|_2 = \sigma_1(A).
\]

If \(A \) is symmetric then \(\sigma_i(A) = |\lambda_i(A)| \) and \(\|A\| = \max(\lambda_{\text{max}}, -\lambda_{\text{min}}) \).

Weyl inequalities: \(\sigma_{i+j-1}(A + B) \leq \sigma_i(A) + \sigma_j(B) \).

If \(A, B \) are Hermitian and \(\|B\| < \epsilon \) then \(|\lambda_i^{A+B} - \lambda_i^A| \leq \epsilon \).
A – matrix with singular values denoted \(\sigma_1(A) \geq \sigma_2(A) \geq \ldots \),

\[
\|A\| = \sup_{\|v\|_2=1} |Av|_2 = \sigma_1(A).
\]

If \(A \) is symmetric then \(\sigma_i(A) = |\lambda_i(A)| \) and \(\|A\| = \max(\lambda_{\text{max}}, -\lambda_{\text{min}}) \).

Weyl inequalities: \(\sigma_{i+j-1}(A + B) \leq \sigma_i(A) + \sigma_j(B) \).

If \(A, B \) are Hermitian and \(\|B\| < \epsilon \) then \(|\lambda_i^{A+B} - \lambda_i^A| \leq \epsilon \).

In particular, if \(W \) is a symmetric matrix with i.i.d. centered standard Gaussian entries on and above diagonal (**Wigner matrix**), then \(\lambda_{\text{max}}(N^{-1/2}W) \to 2 \), and if \(\gamma > 1/2 \) then

\[
|\lambda_i(A_N + N^{-\gamma}W) - \lambda_i(A_N)| \to_{N\to\infty} 0.
\]
Background: Spectrum stability for symmetric matrices

A – matrix with singular values denoted \(\sigma_1(A) \geq \sigma_2(A) \geq \ldots \),

\[
\|A\| = \sup_{\|v\|_2 = 1} |Av|_2 = \sigma_1(A).
\]

If \(A \) is symmetric then \(\sigma_i(A) = |\lambda_i(A)| \) and \(\|A\| = \max(\lambda_{\text{max}}, -\lambda_{\text{min}}) \).

Weyl inequalities: \(\sigma_{i+j-1}(A + B) \leq \sigma_i(A) + \sigma_j(B) \).

If \(A, B \) are Hermitian and \(\|B\| < \epsilon \) then \(|\lambda_i^{A+B} - \lambda_i^A| \leq \epsilon \).

In particular, if \(W \) is a symmetric matrix with i.i.d. centered standard Gaussian entries on and above diagonal (**Wigner matrix**), then \(\lambda_{\text{max}}(N^{-1/2}W) \rightarrow 2 \), and if \(\gamma > 1/2 \) then

\[
|\lambda_i(A_N + N^{-\gamma}W) - \lambda_i(A_N)| \rightarrow_{N \rightarrow \infty} 0.
\]

No such control holds for eigenvalues of non-Hermitian matrices.
Background II: Ginibre matrices

Denote by G_N matrix with i.i.d. standard complex Gaussian entries, and set $g_N = N^{-1/2} G_N$.

λ_i - eigenvalues of g_N.

$L^g_N = \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i}$ - empirical measure of eigenvalues.
Denote by G_N matrix with i.i.d. standard complex Gaussian entries, and set $g_N = N^{-1/2}G_N$.

λ_i - eigenvalues of g_N.

$L_{N}^{g} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i}$ - empirical measure of eigenvalues.

Theorem

L_{N}^{g} converges to the uniform measure on the unit disc.
Background II: Ginibre matrices

In fact, also

\[\|g_N\| \to \sqrt{2} \]
In fact, also
\[\|g_N\| \to \sqrt{2} \]

Thus, \(\|N^{-\gamma} G_N\| \to 0 \) if \(\gamma > 1/2 \).
Consider the nilpotent N-by-N matrix

$$J_N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \\ \end{pmatrix}$$
Consider the nilpotent N-by-N matrix

$$J_N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \\ \end{pmatrix}$$

Eigenvalues $\lambda_i = 0$, empirical measure $n^{-1} \sum \delta_{\lambda_i} = \delta_0$.
Consider the nilpotent N-by-N matrix

$$J_N = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 \\
0 & \cdots & \cdots & \cdots & \cdots & 0
\end{pmatrix}$$

Eigenvalues $\lambda_i = 0$, empirical measure $n^{-1} \sum \delta_{\lambda_i} = \delta_0$.
Regularization by noise II

Set $\gamma > 1/2$.

Theorem (Guionnet-Wood-Z. '14)

Set $A_N = J_N + N^{-\gamma} G_N$, empirical measure of eigenvalues $L_A N$. Then $L_A N$ converges weakly to the uniform measure on the unit circle in the complex plane. Thus, $L_J N = \delta_0$ but for a vanishing perturbation, $L_A N$ has different limit.

Earlier version - Davies-Hager '09 (Generalization to i.i.d. G_N: Wood '15.)
Set $\gamma > 1/2$.

Theorem (Guionnet-Wood-Z. ’14)

Set $A_N = J_N + N^{-\gamma} G_N$, empirical measure of eigenvalues L_N^A. Then L_N^A converges weakly to the uniform measure on the unit circle in the complex plane.
Regularization by noise II

Set $\gamma > 1/2$.

Theorem (Guionnet-Wood-Z. ’14)

Set $A_N = J_N + N^{-\gamma} G_N$, empirical measure of eigenvalues L_N^A. Then L_N^A converges weakly to the uniform measure on the unit circle in the complex plane.

Thus, $L_N^{J_N} = \delta_0$ but for a vanishing perturbation, L_N^A has different limit. Earlier version - Davies-Hager ’09
Regularization by noise II

Set $\gamma > 1/2$.

Theorem (Guionnet-Wood-Z. ’14)

Set $A_N = J_N + N^{-\gamma} G_N$, empirical measure of eigenvalues L^A_N. Then L^A_N converges weakly to the uniform measure on the unit circle in the complex plane.

Thus, $L^J_N = \delta_0$ but for a vanishing perturbation, L^A_N has different limit. Earlier version - Davies-Hager ’09 (Generalization to i.i.d. G_N: Wood ’15.)
Regularization by noise II

Set $\gamma > 1/2$.

Theorem (Guionnet-Wood-Z. ’14)

Set $A_N = J_N + N^{-\gamma}G_N$, empirical measure of eigenvalues L^A_N. Then L^A_N converges weakly to the uniform measure on the unit circle in the complex plane.

Thus, $L^{J_N}_N = \delta_0$ but for a vanishing perturbation, L^A_N has different limit.

Earlier version - Davies-Hager ’09
(Generalization to i.i.d. G_N: Wood ’15.)
What is going on?

\[J^\delta_N = \begin{pmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \vdots & \vdots & \vdots & \vdots & 0 & 1 \\
\delta_N & \vdots & \vdots & \vdots & \vdots & \vdots & 0
\end{pmatrix} \]

Characteristic polynomial:
\[P_N(z) = \det(zI - J^\delta_N) = z^N \pm \delta_N. \]

Roots:
\[\{ \delta_n^i / N \}_{n=1}^N. \]

If \(\delta_N = 0 \) then
\[L^{J^\delta_N} = \delta_0. \]

If \(\delta_N \to 0 \) polynomially slowly then
\[L^{J^\delta_N} \] converges to uniform on circle.

Why is this particular perturbation picked up? (General criterion - Guionnet, Wood, Z.)
What is going on?

\[
J^\delta_N = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & 0 & 1 \\
\delta_N & \cdots & \cdots & \cdots & 0 \\
\end{pmatrix}
\]

Characteristic polynomial:

\[
P_N(z) = \det(zI - J^\delta_N) = z^N \pm \delta_N.
\]
What is going on?

\[J_{\delta}^N = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 \\
\delta_N & \cdots & \cdots & \cdots & 0
\end{pmatrix} \]

Characteristic polynomial:

\[P_N(z) = \det(zI - J_{\delta}^N) = z^N \pm \delta_N. \]

Roots: \(\{\delta_{\delta}^{1/N} e^{2\pi i/N}\}_{i=1}^N \).
What is going on?

$$J_N^\delta = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & 0 & 1 \\
\delta_N & \cdots & \cdots & \cdots & 0 \\
\end{pmatrix}$$

Characteristic polynomial:

$$P_N(z) = \det(zI - J_N^\delta) = z^N \pm \delta_N.$$

Roots: \(\{\delta_N^{1/N} e^{2\pi i/N}\}_{i=1}^N\).

If \(\delta_N = 0\) then \(L_N^{J_N^\delta} = \delta_0\).
What is going on?

$J_N^\delta = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \cdots & 0 & 1 \\
\delta_N & \cdots & \cdots & \cdots & 0
\end{pmatrix}$

Characteristic polynomial:

$P_N(z) = \det(zI - J_N^\delta) = z^N \pm \delta_N.$

Roots: $\left\{ \delta_N^{1/N} e^{2\pi i / N} \right\}_{i=1}^N$.

If $\delta_N = 0$ then $L_N^{J_N^\delta} = \delta_0$.

If $\delta_N \to 0$ polynomially slowly then $L_N^{J_N^\delta}$ converges to uniform on circle.
What is going on?

\[J_N^\delta = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
& & & & & \\
& & & & & \\
0 & \cdots & \cdots & 0 & 1 \\
\delta_N & \cdots & \cdots & \cdots & 0
\end{pmatrix} \]

Characteristic polynomial:

\[P_N(z) = \det(zI - J_N^\delta) = z^N \pm \delta_N. \]

Roots: \(\{\delta_N^{1/N} e^{2\pi i/N}\}_{i=1}^N \).

If \(\delta_N = 0 \) then \(L_{N\delta_N}^N = \delta_0 \).

If \(\delta_N \to 0 \) polynomially slowly then \(L_{N\delta_N}^N \) converges to uniform on circle.

Why is this particular perturbation picked up? (General criterion - Guionnet, Wood, Z.)
Noise Stability-Block Nilpotent

A generalization: $B^i = B^i(N)$ - Jordan blocks, dimension $a_i(N) \log N$, eigenvalue $c_i(N)$.

\[
\begin{bmatrix}
B_1 \\
B_2 \\
\vdots \\
B_\ell(N)
\end{bmatrix}
\]
A generalization: $B^i = B^i(N)$ - Jordan blocks, dimension $a_i(N) \log N$, eigenvalue $c_i(N)$.

$$A_N = \begin{bmatrix}
B^1 & & \\
& B^2 & \\
& & \ddots \\
& & & B^{\ell(N)}
\end{bmatrix}.$$
Noise Stability-Block Nilpotent

A generalization: $B^i = B^i(N)$ - Jordan blocks, dimension $a_i(N) \log N$, eigenvalue $c_i(N)$.

$$A_N = \begin{bmatrix} B^1 & & \\ & B^2 & \\ & & \ddots \\ & & & B^{\ell(N)} \end{bmatrix}.$$

Simulations...
A_N block matrix, each block of size $a_i \log N$.
A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.
A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.
$B_N = A_N + N^{-\gamma} G_N$.

Theorem (Feldheim, Paquette, Z. '15)
For $\gamma > 1$ and $\ell(N) = o(N)$,
$d(\mathbb{L}_{B_N}, \mu_N) \to 0$ as $N \to \infty$
Analogous result for $\gamma \in (1/2, 1]$ if collection of circles “does not spread too much” (e.g., olympics rings example OK).
A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.

$B_N = A_N + N^{-\gamma}G_N$.

Define $r_i(N) = e^{(-\gamma + 1/2)/a_i} \leq 1$. Set $\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i,r_i}$ where $\nu_{c,r}$ uniform on circle of radius r centered on c.

Theorem (Feldheim, Paquette, Z. '15) For $\gamma > 1$ and $\ell(N) = o(N)$, $d(L_{B_N}, \mu_N) \to N \to \infty 0$

Analogous result for $\gamma \in (1/2, 1]$ if collection of circles “does not spread too much” (e.g., olympics rings example OK).
A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.

$B_N = A_N + N^{-\gamma} G_N$.

Define $r_i(N) = e^{(-\gamma + 1/2)/a_i} \leq 1$. Set $\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i, r_i}$ where $\nu_{c, r}$ uniform on circle of radius r centered on c.

Theorem (Feldheim, Paquette, Z. ’15)

For $\gamma > 1$ and $\ell(N) = o(N)$,

$$d(L_N^{B_N}, \mu_N) \to_{N \to \infty} 0$$
Noise Stability

A _N block matrix, each block of size \(a_i \log N \). \(c_i \) on diagonal.

\(B_N = A_N + N^{-\gamma} G_N \).

Define \(r_i(N) = e^{(-\gamma+1/2)/a_i} \leq 1 \). Set \(\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i,r_i} \) where \(\nu_{c,r} \) uniform on circle of radius \(r \) centered on \(c \).

Theorem (Feldheim, Paquette, Z. ’15)

For \(\gamma > 1 \) and \(\ell(N) = o(N) \),

\[
\text{d}(L_{B_N}^N, \mu_N) \to_{N \to \infty} 0
\]

Analogous result for \(\gamma \in (1/2, 1] \) if collection of circles “does not spread too much” (e.g., olympics rings example OK).
More general models?

Figure: The eigenvalues of $J_N + J_N^2 + N^{-\gamma} G_N$, with $N = 4000$ and various γ. On left, actual matrix. On the right, $U_N(J_N + J_N^2)U_N^*$.
More general models?

Figure: The eigenvalues of $D_N + J_N + N^{-\gamma} G_N$, with $N = 4000$ and various γ. Top: $D_N(i, i) = -1 + 2i/N$. Bottom: D_N i.i.d. uniform on $[-2, 2]$. On left, actual matrix. On the right, $U_N(D_N + J_N)U_N^*$.
More general models

Theorem (Basak, Paquette, Z. ’17)

\[T_N = D_N + J_N, \ M_N = T_N + N^{-\gamma} G_N, \ \gamma > 1/2. \]

d_i iid uniform on \([-1, 1]\).
More general models

Theorem (Basak, Paquette, Z. ’17)

\[T_N = D_N + J_N, \quad M_N = T_N + N^{-\gamma} G_N, \quad \gamma > 1/2. \]

\[d_i \text{ iid uniform on } [-1, 1]. \]

Then \(L_N \to \mu, \mu \text{ explicit: log-potential of } \mu \text{ at } z \text{ is } (E \log |z - d_1|) \lor 0). \]
More general models

Theorem (Basak, Paquette, Z. ’17)

\[T_N = \sum_{i=0}^{k} a_i J_N^i \] (Toeplitz, finite symbol, upper triangular). Then,

\[L_N \to \text{Law of} \sum_{i=0}^{k} a_i U^i \]

where \(U \) is uniform on unit circle.
Theorem (Basak, Paquette, Z. '17)

\[T_N = \sum_{i=0}^{k} a_i J_N^i \text{ (Toeplitz, finite symbol, upper triangular). Then,} \]

\[L_N \rightarrow \text{Law of} \ \sum_{i=0}^{k} a_i U^i \]

where \(U \) is uniform on unit circle.

Extends to twisted Toeplitz \(T_N(i, j) = a_i(j/N), i = 1, \ldots, k, a_i \) continuous:

\[L_N \rightarrow \int_{0}^{1} \text{Law of} \ \sum_{i=0}^{k} a_i(t) U^i \]
More general models

Theorem (Basak, Paquette, Z. ’17)

\[T_N = \sum_{i=0}^{k} a_i J_N^i \text{ (Toeplitz, finite symbol, upper triangular).} \]

Then,

\[L_N \to \text{Law of } \sum_{i=0}^{k} a_i U_i \]

where \(U \) is uniform on unit circle.

Extends to twisted Toeplitz \(T_N(i, j) = a_i(j/N), i = 1, \ldots, k, a_i \) continuous:

\[L_N \to \int_0^1 \text{Law of } \sum_{i=0}^{k} a_i(t) U_i^t \]

Confirms simulations and predictions (based on pseudo-spectrum) of Trefethen et al.s. Some two-diagonal Toeplitz cases studied by Sjöstrand and Vogel (2016)
Recent extensions

• Non upper triangular models:

\[\sum_{k=2}^{n} a_{i j} = J_N - a_{i j} N \]

Then,

\[L_N \to \text{Law of } k \sum_{i=0}^{\infty} a_{i j} U_i \]

where \(U \) is uniform on unit circle.

Main issue - Toeplitz determinant of unperturbed matrix requires work, e.g. Widom's theorem.

• Extension to twisted Toeplitz - ??
Recent extensions

- Non upper triangular models:

Theorem (Basak, Paquette, Z. ’18)

\[T_N = \sum_{i=-k_1}^{k_2} a_i J_N^i \quad (\text{Toeplitz, finite symbol, } J_N^{-1} = J_N^T.) \text{ Then,} \]

\[L_N \to \text{Law of } \sum_{i=0}^{k} a_i U^i \]

where \(U \) *is uniform on unit circle.*
Recent extensions

• Non upper triangular models:

Theorem (Basak, Paquette, Z. ’18)

\[T_N = \sum_{i=-k_1}^{k_2} a_i J_i^i \] (Toeplitz, finite symbol, \(J_N^{-1} = J_N^T \)). Then,

\[L_N \rightarrow \text{Law of} \sum_{i=0}^{k} a_i U^i \]

where \(U \) is uniform on unit circle.

Main issue - Toeplitz determinant of un-perturbed matrix requires work, e.g. Widom’s theorem.
Recent extensions

- Non upper triangular models:

Theorem (Basak, Paquette, Z. ’18)

\[T_N = \sum_{i=-k_1}^{k_2} a_i J_{N}^i \]

(Toeplitz, finite symbol, \(J_N^{-1} = J_N^T \).

Then,

\[L_N \rightarrow \text{Law of } \sum_{i=0}^{k} a_i U^i \]

where \(U \) is uniform on unit circle.

Main issue - Toeplitz determinant of un-perturbed matrix requires work, e.g. Widom’s theorem.

- Extension to twisted Toeplitz - ??
Recent extensions

• Non upper triangular models:

Theorem (Basak, Paquette, Z. ’18)

\[T_N = \sum_{i=1}^{k_2} a_i J_N^i \] (Toeplitz, finite symbol, \(J_N^{-1} = J_N^T \).) Then,

\[L_N \to \text{Law of } \sum_{i=0}^{k} a_i U^i \]

where \(U \) is uniform on unit circle.

Main issue - Toeplitz determinant of un-perturbed matrix requires work, e.g. Widom’s theorem.

• Extension to twisted Toeplitz - ??
Outliers

\[J_N + N^{-\gamma} G_N \]

\[J_N + J_N^2 + N^{-\gamma} G_N \]

Outliers are random. What is structure of outliers?

- \(J_N + N^{-\gamma} G_N \): outliers are zeros of a limiting Gaussian field, all inside disc.
- \(J_N + J_N^2 + N^{-\gamma} G_N \): Outliers are roots of a Gaussian field, limit of terms involving a single Gaussian in expansion of char. pol.
- \(\gamma = 0.75 \)
- \(\gamma = 1.75 \)
- \(\gamma = 4.00 \)
Outliers are random. What is structure of outliers?

\[J_N + N^{-\gamma} G_N \]

\[J_N + J_N^2 + N^{-\gamma} G_N \]
Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.

\[
J_N + N^{-\gamma} G_N = J_N + J_N^2 + N^{-\gamma} G_N
\]
Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.
- $J_N + J_N^2 + N^{-\gamma} G_N$: Write $z I + J_N + J_N^2 = (\lambda_1(z) - J_N)(\lambda_2(z) - J_N)$:
Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.
- $J_N + J_N^2 + N^{-\gamma} G_N$: Write $zI + J_N + J_N^2 = (\lambda_1(z) - J_N)(\lambda_2(z) - J_N)$:
 - No outliers in $\{ z : |\lambda_i(z)| > 1, i = 1, 2 \}$
Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma} G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.
- $J_N + J_N^2 + N^{-\gamma} G_N$: Write $z l + J_N + J_N^2 = (\lambda_1(z) - J_N)(\lambda_2(z) - J_N)$:
 - No outliers in $\{z : |\lambda_i(z)| > 1, i = 1, 2\}$
 - In $\{z : |\lambda_1(z)| > 1 > |\lambda_2(z)|\}$, outliers are roots of a Gaussian field, limit of terms involving a single Gaussian in expansion of char. pol.
Outliers are random. What is structure of outliers?

- $J_N + N^{-\gamma}G_N$: outliers are zeros of a limiting Gaussian field, all inside disc.
- $J_N + J_N^2 + N^{-\gamma}G_N$: Write $zI + J_N + J_N^2 = (\lambda_1(z) - J_N)(\lambda_2(z) - J_N)$:
 - No outliers in $\{z : |\lambda_i(z)| > 1, i = 1, 2\}$
 - In $\{z : |\lambda_1(z)| > 1 > |\lambda_2(z)|\}$, outliers are roots of a Gaussian field, limit of terms involving a single Gaussian in expansion of char. pol.
 - In $\{z : 1 > |\lambda_1(z)| > |\lambda_2(z)|\}$, outliers are roots of limit of terms involving a product of two Gaussians in expansion of char. pol.
Ongoing work - Outliers

Let $d = d(z)$ be such that $|\lambda_d| < 1 < |\lambda_{d+1}|$. Then outliers are zeros of the field determined by terms in char. pol. which are product of Gaussians.

Expect this to be a limiting Gaussian field.

• Expect to extend to general finite banded Toeplitz.

• Should depend on nature of noise.
Conjectures and ongoing

Ongoing work - Outliers

- Upper triangular, Toeplitz, finite symbol

\[z + \sum_{i=0}^{k} a_i \lambda^i = \prod_{i=1}^{k} (\lambda(z) - \lambda), \quad |\lambda_i| \leq |\lambda_{i+1}| \]

Let \(d = d(z)\) be such that \(|\lambda_d| < 1 < |\lambda_{d+1}|\). Then outliers are zeros of field determined by terms in char. pol. which are product of Gaussians. Expect this to be a limiting Gaussian field.

- Expect to extend to general finite banded Toeplitz.
- Should depend on nature of noise.

Ofer Zeitouni
Ongoing work - Outliers

- Upper triangular, Toeplitz, finite symbol

\[z + \sum_{i=0}^{k} a_i \lambda^i = \prod_{i=1}^{k} (\lambda_i(z) - \lambda), |\lambda_i| \leq |\lambda_{i+1}| \]

Let \(d = d(z) \) be such that \(|\lambda_d| < 1 < |\lambda_{d+1}| \). Then outliers are zeros of field determined by terms in char. pol. which are product of \(d \) Gaussians.
Ongoing work - Outliers

- Upper triangular, Toeplitz, finite symbol

\[z + \sum_{i=0}^{k} a_i \lambda^i = \prod_{i=1}^{k} (\lambda_i(z) - \lambda), |\lambda_i| \leq |\lambda_{i+1}| \]

Let \(d = d(z) \) be such that \(|\lambda_d| < 1 < |\lambda_{d+1}|\). Then outliers are zeros of field determined by terms in char. pol. which are product of \(d \) Gaussians. Expect this to be a limiting Gaussian field.
Ongoing work - Outliers

• Upper triangular, Toeplitz, finite symbol

\[z + \sum_{i=0}^{k} a_i \lambda^i = \prod_{i=1}^{k} (\lambda_i(z) - \lambda), |\lambda_i| \leq |\lambda_{i+1}| \]

Let \(d = d(z) \) be such that \(|\lambda_d| < 1 < |\lambda_{d+1}| \). Then outliers are zeros of field determined by terms in char. pol. which are product of \(d \) Gaussians. Expect this to be a limiting Gaussian field.

• Expect to extend to general finite banded Toeplitz.
Ongoing work - Outliers

- Upper triangular, Toeplitz, finite symbol

\[z + \sum_{i=0}^{k} a_i \lambda^i = \prod_{i=1}^{k} (\lambda_i(z) - \lambda), \quad |\lambda_i| \leq |\lambda_{i+1}| \]

Let \(d = d(z) \) be such that \(|\lambda_d| < 1 < |\lambda_{d+1}| \). Then outliers are zeros of field determined by terms in char. pol. which are product of \(d \) Gaussians. Expect this to be a limiting Gaussian field.

- Expect to extend to general finite banded Toeplitz.
- Should depend on nature of noise.
Conjectures and ongoing

Conjectures and open problems - Spectrum limits

- General twisted Toeplitz symbol: Expect mixture as in upper triangular case.
- Main obstacle: compute determinant of twisted Toeplitz with non-zero winding number.
- Toeplitz with infinite symbol - depends on rate of decay?
- Non Gaussian noise - generalize Wood's result for $J_N \pm N^{-\gamma} G_N$.
- Even real Ginibre (instead of Ginibre) noise requires work (deterministic equivalence?)

Ofer Zeitouni
Conjectures and ongoing

Conjectures and open problems - Spectrum limits

- General twisted Toeplitz symbol:
 Expect mixture as in upper triangular case.
Conjectures and open problems - Spectrum limits

- General twisted Toeplitz symbol:
 Expect mixture as in upper triangular case. Main obstacle: compute determinant of twisted Toeplitz with non-zero winding number.
• General twisted Toeplitz symbol:
 Expect mixture as in upper triangular case. Main obstacle: compute determinant of twisted Toeplitz with non-zero winding number.
• Toeplitz with infinite symbol - depends on rate of decay?
Conjectures and open problems - Spectrum limits

- General twisted Toeplitz symbol:
 Expect mixture as in upper triangular case. Main obstacle: compute determinant of twisted Toeplitz with non-zero winding number.
- Toeplitz with infinite symbol - depends on rate of decay?
- Non Gaussian noise - generalize Wood’s result for $J_N + N^{-\gamma} G_N$.
Conjectures and ongoing

Conjectures and open problems - Spectrum limits

- General twisted Toeplitz symbol:
 Expect mixture as in upper triangular case. Main obstacle: compute determinant of twisted Toeplitz with non-zero winding number.
- Toeplitz with infinite symbol - depends on rate of decay?
- Non Gaussian noise - generalize Wood’s result for $J_N + N^{-\gamma} G_N$.
 Even real Ginibre (instead of Ginibre) noise requires work (deterministic equivalence?)
Śniady’s theorem

Assume $A_N \to^* a$.

Theorem (Śniady '02)

$$\lim_{t \to 0} \lim_{N \to \infty} L_{A_N}(t) N = \nu_a.$$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Builds on regularization ideas of Haagerup.

Main ingredient of proof compares the singular values $\Sigma_{A_N}(t) = (\sigma_{A_1},...,\sigma_{A_N})$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1,...,\sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ_0, Σ_A, for f coordinate-wise increasing,

$$N^{-1} \text{tr}(f(\Sigma_{A}(t))) \geq N^{-1} \text{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t = t_N \to 0$?
Śniady’s theorem

Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady ’02)

$$\lim_{t \to 0} \lim_{N \to \infty} L_{A_N}(t) = \nu_a.$$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Builds on regularization ideas of Haagerup.

Main ingredient of proof compares the singular values $\Sigma_{A_N}(t) = (\sigma_{A_1}, \ldots, \sigma_{A_N})$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \ldots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ_0, Σ_{A_N}, for f coordinate-wise increasing,

$$N - 1 \text{tr}(f(\Sigma_{A_N}(t))) \geq N - 1 \text{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t = t_N \to 0$?
Sniady’s theorem

Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Sniady ’02)

$$\lim_{t \to 0} \lim_{N \to \infty} L_N^{A_N(t)} = \nu_a.$$
Śniady’s theorem

Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady ’02)

$$\lim_{t \to 0} \lim_{N \to \infty} L^A_N(t) = \nu_a.$$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Builds on regularization ideas of Haagerup.
Elements in proofs

Śniady’s theorem

Assume $A_N \rightarrow^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady ’02)

$$\lim_{t \to 0} \lim_{N \to \infty} L_N^{A_N(t)} = \nu_a.$$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Builds on regularization ideas of Haagerup.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \ldots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \ldots, \sigma_N)$ of $tN^{-1/2}G_N$;
Śniady’s theorem

Assume $A_N \rightarrow^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady ’02)

$$\lim_{t \to 0} \lim_{N \to \infty} L_N^{A_N(t)} = \nu_a.$$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Builds on regularization ideas of Haagerup.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \ldots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \ldots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ_0, Σ_A, for f coordinate-wise increasing,

$$N^{-1}\text{tr}(f(\Sigma_A(t))) \geq N^{-1}\text{tr}(f(\Sigma_0(t))).$$
Śniady’s theorem

Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady ’02)

$$\lim_{t \to 0} \lim_{N \to \infty} L_N^{A_N(t)} = \nu_a.$$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Builds on regularization ideas of Haagerup.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \ldots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \ldots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ_0, Σ_A, for f coordinate-wise increasing,

$$N^{-1}\text{tr}(f(\Sigma_A(t))) \geq N^{-1}\text{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.
Étienne Sniady’s theorem

Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2} G_N$.

Theorem (Sniady ’02)

$$\lim_{t \to 0} \lim_{N \to \infty} L_N^{A_N(t)} = \nu a.$$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Builds on regularization ideas of Haagerup.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \ldots, \sigma_N^A)$ of $A_N + tN^{-1/2} G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \ldots, \sigma_N)$ of $tN^{-1/2} G_N$; by coupling the SDEs for the evolution of Σ_0, Σ_A, for f coordinate-wise increasing,

$$N^{-1} \text{tr}(f(\Sigma_A(t))) \geq N^{-1} \text{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t = t_N \to 0$?
Several methods, all use Logarithmic potential:

\[U_\mu(z) = \int \log |z - x| \mu(dx) \]

and Girko’s Hermitization (Girko, Bai, Gotze-Tikhomirov, Tao-Vu, ...)

One possibility (FPZ): expand determinant and identify dominant terms using concentration of measure.
Several methods, all use Logarithmic potential:

\[U_\mu(z) = \int \log |z - x| \mu(dx) \] and Girko’s Hermitization (Girko, Bai, Gotze-Tikhomirov, Tao-Vu, ...)

By general results, enough to show that for Lebesgue a.e. \(z \),

\[|U_{LB_N}(z) - U_{\mu_N}(z)| \to 0, \]

in probability, where \(U_\nu(z) = \int \log |z - x| \nu(dx) \).
Several methods, all use Logarithmic potential:
\[U_{\mu}(z) = \int \log |z - x| \mu(dx) \] and Girko’s Hermitization (Girko, Bai, Gotze-Tikhomirov, Tao-Vu, ...)
By general results, enough to show that for Lebesgue a.e. \(z \),

\[|U_{LB_N}(z) - U_{\mu_N}(z)| \to 0, \]

in probability, where \(U_{\nu}(z) = \int \log |z - x| \nu(dx) \).
For \(L_{BN}^B \), \(U_{LB_N}^B(z) = \frac{1}{2N} \log \det(z - B_N)(z - B_N)^* \).
Several methods, all use Logarithmic potential:

$$U_\mu(z) = \int \log |z - x| \mu(dx)$$

and Girko’s Hermitization (Girko, Bai, Gotze-Tikhomirov, Tao-Vu, ...)

By general results, enough to show that for Lebesgue a.e. z,

$$|U_{L^B_N}(z) - U_{\mu_N}(z)| \to 0,$$

in probability, where $U_\nu(z) = \int \log |z - x| \nu(dx)$.

For L^B_N, $U_{L^B_N}(z) = \frac{1}{2N} \log \det(z - B_N)(z - B_N)^*$.

One possibility (FPZ): expand determinant and identify dominant terms using concentration of measure.
Recall $T_N = M_N + N^{-\gamma} G_N$, $\gamma > 1/2$.
Recall $T_N = M_N + N^{-\gamma} G_N$, $\gamma > 1/2$.
Write $zI - M_N = U\Sigma_N V^*$, Σ_N - diagonal, singular values, arranged non-decreasing, and then

$$\Sigma = \Sigma_N = \begin{pmatrix} S_N & \\ & B_N \end{pmatrix}, \quad N^{-\gamma} G_N = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}.$$

where S_N has dimension $N^* \times N^*$.

where S_N has dimension $N^* \times N^*$.
Recall \(T_N = M_N + N^{-\gamma} G_N, \gamma > 1/2. \)

Write \(zI - M_N = U\Sigma_N V^*, \Sigma_N \) - diagonal, singular values, arranged non-decreasing, and then

\[
\Sigma = \Sigma_N = \begin{pmatrix}
S_N \\
B_N
\end{pmatrix}, \quad N^{-\gamma} G_N = \begin{pmatrix}
X_1 & X_2 \\
X_3 & X_4
\end{pmatrix}.
\]

where \(S_N \) has dimension \(N^* \times N^* \).

Define \(N^* \) as

\[
\sup\{i \geq 1 : \Sigma_{ii}(Z) \leq \epsilon^{-1}_N N^{-\gamma}(N - i)^{1/2}\}, \quad \epsilon_N = N^{-\eta}
\]
Recall $T_N = M_N + N^{-\gamma} G_N$, $\gamma > 1/2$. Write $zI - M_N = U \Sigma_N V^*$, Σ_N - diagonal, singular values, arranged non-decreasing, and then

$$\Sigma = \Sigma_N = \begin{pmatrix} S_N & \frac{1}{B_N} \\ \frac{1}{B_N} & \frac{1}{B_N} \end{pmatrix}, \quad N^{-\gamma} G_N = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}.$$

where S_N has dimension $N^* \times N^*$. Define N^* as

$$\sup \{ i \geq 1 : \Sigma_{ii}(z) \leq \epsilon_N^{-1} N^{-\gamma}(N - i)^{1/2} \}, \quad \epsilon_N = N^{-\eta}$$

Theorem (Basak-Paquette-Z. ’17 - Deterministic equivalence)

If $N^* = o(N/\log N)$ then

$$\frac{1}{N} \log |\det T_N| - \frac{1}{N} \log |\det B_N| \rightarrow 0.$$
Recall $T_N = M_N + N^{-\gamma} G_N$, $\gamma > 1/2$.
Write $zI - M_N = U\Sigma_N V^*$, Σ_N - diagonal, singular values, arranged non-decreasing, and then

$$\Sigma = \Sigma_N = \begin{pmatrix} S_N & \ & \ \ & B_N & \end{pmatrix}, \quad N^{-\gamma} G_N = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}.$$

where S_N has dimension $N^* \times N^*$.
Define N^* as

$$\sup\{i \geq 1 : \Sigma_{ii}(Z) \leq \epsilon_N^{-1} N^{-\gamma} (N - i)^{1/2}\}, \quad \epsilon_N = N^{-\eta}$$

Theorem (Basak-Paquette-Z. ’17 - Deterministic equivalence)

If $N^* = o(N/ \log N)$ then

$$\frac{1}{N} \log |\det T_N| - \frac{1}{N} \log |\det B_N| \to 0.$$

So only need to understand small singular values of M_N.
The Toeplitz case - transfer matrices

Reformulation: \(M_N = \sum_{i=1}^{k} a_i J^i_N \), singular values?
The Toeplitz case - transfer matrices

Reformulation: $M_N = \sum_{i=1}^{k} a_i J_N^i$, singular values? (allow a_i to change by row.)
The Toeplitz case - transfer matrices

Reformulation: \(M_N = \sum_{i=1}^{k} a_i J_N^i \), singular values? (allow \(a_i \) to change by row.)
Set \(V = \{ x \in \mathbb{R}^N : ((M_N - zI_N)x)_j = 0, j = 1, \ldots, N - k \} \). Parametrized by \(x_1, \ldots, x_k \) and transfer matrices \(T_j(z) \)

\[(x_\ell)^{j+k}_{\ell=j+1} = T_j(z)(x_\ell)^{j+k-1}_{\ell=j}.\]
Reformulation: $M_N = \sum_{i=1}^{k} a_i J^i_N$, singular values? (allow a_i to change by row.)

Set $V = \{ x \in \mathbb{R}^N : ((M_N - zI_N)x)_j = 0, j = 1, \ldots, N - k \}$. Parametrized by x_1, \ldots, x_k and transfer matrices $T_j(z)$

$$(x_\ell)^{j+k} = T_j(z)(x_\ell)^{j+k-1}. $$

$\mu_i(z)$ - Lyapunov exponents for $\prod_i T_i(z)$. If $T_i(z) = T(z)$ (Toeplitz) - modulii of eigenvalues of $T(z) = T_j(z)$, which are the roots of the symbol $P(z) = \sum_{i=0}^{k} a_i z^i$.
The Toeplitz case - transfer matrices

Reformulation: $M_N = \sum_{i=1}^{k} a_i J^i_N$, singular values? (allow a_i to change by row.)

Set $V = \{ x \in \mathbb{R}^N : ((M_N - zI_N)x)_j = 0, j = 1, \ldots, N - k \}$. Parametrized by x_1, \ldots, x_k and transfer matrices $T_j(z)$

$$(x_\ell)^{j+k} = T_j(z)(x_\ell)^{j+k-1}.$$

$\mu_i(z)$ - Lyapunov exponents for $\prod_i T_i(z)$. If $T_i(z) = T(z)$ (Toeplitz) - modulii of eigenvalues of $T(z) = T_j(z)$, which are the roots of the symbol $P(z) = \sum_{i=0}^{k} a_i z^i$. The BPZ theorem can then be reformulated.

Theorem

$$U_{LN}(z) \to \frac{1}{2\pi} \int_0^{2\pi} \log |P(e^{i\theta}) - z| dz$$

and therefore

$$U_{LN}(z) \to \int_0^{2\pi} \log |P(e^{i\theta}) - z| dz = \log |a_k| + \sum_{i=1}^{k} [\log |\mu_i(z)|] \lor 0.$$

Ofer Zeitouni
BPZ - two diagonal case

Take $M_N = -zl + D_N + J_N$.
Elements in proofs

BPZ - two diagonal case

Take $M_N = -zI + D_N + J_N$.

Lemma

Take $d_i = D_{ii}$ iid.

a) If $E \log |z - d_1| < 0$ then

$$N^{-1} \log \sigma_N(M_N) \to E \log |z - d_1|,$$

$$\sigma_{N-1}(M_N) \geq N^{-C}.$$

b) If $E \log |z - d_1| > 0$ then $\sigma_N(M_N) \geq N^{-C}$.
BPZ - two diagonal case

Take $M_N = -zl + D_N + J_N$.

Lemma

Take $d_i = D_{ii}$ iid.

a) If $E \log |z - d_1| < 0$ then

$$N^{-1} \log \sigma_N(M_N) \to E \log |z - d_1|,$$

$$\sigma_{N-1}(M_N) \geq N^{-C}.$$

b) If $E \log |z - d_1| > 0$ then $\sigma_N(M_N) \geq N^{-C}$.

In particular $N^* = 1$.
Elements in proofs

BPZ - two diagonal case

Take \(M_N = -zl + D_N + J_N \).

Lemma

Take \(d_i = D_{ii} \) iid.

a) If \(E \log |z - d_1| < 0 \) then

\[
N^{-1} \log \sigma_N(M_N) \to E \log |z - d_1|, \\
\sigma_{N-1}(M_N) \geq N^{-C}.
\]

b) If \(E \log |z - d_1| > 0 \) then \(\sigma_N(M_N) \geq N^{-C} \).

In particular \(N^* = 1 \).

Since

\[
N^{-1} \sum_{i=1}^{N} \log \sigma_i(M_N) = N^{-1} \log \det(M_N),
\]

get that log-potential converges to \((E \log |z - d_1|) \vee 0\).
Suppose $D_N = 0$, $d_i = -z$ is constant.
Suppose $D_N = 0, \quad d_i = -z$ is constant.

Lemma

If $|z| \neq 1$, $\sigma_{N-1}(M_N) \geq C(z)(\log N)^{-1}$.

This reconstructs the GWZ result!
Elements in proofs

BPZ - two diagonal case - \(M_N = -zI + D_N + J \)

Suppose \(D_N = 0, d_i = -z \) is constant.

Lemma

1. If \(|z| \neq 1\), \(\sigma_{N-1}(M_N) \geq C(z)(\log N)^{-1} \).
2. If \(|z| < 1\) then \(C_2 < \sigma_N(M_N)|z|^{-N} < C_1 \).

This reconstructs the GWZ result!
Elements in proofs

BPZ - two diagonal case - $M_N = -zI + D_N + J$

Suppose $D_N = 0$, $d_i = -z$ is constant.

Lemma

\[\begin{align*}
\text{If } |z| \neq 1, \ & \sigma_{N-1}(M_N) \geq C(z)(\log N)^{-1}. \\
\text{If } |z| < 1 \ & \text{then } C_2 < \sigma_N(M_N)|z|^{-N} < C_1. \\
\text{If } |z| > 1 \ & \text{then } \sigma_N(M_N) > C/\log N.
\end{align*} \]

This reconstructs the GWZ result!
BPZ - two diagonal case - \(M_N = -zI + J_N \)

Approximate singular vector construction
BPZ - two diagonal case - $M_N = -zI + J_N$

Approximate singular vector construction Assume $|z| < 1$. Set $v_1 = 1$, $v_k = zv_{k-1}$. Then $(M_Nv)_k = \begin{cases} 0, & k \leq N - 1, \\ -z^N, & k = N. \end{cases}$
Elements in proofs

BPZ - two diagonal case - \(M_N = -zI + J_N \)

Approximate singular vector construction Assume \(|z| < 1\). Set \(v_1 = 1 \), \(v_k = zv_{k-1} \). Then \((M_Nv)_k = \begin{cases} 0, & k \leq N - 1, \\ -z^N, & k = N. \end{cases} \)

\[
\sigma_{N-1}(M_N) = \sup_w \inf_{x: \langle x, w \rangle = 0} \frac{\|M_Nx\|_2}{\|x\|_2} \geq \inf_{x: \langle x, v \rangle = 0} \frac{\|M_Nx\|_2}{\|x\|_2}
\]
Approximate singular vector construction Assume $|z| < 1$. Set $v_1 = 1$, $v_k = zv_{k-1}$. Then $(M_Nv)_k = \begin{cases} 0, & k \leq N - 1, \\ -z^N, & k = N. \end{cases}$

$$\sigma_{N-1}(M_N) = \sup_w \inf_{x : \langle x, w \rangle = 0} \frac{\|M_Nx\|_2}{\|x\|_2} \geq \inf_{x : \langle x, v \rangle = 0} \frac{\|M_Nx\|_2}{\|x\|_2}$$

Let $\|x\|_2 = 1$, for $k \leq N - 1$, $x_{k+1} = zx_k + (M_Nx)_k$, hence for $a \in \mathbb{C}$,

$$x_k - av_k = (x_1 - av_1)z^{k-1} + \sum_{j=1}^{k-1} (M_Nx)_j z^{k-j}$$
Approximate singular vector construction Assume $|z| < 1$. Set $v_1 = 1$, $v_k = zv_{k-1}$. Then $(M_Nv)_k = \begin{cases} 0, & k \leq N - 1, \\ -z^N, & k = N. \end{cases}$

$$\sigma_{N-1}(M_N) = \sup_w \inf_{x: \langle x, w \rangle = 0} \frac{\|M_Nx\|_2}{\|x\|_2} \geq \inf_{x: \langle x, v \rangle = 0} \frac{\|M_Nx\|_2}{\|x\|_2}$$

Let $\|x\|_2 = 1$, for $k \leq N - 1$, $x_{k+1} = zx_k + (M_Nx)_k$, hence for $a \in \mathbb{C}$,

$$x_k - av_k = (x_1 - av_1)z^{k-1} + \sum_{j=1}^{k-1} (M_Nx)_j z^{k-j}$$

But if $\|x\|_2 = 1$ and $\langle x, v \rangle = 0$, we have that $1 \leq \|x - av\|$.
Approximate singular vector construction Assume $|z| < 1$. Set $v_1 = 1$, $v_k = zv_{k-1}$. Then $(M_Nv)_k = \begin{cases} 0, & k \leq N - 1, \\ -z^N, & k = N. \end{cases}$

$$\sigma_{N-1}(M_N) = \sup_w \inf_{x: \langle x,w \rangle = 0} \frac{\|M_Nx\|_2}{\|x\|_2} \geq \inf_{x: \langle x,v \rangle = 0} \frac{\|M_Nx\|_2}{\|x\|_2}$$

Let $\|x\|_2 = 1$, for $k \leq N - 1$, $x_{k+1} = zx_k + (M_Nx)_k$, hence for $a \in \mathbb{C}$,

$$x_k - av_k = (x_1 - av_1)z^{k-1} + \sum_{j=1}^{k-1} (M_Nx)_j z^{k-j}$$

But if $\|x\|_2 = 1$ and $\langle x, v \rangle = 0$, we have that $1 \leq \|x - av\|$. Choose $x_1 - av_1 = 0$, get a lower bound on $\|M_Nx\|$ in terms of $\|x - av\|$ of the form

$$\|M_Nx\| \geq C(z)/ \log N \Rightarrow \sigma_{N-1}(M_N) \geq C(z)/ \log N.$$
To control $\sigma_N(M_N)$, recall

$$\sigma_N(M_N) = \inf_x \frac{\|M_Nx\|_2}{\|x\|_2}$$
BPZ - two diagonal case - $M_N = -zI + D_N + J_N$

To control $\sigma_N(M_N)$, recall

$$\sigma_N(M_N) = \inf_x \frac{\|M_Nx\|_2}{\|x\|_2}$$

Write $x = av/\|v\|_2 + by$ with $\langle y, v \rangle = 0$, $\|y\|_2 = 1$. Then with π the projection to first $N-1$ coordinates,

$$\|M_Nx\|_2^2 = \|\pi M_N y\|_2^2 |b|^2 + ((M_Nx)_N)^2.$$
BPZ - two diagonal case - \(M_N = -zI + D_N + J_N \)

To control \(\sigma_N(M_N) \), recall

\[
\sigma_N(M_N) = \inf_x \frac{\|M_Nx\|_2}{\|x\|_2}
\]

Write \(x = av/\|v\|_2 + by \) with \(\langle y, v \rangle = 0, \|y\|_2 = 1 \). Then with \(\pi \) the projection to first \(N - 1 \) coordinates,

\[
\|M_Nx\|_2^2 = \|\pi M_Ny\|_2^2 b^2 + ((M_Nx)_N)^2.
\]

Since \(a^2 + b^2 = 1 \), either \(b \) is large or \(M_Nv \) is small. Algebraic manipulations give

\[
\sigma_N(M_N) \geq C \inf_{x: \langle x, v \rangle = 0} \frac{\|\pi M_Nx\|_2}{\|x\|_2} \cdot \frac{\|M_Nv\|_2}{\|v\|_2} \geq \frac{c |Z|^N}{\log N}
\]
To control $\sigma_N(M_N)$, recall

$$\sigma_N(M_N) = \inf_x \frac{\|M_Nx\|_2}{\|x\|_2}$$

Write $x = av/\|v\|_2 + by$ with $\langle y, v \rangle = 0$, $\|y\|_2 = 1$. Then with π the projection to first $N - 1$ coordinates,

$$\|M_Nx\|_2^2 = \|\pi M_Ny\|_2^2 |b|^2 + ((M_Nx)_N)^2.$$

Since $a^2 + b^2 = 1$, either b is large or M_Nv is small. Algebraic manipulations give

$$\sigma_N(M_N) \geq C \inf_{x: \langle x, v \rangle = 0} \frac{\|\pi M_Nx\|_2}{\|x\|_2} \cdot \frac{\|M_Nv\|_2}{\|v\|_2} \geq \frac{c|z|^N}{\log N}$$

Upper bound: plug $x = v/\|v\|_2$.
To control $\sigma_N(M_N)$, recall

$$\sigma_N(M_N) = \inf_x \frac{\|M_Nx\|_2}{\|x\|_2}$$

Write $x = av/\|v\|_2 + by$ with $\langle y, v \rangle = 0$, $\|y\|_2 = 1$. Then with π the projection to first $N - 1$ coordinates,

$$\|M_Nx\|_2^2 = \|\pi M_N y\|_2^2 |b|^2 + ((M_Nx)_N)^2.$$

Since $a^2 + b^2 = 1$, either b is large or M_Nv is small. Algebraic manipulations give

$$\sigma_N(M_N) \geq C \inf_{x: \langle x, v \rangle = 0} \frac{\|\pi M_Nx\|_2}{\|x\|_2} \cdot \frac{\|M_Nv\|_2}{\|v\|_2} \geq \frac{c|z|^N}{\log N}$$

Upper bound: plug $x = v/\|v\|_2$. Slowly varying diagonals: apply this argument in blocks.
Elements in proofs

BPZ - two diagonal case - $M_N = -zI + D_N + J_N$

To control $\sigma_N(M_N)$, recall

$$\sigma_N(M_N) = \inf_x \frac{\|M_Nx\|_2}{\|x\|_2}$$

Write $x = av/\|v\|_2 + by$ with $\langle y, v \rangle = 0$, $\|y\|_2 = 1$. Then with π the projection to first $N - 1$ coordinates,

$$\|M_Nx\|_2^2 = \|\pi M_Ny\|_2^2 b^2 + ((M_Nx)_N)^2.$$

Since $a^2 + b^2 = 1$, either b is large or M_Nv is small. Algebraic manipulations give

$$\sigma_N(M_N) \geq C \inf_{x: \langle x, v \rangle = 0} \frac{\|\pi M_Nx\|_2}{\|x\|_2} \cdot \frac{\|M_Nv\|_2}{\|v\|_2} \geq \frac{c|z|^N}{\log N}$$

Upper bound: plug $x = v/\|v\|_2$.

Slowly varying diagonals: apply this argument in blocks.

Multi diagonal: choose appropriate basis according to composition of eigenvalues of transfer matrix.