Extending the Borcea-Brändén Characterization

Jonathan Leake
Department of Mathematics UC Berkeley

QLAWS1, 2018

Stable Polynomials

Definition

For $p \in \mathbb{C}[x] \equiv \mathbb{C}\left[x_{1}, \ldots, x_{m}\right]$, we say p is S-stable whenever $p(x) \neq 0$ for $x \in S$. If $p \in \mathbb{R}[x]$ and $S=\mathcal{H}_{+}^{m}$, we call p real stable.

- Root bounds: mixed characteristic polynomial, additive convolution
- Combinatorics: matroids, coefficient data
- Optimization: hyperbolic polynomials
objects \rightarrow multivariate polynomials \rightarrow apply operators \rightarrow information
Borcea-Brändén: complete characterization of linear operators preserving real stability and C^{m}-stability (for any open circular region C).

Two Brief Examples

(BB) Multivariate matching polynomial $=\operatorname{MAP}\left(\prod_{(i, j) \in E}\left(1-x_{i} x_{j}\right)\right)$

- $\left(1-x_{i} x_{j}\right)$ is real stable, products are real stable.
- MAP $=$ "Multi-Affine Part" preserves real-stability.
- Plug in x for all variables \rightarrow univariate matching poly is real-rooted.
(Gurvits) Doubly stochastic matrix $M \rightarrow \prod_{r \in \text { rows }} r \cdot x$
- $p_{M}(x):=\prod_{i} \sum_{j} m_{i j} x_{j}$ is real stable.
- (coefficient of $\left.x_{1} x_{2} \cdots x_{n}\right)=\partial_{x_{1}} \cdots \partial_{x_{n}} p$ is the permanent of M.
- Can we obtain a bound on the permanent by analyzing $\partial_{x_{k}}$?

Both cases: want to determine properties of some linear operator on polynomials.

This Talk

Algebraic explanation/framework for the BB characterization.

- Explanation of why the BB characterization works out so well.
- Extensions which immediately follow from the new point of view.
- Unification of many of the BB results.

So why do we care? One application: capacity of a polynomial.

- Yields a theory of capacity-preserving operators.
- Application is straightforward, using similar techniques as above.
- Suggests a way forward for generalizing recent uses of capacity ideas. (e.g. operator scaling, coefficient optimization results)

Main thesis: This is the right way to think about preservation properties of linear operators on polynomials.

Notation

Throughout we will use the following shorthand:

- $x=\left(x_{1}, \ldots, x_{m}\right), x^{\mu}=\prod_{k} x_{k}^{\mu_{k}}, \mathbb{C}[x]=\mathbb{C}\left[x_{1}, \ldots, x_{m}\right]$
-,,$+->$, etc. are element-wise, e.g. $x>0$ iff $\forall k, x_{k}>0$
- $\mathbb{C}_{\lambda}[x]=\left\{\right.$ polys in $\mathbb{C}[x]$ of degree at most λ_{k} in the variable $\left.x_{k}\right\}$
- $\mu!=\prod_{k} \mu_{k}!,\binom{\lambda}{\mu}=\frac{\lambda!}{\mu!(\lambda-\mu)!}$
- $\mathcal{H}_{+}=$upper half-plane, $\mathcal{H}_{-}=$lower half-plane
- $\mathbb{C P}^{1}$ refers to the Riemann sphere; $\mathbb{C} \subset \mathbb{C P}^{1}$ as usual by stereographic projection
- S^{c} is set complement, \bar{S} is set closure, usually as a subset of $\mathbb{C P}^{1}$ (roughly, OK to think \mathbb{C} instead)

The BB Characterization

Theorem (Borcea-Brändén)

Let $T: \mathbb{C}_{\lambda}[x] \rightarrow \mathbb{C}_{\gamma}[x]$ be a linear operator with $\operatorname{dim}(\operatorname{lm}(T))>1$. Then T preserves \mathcal{H}_{+}^{m}-stability iff $\operatorname{Symb}_{B B}(T)$ is $\mathcal{H}_{+}^{2 m}$-stable.

Theorem (Borcea-Brändén)

Let $T: \mathbb{R}_{\lambda}[x] \rightarrow \mathbb{R}_{\gamma}[x]$ be a linear operator with $\operatorname{dim}(\operatorname{lm}(T))>2$. Then T preserves real stability iff one of $\operatorname{Symb}_{B B}(T)(z, \pm x)$ is real stable.

Surprising: a given operator T preserves stability exactly when a single polynomial $\operatorname{Symb}_{B B}(T)$ is stable.

Remark

Mobius transforms and various versions of Symb Sill $_{B B}$ allow different stability regions.

An Explicit Example

Definition

Given a linear operator $T: \mathbb{C}_{\lambda}[x] \rightarrow \mathbb{C}_{\gamma}[x]$ define:

$$
\operatorname{Symb}_{B B}(T)(z, x):=T\left[(z+x)^{\lambda}\right]=\sum_{0 \leq \mu \leq \lambda}\binom{\lambda}{\mu} z^{\lambda-\mu} T\left(x^{\mu}\right)
$$

Fix real-rooted p (with roots a_{k}) and consider the additive convolution:

$$
T_{p}(r)=p \boxplus^{n} r=\frac{1}{n!} \sum_{\sigma \in S_{n}} \prod_{k=1}^{n}\left(x-a_{k}-b_{\sigma(k)}\right)
$$

- $\operatorname{Symb}_{B B}\left(T_{p}\right)=\prod_{k}\left(x+z-a_{k}\right)$ is real-stable.
- $\mathrm{BB}: T_{p}$ preserves real-rootedness.

Another Example

Recall: $\operatorname{Symb}_{B B}(T)(z, x):=T\left[(z+x)^{\lambda}\right]=\sum_{0 \leq \mu \leq \lambda}\binom{\lambda}{\mu} z^{\lambda-\mu} T\left(x^{\mu}\right)$
Consider MAP as discussed above:

$$
\begin{aligned}
\operatorname{Symb}_{B B}(M A P) & =M A P\left[(z+x)^{\lambda}\right] \\
& =\prod_{k} M A P\left[\left(z_{k}+x_{k}\right)^{\lambda_{k}}\right] \\
& =\prod_{k}\left(z_{k}^{\lambda_{k}}+\lambda_{k} z_{k}^{\lambda_{k}-1} x_{k}\right) \\
& =z^{\lambda-1} \prod_{k}\left(z_{k}+\lambda_{k} x_{k}\right)
\end{aligned}
$$

$\operatorname{Symb}_{B B}(M A P)$ is real stable $\Rightarrow \operatorname{MAP}\left(\prod_{(i, j) \in E}\left(1-x_{i} x_{j}\right)\right)$ is real stable.

The Symbol

Where does the symbol come from?

$$
\text { bilinear form }\langle\cdot, \cdot\rangle: \mathbb{C}_{\lambda}[x] \otimes \mathbb{C}_{\lambda}[x] \rightarrow \mathbb{C}
$$

\Longleftrightarrow

$\operatorname{Hom}\left(\mathbb{C}_{\lambda}[x], \mathbb{C}_{\gamma}[x]\right) \cong \mathbb{C}_{\lambda}[x]^{*} \otimes \mathbb{C}_{\gamma}[x] \cong \mathbb{C}_{\lambda}[x] \otimes \mathbb{C}_{\gamma}[x] \cong \mathbb{C}_{(\lambda, \gamma)}[z, x]$

Definition

The symbol map Symb corresponding to $\langle\cdot, \cdot\rangle$ is given for any p, x as:

$$
T[p](x)=\langle\operatorname{Symb}(T)(z, x), p(z)\rangle
$$

- $\operatorname{Symb}(T)$ "acts on" p via $\langle\cdot, \cdot\rangle$ to get $T(p)$.
- Symb (T) encodes all info about what T does.

Which bilinear form?

The Apolarity Form

$$
\langle p, q\rangle:=\sum_{0 \leq \mu \leq \lambda}\binom{\lambda}{\mu}^{-1}(-1)^{\mu} p_{\mu} q_{\lambda-\mu} \text { (notice: coeff. } \leftrightarrow \text { evaluation) }
$$

Remark

This is the unique $S L_{2}^{m}$-invariant (variable-wise Mobius transformations) bilinear form on polynomials (up to scalar).

Lemma

The Symb map corresponding to the apolarity form is:

$$
\operatorname{Symb}(T)(z, x)=T\left[(x-z)^{\lambda}\right]=\sum_{0 \leq \mu \leq \lambda}\binom{\lambda}{\mu}(-z)^{\lambda-\mu} T\left(x^{\mu}\right)
$$

Properties of the apolarity form (denote $\langle\cdot, \cdot\rangle$):

- Provides stability information (classical Grace's theorem)
- Symmetry properties (avoids Mobius transformations)
- Spaces of polynomials are now $S L_{2}^{m}$-modules

Example Revisited

A quick aside: Why the algebraic mindset?
Consider \boxplus^{n} as a map with a single input in $\mathbb{C}_{n}[x] \otimes \mathbb{C}_{n}[x] \cong \mathbb{C}_{(n, n)}\left[x_{1}, x_{2}\right]$.

- $\operatorname{Symb}_{B B}\left(\boxplus^{n}\right)=(x+z)^{n} \boxplus^{n}(x+t)^{n}=(x+z+t)^{n}$
- $\operatorname{Symb}\left(\boxplus^{n}\right)=(x-z)^{n} \boxplus^{n}(x-t)^{n}=(x-z-t)^{n}$

Why not multivariate? $p \boxplus^{\lambda} q:=\frac{1}{\lambda!} \sum_{\mu} \partial^{\mu} p(0) \partial^{\lambda-\mu} q(x)$

- $\operatorname{Symb}_{B B}\left(\boxplus^{\lambda}\right)=(x+z)^{\lambda} \boxplus^{\lambda}(x+t)^{\lambda}=(x+z+t)^{\lambda}$
- $\operatorname{Symb}\left(\boxplus^{\lambda}\right)=(x-z)^{\lambda} \boxplus^{\lambda}(x-t)^{\lambda}=(x-z-t)^{\lambda}$

Notice: \boxplus^{λ} preserves real stability by the BB characterization.

Grace's Theorem

Theorem

If p is $\left(\mathcal{H}_{+} \cup \overline{\mathbb{R}_{+}}\right)^{m}$-stable and q is $\left(\mathcal{H}_{-} \cup \overline{\mathbb{R}_{-}}\right)^{m}$-stable then $\langle p, q\rangle \neq 0$.
Corollaries:

- $S L_{2}^{m}$-invariance \Rightarrow any circular regions with portion of boundary
- compactness of $\mathbb{C P}^{1} \Rightarrow$ closed and open (classical) circular regions

Corollary (Grace, Borcea-Brändén)

For any closed circular regions C_{i}, if p is $\left(C_{1} \times \cdots \times C_{m}\right)$-stable and q is $\left(C_{1}^{c} \times \cdots \times C_{m}^{c}\right)$-stable, then $\langle p, q\rangle \neq 0$.

For input polynomials with given stability properties, the form is nonzero. This says that certain evaluations of $T(p)$ are nonzero.

The Main Characterization

Theorem

T maps $\left(C_{1}^{c} \times \cdots \times C_{m}^{c}\right)$-stable polynomials to S-stable polynomials iff $\operatorname{Symb}(T)$ is $\left(C_{1} \times \cdots \times C_{m}\right) \times S$-stable. Here S can be any set.

Proof.

(\Leftarrow) Recall that $T[p](x)=\langle\operatorname{Symb}(T)(z, x), p(z)\rangle$.
(\Rightarrow) Apolarity form dual of C_{i} is $C_{i}^{c} .\left(\mathbb{C P}^{1} \sim\{\right.$ linear polys $\left.\}\right)$

- Output stability region is completely free.
- No need for Mobius transformations: all stability info included.
- Unifies the many BB characterization results.

Corollary (Walsh)

Let $a_{k} \in \mathbb{C}$ denote the roots of p. If r has all its roots in C, then $p \boxplus^{n} r$ has all its roots in $\cup_{k}\left(C+a_{k}\right)$.

More Results

Possible to use other stability regions besides circular regions?

Theorem

T preserves the set of polynomials with roots in $C^{\circ} \cup \gamma$ iff $\operatorname{Symb}(T)$ is $\left(C^{\circ} \cup \gamma\right) \times\left(C^{\circ} \cup \gamma\right)^{c}$-stable, for γ connected portion of the boundary of C.

What about real intervals and rays?

Corollary

Let $T: \mathbb{R}_{n}[x] \rightarrow \mathbb{R}_{m}[x]$ be a linear operator with $\operatorname{dim}(\operatorname{Im}(T))>2$, and let I, J be real intervals. Then T preserves real-rootedness and maps I-rooted polynomials to J-rooted polynomials iff $\operatorname{Symb}(T)$ is either $\left(\mathcal{H}_{-} \cup I\right) \times\left(\overline{\mathcal{H}_{+}} \backslash J\right)$-stable or $\left(\mathcal{H}_{-} \cup I\right) \times\left(\overline{\mathcal{H}_{-}} \backslash J\right)$-stable.

Relation to BB Characterization

How does this mesh with BB characterization (e.g. set complements)?
Recall: $\operatorname{Symb}(T)(z, x)=T\left[(x-z)^{\lambda}\right]=\sum_{0 \leq \mu \leq \lambda}\binom{\lambda}{\mu}(-z)^{\lambda-\mu} T\left(x^{\mu}\right)$
Negate z to obtain $B B$ symbol. $\left(\operatorname{Symb}_{B B}(T)(z, x)=T\left[(x+z)^{\lambda}\right]\right)$

Corollary

T preserves \mathcal{H}_{+}^{m}-stable polynomials iff $\operatorname{Symb}_{B B}(T)$ is $\left(\overline{\mathcal{H}}_{+}^{m} \times \mathcal{H}_{+}^{m}\right)$-stable.
What about the set closure? And the lack of dimension condition?

- Zero polynomial does not count as stable here.
- Hurwitz' theorem and extra arguments yield the BB results.
- Excluding root "edge cases" gives the clean characterization.

Analytic Information

Next question: what about analytic information?
Recall $T[p](x)=\langle\operatorname{Symb}(T)(z, x), p(z)\rangle$. So:

- Bounds on $\langle\cdot, \cdot\rangle$ transfer to bounds on $T[p](x)$.
- Analytic notion needs to relate to polynomial evaluation.

The point: the above expression equates evaluation of $T(p)$ to a bilinear form which explicitly refers to coefficients of p and $\operatorname{Symb}(T)$.

What analytic notion relates evaluation and coefficients?

Capacity

Definition (Gurvits)

Given a polynomial $p \in \mathbb{R}_{\lambda}^{+}[x]$ and $\alpha \in \operatorname{Newt}(p)$, define $\operatorname{Cap}_{\alpha}(p):=\inf _{x>0} \frac{p(x)}{x^{\alpha}}\left(\right.$ where $x^{\alpha}:=\prod_{k} x_{k}^{\alpha_{k}}$ as usual).

Theorem (Gurvits)

Let $p \in \mathbb{R}_{\lambda}^{+}[x]$ be m-homogeneous and real stable. For $c_{k}:=\min \left(k, \lambda_{k}\right)$:

$$
p_{\left(1^{m}\right)}=\partial_{x_{1}} \cdots \partial_{x_{m}} p(0) \geq \operatorname{Cap}_{\left(1^{m}\right)}(p) \prod_{k=2}^{m}\left(\frac{c_{k}-1}{c_{k}}\right)^{c_{k}-1}
$$

- Simple proof of permanent inequality for doubly stochastic matrices and related results (e.g. Schrijver bound, mixed discriminants).
- Progress measure for matrix/operator scaling algorithms: non-commutative symbolic matrix singularity problem $\in \mathcal{P}$

A Recent Relevant Result

Definition

For $p \in \mathbb{C}_{(\lambda, \lambda)}[z, x]$, define $\langle p\rangle_{S O_{2}}:=\sum_{\mu \leq \lambda}\binom{\lambda}{\mu}^{-1} p_{\mu, \mu}$.
Properties of $\langle\cdot\rangle_{\mathrm{SO}_{2}}$:

- $\langle p, q\rangle_{\mathrm{SO}_{2}}:=\langle p(z) q(x)\rangle_{\mathrm{SO}_{2}}=\left\langle z^{\lambda} p(-1 / z), q(z)\right\rangle$ is a bilinear form.
- If p is $\left(\mathcal{H}_{-} \cup \overline{\mathbb{R}_{+}}\right)^{m} \times\left(\mathcal{H}_{+} \cup \overline{\mathbb{R}_{+}}\right)^{m}$-stable, then $\langle p\rangle_{S O_{2}} \neq 0$.
- $\langle\cdot, \cdot\rangle_{\mathrm{SO}_{2}}$ is SO_{2}^{m}-invariant.

Theorem (Anari-Gharan 2017)

$$
\text { If } p \in \mathbb{R}_{\left(1^{m}, 1^{m}\right)}^{+}[z, x] \text { is }\left(\mathcal{H}_{-}^{m} \times \mathcal{H}_{+}^{m}\right) \text {-stable ("bistable"), then: }
$$

$$
\langle p\rangle_{S_{2}} \geq \alpha^{\alpha}(1-\alpha)^{1-\alpha} \operatorname{Cap}_{(\alpha, \alpha)}(p)
$$

Proof uses strongly Rayleigh inequalities for real stable $p \in \mathbb{R}_{\left(1^{m}\right)}^{+}[x]$.

Using the Framework

Corollary

If $p \in \mathbb{R}_{(\lambda, \lambda)}^{+}[z, x]$ is $\left(\mathcal{H}_{-}^{m} \times \mathcal{H}_{+}^{m}\right)$-stable ("bistable"), then:

$$
\langle p\rangle_{\mathrm{SO}_{2}} \geq \frac{\alpha^{\alpha}(\lambda-\alpha)^{\lambda-\alpha}}{\lambda^{\lambda}} \operatorname{Cap}_{(\alpha, \alpha)}(p)
$$

For T and p with desired stability properties and any $x>0$:

$$
\begin{aligned}
T[p](x) & =\left\langle\operatorname{Symb}_{\mathrm{SO}_{2}}(T)(z, x), p(z)\right\rangle_{\mathrm{SO}_{2}} \\
& \geq \frac{\alpha^{\alpha}(\lambda-\alpha)^{\lambda-\alpha}}{\lambda^{\lambda}} \operatorname{Cap}_{\alpha}(p) \operatorname{Cap}_{\alpha}\left(\operatorname{Symb}_{\mathrm{SO}_{2}}(T)(\cdot, x)\right)
\end{aligned}
$$

Divide by x^{β} and take $\inf _{x>0}$ on both sides $\left(\right.$ recall $\left.\operatorname{Cap}_{\beta}(p):=\inf _{x>0} \frac{p(x)}{x^{\beta}}\right)$:

$$
\operatorname{Cap}_{\beta}(T[p]) \geq \frac{\alpha^{\alpha}(\lambda-\alpha)^{\lambda-\alpha}}{\lambda^{\lambda}} \operatorname{Cap}_{\alpha}(p) \operatorname{Cap}_{(\alpha, \beta)}\left(\operatorname{Symb}_{S_{O}}(T)\right)
$$

Capacity Transferring Operators

Theorem

Let $T: \mathbb{R}_{\lambda}^{+}[z] \rightarrow \mathbb{R}_{\gamma}^{+}[z]$ be such that $\operatorname{Symb}_{\mathrm{SO}_{2}}(T)(z, x)$ is real stable in z for every $x>0$ ("semistable"). For any real stable $p \in \mathbb{R}_{\lambda}^{+}[x]$:

$$
\frac{\operatorname{Cap}_{\beta}(T[p])}{\operatorname{Cap}_{\alpha}(p)} \geq \frac{\alpha^{\alpha}(\lambda-\alpha)^{\lambda-\alpha}}{\lambda^{\lambda}} \operatorname{Cap}_{(\alpha, \beta)}\left(\operatorname{Symb}_{S O_{2}}(T)\right)
$$

Moreover, this bound is tight for any fixed α, β, and T.

Lemma

Given $T: \mathbb{R}_{\lambda}^{+}[z] \rightarrow \mathbb{R}_{\gamma}^{+}[z]$, we have $\operatorname{Symb}_{\mathrm{SO}_{2}}(T)=T\left[(x z+1)^{\lambda}\right]$.
Tightness is demonstrated by considering $p(z)=(x z+1)^{\lambda}$ for fixed $x>0$.

Gurvits' Theorem

Let real stable $p \in \mathbb{R}_{\lambda}^{+}[x]$ be m-homogeneous. Recall $\left(c_{k}:=\min \left(k, \lambda_{k}\right)\right)$:

$$
p_{\left(1^{m}\right)}=\partial_{x_{1}} \cdots \partial_{x_{m}} p(0) \geq \operatorname{Cap}_{\left(1^{m}\right)}(p) \prod_{k=2}^{m}\left(\frac{c_{k}-1}{c_{k}}\right)^{c_{k}-1}
$$

Consider $T=\left.\partial_{x_{m}}\right|_{x_{m}=0}$ and let γ denote λ without the $m^{\text {th }}$ coordinate.

- $\operatorname{Symb}_{S O_{2}}(T)=\left.\partial_{x_{m}}(x z+1)^{\lambda}\right|_{x_{m}=0}=\lambda_{m} z_{m}(x z+1)^{\gamma}$
- $\operatorname{Cap}_{\left(1^{m}, 1^{m-1}\right)}\left(\operatorname{Symb}_{S O_{2}}(T)\right)=\lambda_{m} \frac{\gamma^{\gamma}}{(\gamma-1)^{\gamma-1}}$
- $\operatorname{Cap}_{\left(1^{m-1}\right)}\left(\left.\partial_{x_{m}} p\right|_{x_{m}=0}\right) \geq\left(\frac{\lambda_{m}-1}{\lambda_{m}}\right)^{\lambda_{m}-1} \operatorname{Cap}_{\left(1^{m}\right)}(p)$
$\left.\partial_{x_{m}} p\right|_{x_{m}=0}$ is homogeneous of degree $m-1 \Rightarrow$ induction

Further Questions

Applications of capacity-preservers, beyond differential operators?
Can we get similar bounds based only on the total degree of a given homogeneous polynomial?
$S O_{m}$-invariant form: $\langle p, q\rangle_{S O_{m}}:=\sum_{\mu}\binom{d}{\mu}^{-1} p_{\mu} q_{\mu}$

Conjecture (Gurvits 2009)

For real stable d-homogeneous polynomials $p, q \in \mathbb{R}^{+}[x]$, we have:

$$
\langle p, q\rangle_{S O_{m}} \geq m^{-d} \operatorname{Cap}_{\alpha}(p) \operatorname{Cap}_{\alpha}(q)
$$

What about the matrix capacity case used in operator scaling result?

- Some bound on Frobenius inner product? Some other bilinear form?
- Possibly related to $S O_{m}$ form above.

