Extending the Borcea-Brändén Characterization

Jonathan Leake

Department of Mathematics
UC Berkeley

QLAWS1, 2018
Stable Polynomials

Definition

For \(p \in \mathbb{C}[x] \equiv \mathbb{C}[x_1, \ldots, x_m] \), we say \(p \) is \(S\)-stable whenever \(p(x) \neq 0 \) for \(x \in S \). If \(p \in \mathbb{R}[x] \) and \(S = \mathcal{H}^+_m \), we call \(p \) real stable.

- Root bounds: mixed characteristic polynomial, additive convolution
- Combinatorics: matroids, coefficient data
- Optimization: hyperbolic polynomials

objects \(\rightarrow \) multivariate polynomials \(\rightarrow \) apply operators \(\rightarrow \) information

Borcea-Brändén: complete characterization of linear operators preserving real stability and \(C^m \)-stability (for any open circular region \(C \)).
(BB) Multivariate matching polynomial $= \text{MAP}(\prod_{(i,j) \in E}(1 - x_i x_j))$

- $(1 - x_i x_j)$ is real stable, products are real stable.
- MAP = “Multi-Affine Part” preserves real-stability.
- Plug in x for all variables \rightarrow univariate matching poly is real-rooted.

(Gurvits) Doubly stochastic matrix $M \rightarrow \prod_{r \in \text{rows}} r \cdot x$

- $p_M(x) := \prod_i \sum_j m_{ij} x_j$ is real stable.
- (coefficient of $x_1 x_2 \cdots x_n$) $= \partial_{x_1} \cdots \partial_{x_n} p$ is the permanent of M.
- Can we obtain a bound on the permanent by analyzing ∂_{x_k}?

Both cases: want to determine properties of some linear operator on polynomials.
This Talk

Algebraic explanation/framework for the BB characterization.
- Explanation of why the BB characterization works out so well.
- Extensions which immediately follow from the new point of view.
- Unification of many of the BB results.

So why do we care? One application: capacity of a polynomial.
- Yields a theory of capacity-preserving operators.
- Application is straightforward, using similar techniques as above.
- Suggests a way forward for generalizing recent uses of capacity ideas. (e.g. operator scaling, coefficient optimization results)

Main thesis: This is the right way to think about preservation properties of linear operators on polynomials.
Throughout we will use the following shorthand:

- $\mathbf{x} = (x_1, \ldots, x_m)$, $\mathbf{x}^{\mu} = \prod_k x_k^{\mu_k}$, $\mathbb{C}[\mathbf{x}] = \mathbb{C}[x_1, \ldots, x_m]$
- $+, -, >, \text{ etc. are element-wise, e.g. } x > 0 \text{ iff } \forall k, x_k > 0$
- $\mathbb{C}_\lambda[\mathbf{x}] = \{\text{polys in } \mathbb{C}[\mathbf{x}] \text{ of degree at most } \lambda_k \text{ in the variable } x_k\}$
- $\mu! = \prod_k \mu_k!$, $\binom{\lambda}{\mu} = \frac{\lambda!}{\mu!(\lambda-\mu)!}$
- $\mathcal{H}_+ = \text{upper half-plane}$, $\mathcal{H}_- = \text{lower half-plane}$
- \mathbb{CP}^1 refers to the Riemann sphere; $\mathbb{C} \subset \mathbb{CP}^1$ as usual by stereographic projection
- S^c is set complement, \overline{S} is set closure, usually as a subset of \mathbb{CP}^1 (roughly, OK to think \mathbb{C} instead)
The BB Characterization

Theorem (Borcea-Brändén)

Let $T : \mathbb{C}_\lambda[x] \to \mathbb{C}_\gamma[x]$ be a linear operator with $\dim(\text{Im}(T)) > 1$. Then T preserves \mathcal{H}^m_+-stability iff $\text{Symb}_{BB}(T)$ is \mathcal{H}^{2m}_+-stable.

Theorem (Borcea-Brändén)

Let $T : \mathbb{R}_\lambda[x] \to \mathbb{R}_\gamma[x]$ be a linear operator with $\dim(\text{Im}(T)) > 2$. Then T preserves real stability iff one of $\text{Symb}_{BB}(T)(z, \pm x)$ is real stable.

Surprising: a given operator T preserves stability exactly when a single polynomial $\text{Symb}_{BB}(T)$ is stable.

Remark

Mobius transforms and various versions of Symb_{BB} allow different stability regions.
An Explicit Example

Definition

Given a linear operator \(T : \mathbb{C}_\lambda[x] \to \mathbb{C}_\gamma[x] \) define:

\[
\text{Symb}_{BB}(T)(z, x) := T[(z + x)^\lambda] = \sum_{0 \leq \mu \leq \lambda} \binom{\lambda}{\mu} z^{\lambda - \mu} T(x^\mu)
\]

Fix real-rooted \(p \) (with roots \(a_k \)) and consider the additive convolution:

\[
T_p(r) = p \boxplus^n r = \frac{1}{n!} \sum_{\sigma \in S_n} \prod_{k=1}^n (x - a_k - b_{\sigma(k)})
\]

- \(\text{Symb}_{BB}(T_p) = \prod_k (x + z - a_k) \) is real-stable.
- BB: \(T_p \) preserves real-rootedness.
Another Example

Recall: \(Symb_{BB}(T)(z, x) := T[(z + x)^\lambda] = \sum_{0 \leq \mu \leq \lambda} \binom{\lambda}{\mu} z^{\lambda - \mu} T(x^\mu) \)

Consider \(MAP \) as discussed above:

\[
Symb_{BB}(MAP) = MAP[(z + x)^\lambda] = \prod_{k} MAP[(z_k + x_k)^{\lambda_k}]
\]

\[
= \prod_{k} (z_k^{\lambda_k} + \lambda_k z_k^{\lambda_k-1} x_k)
\]

\[
= z^{\lambda - 1} \prod_{k} (z_k + \lambda_k x_k)
\]

\(Symb_{BB}(MAP) \) is real stable \(\Rightarrow \) \(MAP(\prod_{(i,j) \in E}(1 - x_i x_j)) \) is real stable.
The Symbol

Where does the symbol come from?

\[\text{bilinear form } \langle \cdot, \cdot \rangle : \mathbb{C}_\lambda[x] \otimes \mathbb{C}_\lambda[x] \to \mathbb{C} \]

\[\iff \]

\[\text{Hom}(\mathbb{C}_\lambda[x], \mathbb{C}_\gamma[x]) \cong \mathbb{C}_\lambda[x]^* \otimes \mathbb{C}_\gamma[x] \cong \mathbb{C}_\lambda[x] \otimes \mathbb{C}_\gamma[x] \cong \mathbb{C}((\lambda, \gamma))[z, x] \]

Definition

The symbol map \(\text{Symb} \) corresponding to \(\langle \cdot, \cdot \rangle \) is given for any \(p, x \) as:

\[T[p](x) = \langle \text{Symb}(T)(z, x), p(z) \rangle \]

- \(\text{Symb}(T) \) “acts on” \(p \) via \(\langle \cdot, \cdot \rangle \) to get \(T(p) \).
- \(\text{Symb}(T) \) encodes all info about what \(T \) does.

Which bilinear form?
The Apolarity Form

\[\langle p, q \rangle := \sum_{0 \leq \mu \leq \lambda} \binom{\lambda}{\mu}^{-1} (-1)^\mu p_\mu q_{\lambda-\mu} \] (notice: coeff. ↔ evaluation)

Remark

This is the unique \(SL_2^m \)-invariant (variable-wise Mobius transformations) bilinear form on polynomials (up to scalar).

Lemma

The Symb map corresponding to the apolarity form is:

\[\text{Symb}(T)(z, x) = T[(x - z)^\lambda] = \sum_{0 \leq \mu \leq \lambda} \binom{\lambda}{\mu} (-z)^{\lambda-\mu} T(x^\mu) \]

Properties of the apolarity form (denote \(\langle \cdot, \cdot \rangle \)):

- Provides stability information (classical Grace’s theorem)
- Symmetry properties (avoids Mobius transformations)
- Spaces of polynomials are now \(SL_2^m \)-modules
Example Revisited

A quick aside: Why the algebraic mindset?

Consider \boxplus^n as a map with a single input in $\mathbb{C}_n[x] \otimes \mathbb{C}_n[x] \cong \mathbb{C}_{(n,n)}[x_1, x_2]$.

- $\text{Symb}_{BB}(\boxplus^n) = (x + z)^n \boxplus^n (x + t)^n = (x + z + t)^n$
- $\text{Symb}(\boxplus^n) = (x - z)^n \boxplus^n (x - t)^n = (x - z - t)^n$

Why not multivariate? $p \boxplus^\lambda q := \frac{1}{\lambda!} \sum_\mu \partial^\mu p(0) \partial^{\lambda - \mu} q(x)$

- $\text{Symb}_{BB}(\boxplus^\lambda) = (x + z)^\lambda \boxplus^\lambda (x + t)^\lambda = (x + z + t)^\lambda$
- $\text{Symb}(\boxplus^\lambda) = (x - z)^\lambda \boxplus^\lambda (x - t)^\lambda = (x - z - t)^\lambda$

Notice: \boxplus^λ preserves real stability by the BB characterization.
Grace’s Theorem

Theorem

If \(p \) is \((\mathcal{H}_+ \cup \mathbb{R}_+)^m\)-stable and \(q \) is \((\mathcal{H}_- \cup \mathbb{R}_-)^m\)-stable then \(\langle p, q \rangle \neq 0 \).

Corollaries:

- \(SL_2^m \)-invariance \(\Rightarrow \) any circular regions with portion of boundary
- compactness of \(\mathbb{CP}^1 \) \(\Rightarrow \) closed and open (classical) circular regions

Corollary (Grace, Borcea-Brändén)

For any closed circular regions \(C_i \), if \(p \) is \((C_1 \times \cdots \times C_m)\)-stable and \(q \) is \((C_1^c \times \cdots \times C_m^c)\)-stable, then \(\langle p, q \rangle \neq 0 \).

For input polynomials with given stability properties, the form is nonzero. This says that certain evaluations of \(T(p) \) are nonzero.
The Main Characterization

Theorem

T maps $(C_1^c \times \cdots \times C_m^c)$-stable polynomials to S-stable polynomials iff $\text{Symb}(T)$ is $(C_1 \times \cdots \times C_m) \times S$-stable. Here S can be any set.

Proof.

(\Leftarrow) Recall that $T[p](x) = \langle \text{Symb}(T)(z, x), p(z) \rangle$.

(\Rightarrow) Apolarity form dual of C_i is C_i^c. ($\mathbb{CP}^1 \sim \{\text{linear polys}\}$)

- Output stability region is completely free.
- No need for Mobius transformations: all stability info included.
- Unifies the many BB characterization results.

Corollary (Walsh)

Let $a_k \in \mathbb{C}$ denote the roots of p. If r has all its roots in C, then $p \boxplus^n r$ has all its roots in $\bigcup_k (C + a_k)$.
Possible to use other stability regions besides circular regions?

Theorem

\[T \text{ preserves the set of polynomials with roots in } C^\circ \cup \gamma \text{ iff } \text{Symb}(T) \text{ is } (C^\circ \cup \gamma) \times (C^\circ \cup \gamma)^c\text{-stable, for } \gamma \text{ connected portion of the boundary of } C. \]

What about real intervals and rays?

Corollary

Let \(T : \mathbb{R}_n[x] \to \mathbb{R}_m[x] \) be a linear operator with \(\dim(\text{Im}(T)) > 2 \), and let \(I, J \) be real intervals. Then \(T \) preserves real-rootedness and maps \(I \)-rooted polynomials to \(J \)-rooted polynomials iff \(\text{Symb}(T) \) is either \((\mathcal{H}^- \cup I) \times (\overline{\mathcal{H}^+ \setminus J})\text{-stable or } (\mathcal{H}^- \cup I) \times (\overline{\mathcal{H}^- \setminus J})\text{-stable.} \)
Relation to BB Characterization

How does this mesh with BB characterization (e.g. set complements)?

Recall: \(\text{Symb}(T)(z, x) = T[(x - z)^\lambda] = \sum_{0 \leq \mu \leq \lambda} \binom{\lambda}{\mu} (-z)^{\lambda - \mu} T(x^\mu) \)

Negate \(z \) to obtain \(BB \) symbol. \((\text{Symb}_{BB}(T)(z, x) = T[(x + z)^\lambda]) \)

Corollary

\(T \) preserves \(\mathcal{H}_+^m \)-stable polynomials iff \(\text{Symb}_{BB}(T) \) is \((\overline{\mathcal{H}_+^m} \times \mathcal{H}_+^m) \)-stable.

What about the set closure? And the lack of dimension condition?

- Zero polynomial does not count as stable here.
- Hurwitz’ theorem and extra arguments yield the BB results.
- Excluding root “edge cases” gives the clean characterization.
Next question: what about analytic information?

Recall $T[p](x) = \langle \text{Symb}(T)(z, x), p(z) \rangle$. So:

- Bounds on $\langle \cdot, \cdot \rangle$ transfer to bounds on $T[p](x)$.
- Analytic notion needs to relate to polynomial evaluation.

The point: the above expression equates evaluation of $T(p)$ to a bilinear form which explicitly refers to coefficients of p and Symb(T).

What analytic notion relates evaluation and coefficients?
Capacity

Definition (Gurvits)
Given a polynomial $p \in \mathbb{R}_\lambda^+[x]$ and $\alpha \in \text{Newt}(p)$, define
\[\text{Cap}_\alpha(p) := \inf_{x>0} \frac{p(x)}{x^\alpha} \] (where $x^\alpha := \prod_k x_k^{\alpha_k}$ as usual).

Theorem (Gurvits)

Let $p \in \mathbb{R}_\lambda^+[x]$ be m-homogeneous and real stable. For $c_k := \min(k, \lambda_k)$:

\[p_{(1^m)} = \partial_{x_1} \cdots \partial_{x_m} p(0) \geq \text{Cap}_{(1^m)}(p) \prod_{k=2}^m \left(\frac{c_k - 1}{c_k} \right)^{c_k-1} \]

- Simple proof of permanent inequality for doubly stochastic matrices and related results (e.g. Schrijver bound, mixed discriminants).
- Progress measure for matrix/operator scaling algorithms: non-commutative symbolic matrix singularity problem $\in \mathcal{P}$.

Jonathan Leake (UC Berkeley)
Extending the BB Characterization
QLAWS1, 2018
A Recent Relevant Result

Definition

For $p \in \mathbb{C}_{(\lambda, \lambda)}[z, x]$, define $\langle p \rangle_{SO_2} := \sum_{\mu \leq \lambda} (\frac{\lambda}{\mu})^{-1} p_{\mu, \mu}$.

Properties of $\langle \cdot \rangle_{SO_2}$:

- $\langle p, q \rangle_{SO_2} := \langle p(z)q(x) \rangle_{SO_2} = \langle z^\lambda p(-1/z), q(z) \rangle$ is a bilinear form.
- If p is $(\mathcal{H}_{-} \cup \mathbb{R}_{+})^m \times (\mathcal{H}_{+} \cup \mathbb{R}_{+})^m$-stable, then $\langle p \rangle_{SO_2} \neq 0$.
- $\langle \cdot, \cdot \rangle_{SO_2}$ is SO_2^m-invariant.

Theorem (Anari-Gharan 2017)

If $p \in \mathbb{R}_{(1^m, 1^m)}^+[z, x]$ is $(\mathcal{H}_{-}^m \times \mathcal{H}_{+}^m)$-stable ("bistable"), then:

$$\langle p \rangle_{SO_2} \geq \alpha^\alpha (1 - \alpha)^{1-\alpha} \text{Cap}_{(\alpha, \alpha)}(p)$$

Proof uses strongly Rayleigh inequalities for real stable $p \in \mathbb{R}_{(1^m)}^[+] [x]$.

Jonathan Leake (UC Berkeley) Extending the BB Characterization QLAWS1, 2018 18 / 22
Corollary

If \(p \in \mathbb{R}^+_{(\lambda, \lambda)}[z, x] \) is \((\mathcal{H}_-^m \times \mathcal{H}_+^m)\)-stable ("bistable"), then:

\[
\langle p \rangle_{SO_2} \geq \frac{\alpha^\alpha (\lambda - \alpha)^{\lambda-\alpha}}{\lambda^\lambda} \text{Cap}_{(\alpha, \alpha)}(p)
\]

For \(T \) and \(p \) with desired stability properties and any \(x > 0 \):

\[
T[p](x) = \langle \text{Symb}_{SO_2}(T)(z, x), p(z) \rangle_{SO_2} \\
\geq \frac{\alpha^\alpha (\lambda - \alpha)^{\lambda-\alpha}}{\lambda^\lambda} \text{Cap}_\alpha(p) \text{Cap}_\alpha(\text{Symb}_{SO_2}(T)(\cdot, x))
\]

Divide by \(x^\beta \) and take \(\inf_{x>0} \) on both sides (recall \(\text{Cap}_\beta(p) := \inf_{x>0} \frac{p(x)}{x^\beta} \)):

\[
\text{Cap}_\beta(T[p]) \geq \frac{\alpha^\alpha (\lambda - \alpha)^{\lambda-\alpha}}{\lambda^\lambda} \text{Cap}_\alpha(p) \text{Cap}_{(\alpha, \beta)}(\text{Symb}_{SO_2}(T))
\]
Theorem

Let $T : \mathbb{R}^+_{\lambda}[z] \to \mathbb{R}^+_{\gamma}[z]$ be such that $\text{Symb}_{SO_2}(T)(z, x)$ is real stable in z for every $x > 0$ ("semistable"). For any real stable $p \in \mathbb{R}^+_{\lambda}[x]$:

$$\frac{\text{Cap}_\beta(T[p])}{\text{Cap}_\alpha(p)} \geq \frac{\alpha^\alpha(\lambda - \alpha)^{\lambda - \alpha}}{\lambda^\lambda} \text{Cap}(\alpha, \beta)(\text{Symb}_{SO_2}(T))$$

Moreover, this bound is tight for any fixed α, β, and T.

Lemma

Given $T : \mathbb{R}^+_{\lambda}[z] \to \mathbb{R}^+_{\gamma}[z]$, we have $\text{Symb}_{SO_2}(T) = T[(xz + 1)^\lambda]$. Tightness is demonstrated by considering $p(z) = (xz + 1)^\lambda$ for fixed $x > 0$.
Gurvits’ Theorem

Let real stable \(p \in \mathbb{R}^+ \lambda [x] \) be \(m \)-homogeneous. Recall \((c_k := \min(k, \lambda_k)):\)

\[
p(1^m) = \partial_{x_1} \cdots \partial_{x_m} p(0) \geq \text{Cap}_{(1^m)}(p) \prod_{k=2}^{m} \left(\frac{c_k - 1}{c_k} \right)^{c_k-1}
\]

Consider \(T = \partial_{x_m}\big|_{x_m=0} \) and let \(\gamma \) denote \(\lambda \) without the \(m \)th coordinate.

- \(\text{Symb}_{SO_2}(T) = \partial_{x_m}(xz + 1) \lambda_{x_m=0} = \lambda_m z_m(xz + 1) \gamma \)
- \(\text{Cap}_{(1^m,1^m-1)}(\text{Symb}_{SO_2}(T)) = \lambda_m \frac{\gamma^\gamma}{(\gamma-1)^{\gamma-1}} \)
- \(\text{Cap}_{(1^m-1)}\left(\partial_{x_m} p\big|_{x_m=0} \right) \geq \left(\frac{\lambda_{m-1}}{\lambda_m} \right)^{\lambda_{m-1}} \text{Cap}_{(1^m)}(p) \)

\(\partial_{x_m} p\big|_{x_m=0} \) is homogeneous of degree \(m - 1 \) \(\Rightarrow \) induction
Applications of capacity-preservers, beyond differential operators?

Can we get similar bounds based only on the total degree of a given homogeneous polynomial?

SO\(_m\)-invariant form: \(\langle p, q \rangle_{SO_m} := \sum_{\mu} \binom{d}{\mu}^{-1} p_{\mu} q_{\mu} \)

Conjecture (Gurvits 2009)

For real stable \(d \)-homogeneous polynomials \(p, q \in \mathbb{R}^+ [x] \), we have:

\[
\langle p, q \rangle_{SO_m} \geq m^{-d} \text{Cap}_\alpha(p) \text{Cap}_\alpha(q)
\]

What about the matrix capacity case used in operator scaling result?

- Some bound on Frobenius inner product? Some other bilinear form?
- Possibly related to \(SO_m \) form above.