
Least singular value, circular law, and Lindeberg exchange

Terence Tao

Abstract. These lectures cover three loosely related topics in random matrix the-
ory. First we discuss the techniques used to bound the least singular value of (non-
Hermitian) random matrices, focusing particularly on the matrices with jointly
independent entries. We then use these bounds to obtain the circular law for the
spectrum of matrices with iid entries of finite variance. Finally, we discuss the
Lindeberg exchange method which allows one to demonstrate universality of many
spectral statistics of matrices (both Hermitian and non-Hermitian).

1. The least singular value

This section1 of the lecture notes is concerned with the behaviour of the least
singular value σn(M) of an n × n matrix M (or, more generally, the least non-
trivial singular value σp(M) of a n×p matrix with p 6 n). This quantity controls
the invertibility of M. Indeed, M is invertible precisely when σn(M) is non-zero,
and the `2 operator norm ‖M−1‖op of M−1 is given by 1/σn(M). This quantity is
also related to the condition number σ1(M)/σn(M) = ‖M‖op‖M−1‖op of M, which
is of importance in numerical linear algebra. As we shall see in Section 2, the least
singular value of M (and more generally, of the shifts 1√

n
M− zI for complex z)

will be of importance in rigorously establishing the circular law for iid random
matrices M.

The least singular value2

σn(M) = inf
‖x‖=1

‖Mx‖,

which sits at the “hard edge” of the spectrum, bears a superficial similarity to the
operator norm

‖M‖op = σ1(M) = sup
‖x‖=1

‖Mx‖
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at the “soft edge” of the spectrum. For strongly rectangular matrices, the tech-
niques that are useful to control the latter can also control the former, but the sit-
uation becomes more delicate for square matrices. For instance, the “epsilon net”
method that is so useful for understanding the operator norm can control some
“low entropy” portions of the infimum that arise from “structured” or “compress-
ible” choices of x, but are not able to control the “generic” or “incompressible”
choices of x, for which new arguments will be needed. Similarly, the moment
method can give the coarse order of magnitude (for instance, for rectangular ma-
trices with p = yn for 0 < y < 1, it gives an upper bound of (1 −

√
y+ o(1))n for

the least singular value with high probability, thanks to the Marcenko-Pastur law),
but again this method begins to break down for square matrices, although one
can make some partial headway by considering negative moments such as trM−2,
though these are more difficult to compute than positive moments trMk.

So one needs to supplement these existing methods with additional tools. It
turns out that the key issue is to understand the distance between one of the n
rows X1, . . . ,Xn ∈ Cn of the matrix M, and the hyperplane spanned by the other
n−1 rows. The reason for this is as follows. First suppose that σn(M) = 0, so that
M is non-invertible, and there is a linear dependence between the rows X1, . . . ,Xn.
Thus, one of the Xi will lie in the hyperplane spanned by the other rows, and so
one of the distances mentioned above will vanish; in fact, one expects many of
the n distances to vanish. Conversely, whenever one of these distances vanishes,
one has a linear dependence, and so σn(M) = 0.

More generally, if the least singular value σn(M) is small, one generically
expects many of these n distances to be small also, and conversely. Thus, control
of the least singular value is morally equivalent to control of the distance between
a row Xi and the hyperplane spanned by the other rows. This latter quantity is
basically the dot product of Xi with a unit normal ni of this hyperplane.

When working with random matrices with jointly independent coefficients, we
have the crucial property that the unit normal ni (which depends on all the rows
other than Xi) is independent of Xi, so even after conditioning ni to be fixed, the
entries of Xi remain independent. As such, the dot product Xi · ni is a familiar
scalar random walk, and can be controlled by a number of tools, most notably
Littlewood-Offord theorems and the Berry-Esséen central limit theorem. As it
turns out, this type of control works well except in some rare cases in which
the normal ni is “compressible” or otherwise highly structured; but epsilon-net
arguments can be used to dispose of these cases3.

These methods rely quite strongly on the joint independence on all the entries;
it remains a challenge to extend them to more general settings. Even for Wigner
matrices, the methods run into difficulty because of the non-independence of

3This general strategy was first developed for the technically simpler singularity problem in [43], and
then extended to the least singular value problem in [52].
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some of the entries (although it turns out one can understand the least singular
value in such cases by rather different methods).

To simplify the exposition, we shall focus primarily here on just one specific
ensemble of random matrices, the Bernoulli ensemble M = (ξij)16i6p;16j6n of
random sign matrices, where ξij = ±1 are independent Bernoulli signs. However,
the results can extend to more general classes of random matrices, with the main
requirement being that the coefficients are jointly independent.

Throughout these notes, we use X� Y, Y � X, or X = O(Y) to denote a bound
of the form |X| 6 CY for some absolute constant C; we take n as an asymptotic
parameter, and write X = o(Y) to denote a bound of the form |X| 6 c(n)Y for some
quantity c(n) that goes to zero as n goes to infinity (holding other parameters
fixed). If C or c(n) needs to depend on additional parameters, we will denote
this by subscripts, e.g. X �δ Y denotes a bound of the form X > cδ|Y| for some
cδ > 0.

1.1. The epsilon-net argument We begin by using the epsilon net argument to
upper bound the operator norm:

Theorem 1.1.1 (Upper bound for operator norm). Let M = (ξij)16i,j6n;16j6n be
an n× n Bernoulli matrix. Then with exponentially high probability (i.e. 1 −O(e−cn)

for some c > 0), one has

(1.1.2) ‖M‖op = σ1(M) 6 C
√
n

for some absolute constant C.

We remark that the above theorem in fact holds for any C > 2; this follows for
instance from the work of Geman [32] combined with the Talagrand concentration
inequality (see Exercise 1.4.5 below). We will not use this improvement to this
theorem here.

Proof. We write
‖M‖op = sup

x∈Rn:‖x‖=1
‖Mx‖,

thus the failure event ‖M‖op > C
√
n is the union of the events ‖Mx‖ > C

√
n as

x ranges over the unit sphere. One cannot apply the union bound immediately
because the number of points on the unit sphere is uncountable. Instead, we first
discretise the unit sphere using the “epsilon net argument”. Let Σ be a maximal
1/2-net of the unit sphere in Rn, that is to say a maximal 1/2-separated subset
of the sphere. Observe that if x attains the supremum in the above equation, and
y is the nearest element of Σ to x, then ‖y− x‖ 6 1/2, and hence by the triangle
inequality

‖M‖op = ‖Mx‖ 6 ‖My‖+ ‖M‖op‖y− x‖

and thus
‖M‖op 6 sup

x∈Σ
‖Mx‖+ 1

2
‖M‖op
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or equivalently
‖M‖op 6 2 sup

x∈Σ
‖Mx‖,

and so it suffices to show that

P(sup
x∈Σ
‖Mx‖ > C

2
√
n)

is exponentially small in n. From the union bound, we can upper bound this by∑
x∈Σ

P(‖Mx‖ > C
2
√
n).

The balls of radius 1/4 around each point in Σ are disjoint, and lie in the 1/4-
neighbourhood of the sphere. From volume considerations we conclude that

(1.1.3) |Σ| 6 O(1)n

We set aside this bound as an “entropy cost” to be paid later, and focus on upper
bounding, for each x ∈ Σ, the probability

P(‖Mx‖ > C
2
√
n).

If we let Y1, . . . ,Yn ∈ Rn be the rows of M, we can write this as

P

 n∑
j=1

|Yj · x|2 >
C2

4
n

 .

To bound this expression, we use the same exponential moment method used
to prove the Chernoff inequality. Indeed, for any parameter c > 0, we can use
Markov’s inequality to bound the above by

e−cC
2n/4E exp(c

n∑
j=1

|Yj · x|2).

As the random vectors Y1, . . . ,Yn are iid, this is equal to

e−cC
2n/4

(
E exp(c|Y · x|2)

)n
.

Using the Chernoff inequality, the vectors Y · x are uniformly subgaussian, in the
sense that there exist constants C, c > 0 such that

P(|ξij| > t) 6 C exp(−ct2)

for all t > 0. In particular one has

E exp(c|Y · x|2)� 1

if c > 0 is a sufficiently small absolute constant. This implies the bound

P(‖Mx‖ > C
2
√
n)� exp(−cC2n/8 +O(n)).

Taking C large enough, we obtain the claim. �

Now we use the same method to establish a lower bound in the rectangular
case, first established in [4]:
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Theorem 1.1.4 (Lower bound). LetM = (ξij)16i6p;16j6n be an n×p Bernoulli ma-
trix, where 1 6 p 6 (1− δ)n for some δ > 0 (independent of n). Then with exponentially
high probability, one has σp(M)�δ

√
n.

To prove this theorem, we again use the “epsilon net argument”. We write

σp(M) = inf
x∈Rp:‖x‖=1

‖Mx‖.

Let ε > 0 be a parameter to be chosen later. Let Σ be a maximal ε-net of the unit
sphere in Rp. Then we have

σp(M) > inf
x∈Σ
‖Mx‖− ε‖M‖op

and thus by (1.1.2), we have with exponentially high probability that

σp(M) > inf
x∈Σ
‖Mx‖−Cε

√
n,

and so it suffices to show that

P( inf
x∈Σ
‖Mx‖ 6 2Cε

√
n)

is exponentially small in n. From the union bound, we can upper bound this by∑
x∈Σ

P(‖Mx‖ 6 2Cε
√
n).

The balls of radius ε/2 around each point in Σ are disjoint, and lie in the ε/2-
neighbourhood of the sphere. From volume considerations we conclude that

(1.1.5) |Σ| 6 O(1/ε)p 6 O(1/ε)(1−δ)n.

We again set aside this bound as an “entropy cost” to be paid later, and focus on
upper bounding, for each x ∈ Σ, the probability

P(‖Mx‖ 6 2Cε
√
n).

If we let Y1, . . . ,Yn ∈ Rp be the rows of M, we can write this as

P

 n∑
j=1

|Yj · x|2 6 4C2ε2n

 .

By Markov’s inequality, the only way that this event can hold is if we have

|Yj · x|2 6 8C2ε2/δ

for at least (1 − δ/2)n values of j. The number of such sets of values is at most
2n. Applying the union bound (and paying the entropy cost of 2n) and using
symmetry, we may thus bound the above probability by

6 2nP(|Yj · x|2 6 8C2ε2/δ for 1 6 j 6 (1 − δ/2)n).

Now observe that the random variables Yj · x are independent, and so we can
bound this expression by

6 2nP(|Y · x| 6
√

8Cε/δ1/2)(1−δ/2)n

where Y = (ξ1, . . . , ξn) is a random vector of iid Bernoulli signs.
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We write x = (x1, . . . , xn), so that Y · x is a random walk

Y · x = ξ1x1 + · · ·+ ξnxn.

To understand this walk, we apply (a slight variant) of the Berry-Esséen theorem:

Exercise 1.1.6. Show4 that

sup
t

P(|Y · x− t| 6 r)� r

‖x‖
+

1
‖x‖3

n∑
j=1

|xj|
3

for any r > 0 and any non-zero x.
Conclude in particular that if ∑

j:|xj|6ε

|xj|
2 > η

for some η > 0, then
sup
t

P(|Y · x− t| 6
√

8Cε)�η ε.

(Hint: condition out all the xj with |xj| > ε.)

Let us temporarily call x incompressible if∑
j:|xj|6ε

|xj|
2 > η

and compressible otherwise, where η > 0 is a parameter (independent of n) to be
chosen later. If we only look at the incompressible elements of Σ, we can now
bound

P(‖Mx‖ 6 2Cε
√
n)� Oη(ε)

(1−δ/2)n,

and comparing this against the entropy cost (1.1.5) we obtain an acceptable contri-
bution for ε small enough (here we are crucially using the rectangular condition
p 6 (1 − δ)n).

It remains to deal with the compressible vectors. Observe that such vectors lie
within η of a sparse unit vector which is only supported in at most ε−2 positions.
The η-entropy of these sparse vectors (i.e. the number of balls of radius η needed
to cover this space) can easily be computed to be of polynomial size O(nOε,η(1))

in n; thus, if η is chosen to be less than ε/2, the number of compressible vectors
in Σ is also O(nOε,η(1)). Meanwhile, we have the following crude bound:

Exercise 1.1.7. For any unit vector x, show that

P(|Y · x| 6 κ) 6 1 − κ

for κ > 0 a small enough absolute constant. (Hint: Use the Paley-Zygmund in-
equality P(Z > θEZ) > (1− θ)2 (EZ)2

E(Z2)
, valid for any non-negative random variable

Z of finite non-zero variance, and any 0 6 θ 6 1. Bounds on higher moments

4Actually, for the purposes of this section, it would suffice to establish a weaker form of the Berry-
Esséen theorem with

∑n
j=1 |xj|

3/‖x‖3 replaced by (
∑3
j=1 |xj|

3/‖x‖3)c for any fixed c > 0. This can
for instance be done using the Lindeberg exchange method, discussed in Section 3.
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on |Y · x| can be obtained for instance using Hoeffding’s inequality, or by direct
computation.) Use this to show that

P(‖Mx‖ 6 α
√
n)� exp(−cn)

for all such x and a sufficiently small absolute constant α > 0, with c > 0 inde-
pendent of α and n.

Thus the compressible vectors give a net contribution ofO(nOε,η(1))×exp(−cn),
which is acceptable. This concludes the proof of Theorem 1.1.4.

1.2. Singularity probability Now we turn to square iid matrices. Before we
investigate the size of the least singular value of M, we first tackle the easier
problem of bounding the singularity probability

P(σn(M) = 0),

i.e. the probability that M is not invertible. The problem of computing this
probability exactly is still not completely settled. Since M is singular whenever
the first two rows (say) are identical, we obtain a lower bound

P(σn(M) = 0) >
1

2n
,

and it is conjectured that this bound is essentially tight in the sense that

P(σn(M) = 0) =
(

1
2
+ o(1)

)n
,

but this remains open; the best bound currently is [18], and gives

P(σn(M) = 0) 6
(

1√
2
+ o(1)

)n
.

We will not prove this bound here, but content ourselves with a weaker bound,
essentially due to Komlós [43]:

Proposition 1.2.1. We have P(σn(M) = 0)� 1/n1/2.

To show this, we need the following combinatorial fact, due to Erdös [25]:

Proposition 1.2.2 (Erdös Littlewood-Offord theorem). Let x = (x1, . . . , xn) be a
vector with at least k nonzero entries, and let Y = (ξ1, . . . , ξn) be a random vector of iid
Bernoulli signs. Then P(Y · x = 0)� k−1/2.

Proof. By taking real and imaginary parts we may assume that x is real. By
eliminating zero coefficients of x we may assume that k = n; reflecting we may
then assume that all the xi are positive. Observe that the set of Y = (ξ1, . . . , ξn) ∈
{−1, 1}n with Y · x = 0 forms an antichain5. The product partial ordering on
{−1, 1}n is defined by requiring (x1, . . . , xn) 6 (y1, . . . ,yn) iff xi 6 yi for all i.
On the other hand, Sperner’s theorem asserts that all anti-chains in {−1, 1}n have
cardinality at most

(
n
bn/2c

)
. in {−1, 1}n with the product partial ordering. The

claim now easily follows from this theorem and Stirling’s formula. �

5An antichain in a partially ordered set X is a subset S of X such that no two elements in S are
comparable in the order.
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Note that we also have the obvious bound

(1.2.3) P(Y · x = 0) 6 1/2

for any non-zero x.
Now we prove the proposition. In analogy with the arguments of Section 1.1,

we write
P(σn(M) = 0) = P(Mx = 0 for some nonzero x ∈ Cn)

(actually we can take x ∈ Rn or even x ∈ Zn since M is integer-valued). We
divide into compressible and incompressible vectors as before, but our definition
of compressibility and incompressibility is slightly different now. Also, one has
to do a certain amount of technical maneuvering in order to preserve the crucial
independence between rows and columns.

Namely, we pick an ε > 0 and call x compressible (or more precisely sparse) if it
is supported on at most εn coordinates, and incompressible otherwise.

Let us first consider the contribution of the event thatMx = 0 for some nonzero
compressible x. Pick an x with this property which is as sparse as possible, say
k-sparse for some 1 6 k < εn. Let us temporarily fix k. By paying an entropy cost
of bεnc

(
n
k

)
, we may assume that it is the first k entries that are non-zero for some

1 6 k 6 εn. This implies that the first k columns Y1, . . . ,Yk of M have a linear de-
pendence given by x; by minimality, Y1, . . . ,Yk−1 are linearly independent. Thus,
x is uniquely determined (up to scalar multiples) by Y1, . . . ,Yk. Furthermore, as
the n× k matrix formed by Y1, . . . ,Yk has rank k− 1, there is some k× k minor
which already determines x up to constants; by paying another entropy cost of(
n
k

)
, we may assume that it is the top left minor which does this. In particular, we

can now use the first k rows X1, . . . ,Xk to determine x up to constants. But the
remaining n− k rows are independent of X1, . . . ,Xk and still need to be orthog-
onal to x; by Proposition 1.2.2and (1.2.3), this happens with probability at most
min(1/2,O(1/

√
k))(n−k), giving a total cost of∑

16k6εn

bεnc
(
n

k

)2
min(1/2,O(1/

√
k))−(n−k),

which by Stirling’s formula is acceptable (in fact this gives an exponentially small
contribution).

The same argument gives that the event that y∗M = 0 for some nonzero com-
pressible y also has exponentially small probability. The only remaining event to
control is the event that Mx = 0 for some incompressible x, but that Mz 6= 0 and
y∗M 6= 0 for all nonzero compressible z,y. Call this event E.

Since Mx = 0 for some incompressible x, we see that for at least εn values of
k ∈ {1, . . . ,n}, the column Yk lies in the vector space Vk spanned by the remaining
n− 1 rows of M. Let Ek denote the event that E holds, and that Yk lies in Vk;
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then we see from double counting that

P(E) 6
1
εn

n∑
k=1

P(Ek).

By symmetry, we thus have
P(E) 6

1
ε

P(En).

To compute P(En), we freeze Y1, . . . ,Yn−1 consider a normal vector x to Vn−1;
note that we can select x depending only on Y1, . . . ,Yn−1. We may assume that
an incompressible normal vector exists, since otherwise the event En would be
empty. We make the crucial observation that Yn is still independent of x. By
Proposition 1.2.2, we thus see that the conditional probability that Yn · x = 0, for
fixed Y1, . . . ,Yn−1, is Oε(n−1/2). We thus see that P(E)�ε 1/n1/2, and the claim
follows.

Remark 1.2.4. Further progress has been made on this problem by a finer anal-
ysis of the concentration probability P(Y · x = 0), and in particular in classifying
those x for which this concentration probability is large (this is known as the in-
verse Littlewood-Offord problem). Important breakthroughs in this direction were
made by Halász [38] (introducing Fourier-analytic tools) and by Kahn, Komlós,
and Szemerédi [40] (introducing an efficient “swapping” argument). In [57] tools
from additive combinatorics (such as Freiman’s theorem) were introduced to ob-
tain further improvements, leading eventually to the results from [18] mentioned
earlier.

1.3. Lower bound for the least singular value Now we return to the least singu-
lar value σn(M) of an iid Bernoulli matrix, and establish a lower bound. Given
that there are n singular values between 0 and σ1(M), which is typically of size
O(
√
n), one expects the least singular value to be of size about 1/

√
n on the av-

erage. Another argument supporting this heuristic scomes from the following
identity:

Exercise 1.3.1 (Negative second moment identity). Let M be an invertible n× n
matrix, let X1, . . . ,Xn be the rows of M, and let C1, . . . ,Cn be the columns of
M−1. For each 1 6 i 6 n, let Vi be the hyperplane spanned by all the rows
X1, . . . ,Xn other than Xi. Show that ‖Ci‖ = dist(Xi,Vi)−1 and

∑n
i=1 σi(M)−2 =∑n

i=1 dist(Xi,Vi)−2.

The expression dist(Xi,Vi)2 has a mean comparable to 1, which suggests that
dist(Xi,Vi)−2 is typically of size O(1), which from the negative second moment
identity suggests that

∑n
i=1 σi(M)−2 = O(n); this is consistent with the heuris-

tic that the eigenvalues σi(M) should be roughly evenly spaced in the interval
[0, 2
√
n] (so that σn−i(M) should be about (i+ 1)/

√
n).

Now we give a rigorous lower bound:
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Theorem 1.3.2 (Lower tail estimate for the least singular value). For any λ > 0, one
has

P(σn(M) 6 λ/
√
n)� oλ→0(1) + on→∞;λ(1)

where oλ→0(1) goes to zero as λ → 0 uniformly in n, and on→∞;λ(1) goes to zero as
n→∞ for each fixed λ.

This is a weaker form of a result of Rudelson and Vershynin [53] (which obtains
a bound of the form O(λ) +O(cn) for some c < 1), which builds upon the earlier
works [52], [59], which obtained variants of the above result.

The scale 1/
√
n that we are working at here is too fine to use epsilon net ar-

guments (unless one has a lot of control on the entropy, which can be obtained
in some cases thanks to powerful inverse Littlewood-Offord theorems, but is dif-
ficult to obtain in general.) We can prove this theorem along similar lines to the
arguments in the previous section; we sketch the method as follows. We can take
λ to be small. We write the probability to be estimated as

P(‖Mx‖ 6 λ/
√
n for some unit vector x ∈ Cn).

We can assume that ‖M‖op 6 C
√
n for some absolute constant C, as the event

that this fails has exponentially small probability.
We pick an ε > 0 (not depending on λ) to be chosen later. We call a unit vector

x ∈ Cn compressible if x lies within a distance ε of a εn-sparse vector. Let us first
dispose of the case in which ‖Mx‖ 6 λ/

√
n for some compressible x. In fact we

can even dispose of the larger event that ‖Mx‖ 6 λ
√
n for some compressible x.

By paying an entropy cost of
(
n
bεnc

)
, we may assume that x is within ε of a vector

y supported in the first bεnc coordinates. Using the operator norm bound on M
and the triangle inequality, we conclude that

‖My‖ 6 (λ+Cε)
√
n.

Since y has norm comparable to 1, this implies that the least singular value of
the first bεnc columns of M is O((λ+ ε)

√
n). But by Theorem 1.1.4, this occurs

with probability O(exp(−cn)) (if λ, ε are small enough). So the total probability
of the compressible event is at most

(
n
bεnc

)
O(exp(−cn)), which is acceptable if ε

is small enough.
Thus we may assume now that ‖Mx‖ > λ/

√
n for all compressible unit vectors

x; we may similarly assume that ‖y∗M‖ > λ/
√
n for all compressible unit vectors

y. Indeed, we may also assume that ‖y∗Mi‖ > λ/
√
n for every i, where Mi is M

with the ith column removed.
The remaining case is if ‖Mx‖ 6 λ/

√
n for some incompressible x. Let us call

this event E. Write x = (x1, . . . , xn), and let Y1, . . . ,Yn be the column of M, thus

‖x1Y1 + · · ·+ xnYn‖ 6 λ/
√
n.
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Letting Wi be the subspace spanned by all the Y1, . . . ,Yn except for Yi, we con-
clude upon projecting to the orthogonal complement of Wi that

|xi|dist(Yi,Wi) 6 λ/
√
n

for all i (compare with Exercise 1.3.1). On the other hand, since x is incompress-
ible, we see that |xi| > ε/

√
n for at least εn values of i, and thus

(1.3.3) dist(Yi,Wi) 6 λ/ε.

for at least εn values of i. If we let Ei be the event that E and (1.3.3) both hold,
we thus have from double-counting that

P(E) 6
1
εn

n∑
i=1

P(Ei)

and thus by symmetry
P(E) 6

1
ε

P(En)

(say). However, if En holds, then setting y to be a unit normal vector toWi (which
is necessarily incompressible, by the hypothesis on Mi), we have

|Yi · y| 6 λ/ε.

Again, the crucial point is that Yi and y are independent. The incompressibility
of y, combined with a Berry-Esséen type theorem, then gives

Exercise 1.3.4. Show that
P(|Yi · y| 6 λ/ε)� ε2

(say) if λ is sufficiently small depending on ε, and n is sufficiently large depend-
ing on ε.

This gives a bound of O(ε) for P(E) if λ is small enough depending on ε, and
n is large enough; this gives the claim.

Remark 1.3.5. By refining these arguments one can obtain an estimate of the form

(1.3.6) σn(
1√
n
Mn − zI) > n−A

for any givenA > 0 and z of polynomial size in n, with a failure probability that is
of the formO(n−B) for some B > 0. By using inverse Littlewood-Offord theorems
rather than the Berry-Esséen theorem, one can make B arbitrarily large (if A is
sufficiently large depending on A), which is important for several applications.
There are several results of this type, with overlapping ranges of generality (and
various values of A) [36, 51, 58], and the exponent A is known to degrade if one
has too few moment assumptions on the underlying random matrixM. This type
of result (with an unspecified A) is important for the circular law, discussed in
the next section.

1.4. Upper bound for the least singular value One can complement the lower
tail estimate with an upper tail estimate:
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Theorem 1.4.1 (Upper tail estimate for the least singular value). For any λ > 0,
one has

(1.4.2) P(σn(M) > λ/
√
n)� oλ→∞(1) + on→∞;λ(1).

We prove this using an argument of Rudelson and Vershynin [54]. Suppose
that σn(M) > λ/

√
n, then

(1.4.3) ‖y∗M−1‖ 6
√
n‖y‖/λ

for all y.
Next, let X1, . . . ,Xn be the rows of M, and let C1, . . . ,Cn be the columns of

M−1, thus C1, . . . ,Cn is a dual basis for X1, . . . ,Xn. From (1.4.3) we have
n∑
i=1

|y ·Ci|2 6 n‖y‖2/λ2.

We apply this with y equal to Xn−πn(Xn), where πn is the orthogonal projection
to the space Vn−1 spanned by X1, . . . ,Xn−1. On the one hand, we have

‖y‖2 = dist(Xn,Vn−1)
2

and on the other hand we have for any 1 6 i < n that

y ·Ci = −πn(Xn) ·Ci = −Xn · πn(Ci)

and so

(1.4.4)
n−1∑
i=1

|Xn · πn(Ci)|2 6 ndist(Xn,Vn−1)
2/λ2.

If (1.4.4) holds, then |Xn ·πn(Ci)|2 = O(dist(Xn,Vn−1)
2/λ2) for at least half of the

i, so the probability in (1.4.2) can be bounded by

� 1
n

n−1∑
i=1

P(|Xn · πn(Ci)|2 = O(dist(Xn,Vn−1)
2/λ2))

which by symmetry can be bounded by

� P(|Xn · πn(C1)|
2 = O(dist(Xn,Vn−1)

2/λ2)).

Let ε > 0 be a small quantity to be chosen later. We now need an application of
Talagrand’s inequality:

Exercise 1.4.5. Talagrand’s inequality [55] implies that if A is a convex subset of
Rn, At is the t-neighbourhood of A in the Euclidean metric for some t > 0, and
Xn is a random Bernoulli vector, then

P(Xn ∈ A)P(Xn 6∈ At) 6 exp(−ct2)

for some absolute constant c > 0. Use this to show that for any d-dimensional
subspace V of Rn, we have

P(|dist(Xn,V) −
√
n− d| > t)� exp(−ct2)
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for some absolute constant t. (Hint: one will need to combine Talagrand’s in-
equality with a computation of E dist(Xn,V)2.)

From Exercise 1.4.5 we know that dist(Xn,Vn−1) = Oε(1) with probability
1 −O(ε), so we obtain a bound of

� P(Xn · πn(C1) = Oε(1/λ)) +O(ε).

Now a key point is that the vectors πn(C1), . . . ,πn(Cn−1) depend only on
X1, . . . ,Xn−1 and not on Xn; indeed, they are the dual basis for X1, . . . ,Xn−1 in
Vn−1. Thus, after conditioning X1, . . . ,Xn−1 and thus πn(C1) to be fixed, Xn is
still a Bernoulli random vector. Applying a Berry-Esséen inequality, we obtain
a bound of O(ε) for the conditional probability that Xn · πn(C1) = Oε(1/λ) for
λ sufficiently large depending on ε, unless πn(C1) is compressible (in the sense
that, say, it is within ε of an εn-sparse vector). But this latter possibility can be
controlled (with exponentially small probability) by the same type of arguments
as before; we omit the details.

We remark that stronger bounds for the upper tail have recently been obtained
in [48].

1.5. Asymptotic for the least singular value The distribution of singular values
of a Gaussian random matrix can be computed explicitly. In particular, if M is
a real Gaussian matrix (with all entries iid with distribution N(0, 1)R), it was
shown in [23] that

√
nσn(M) converges in distribution to the distribution µE :=

1+
√
x

2
√
x
e−x/2−

√
x dx as n → ∞. It turns out that this result can be extended to

other ensembles with the same mean and variance. In particular, we have the
following result from [60]:

Theorem 1.5.1. If M is an iid Bernoulli matrix, then
√
nσn(M) also converges in

distribution to µE as n→∞. (In fact there is a polynomial rate of convergence.)

This should be compared with Theorems 1.3.2, 1.4.1, which show that
√
nσn(M)

have a tight sequence of distributions in (0,+∞). The arguments from [60] thus
provide an alternate proof of these two theorems. The same result in fact holds
for all iid ensembles obeying a finite moment condition.

The arguments used to prove Theorem 1.5.1 do not establish the limit µE di-
rectly, but instead use the result of [23] as a black box, focusing instead on estab-
lishing the universality of the limiting distribution of

√
nσn(M), and in particular

that this limiting distribution is the same whether one has a Bernoulli ensemble
or a Gaussian ensemble.

The arguments are somewhat technical and we will not present them in full
here, but instead give a sketch of the key ideas.

In previous sections we have already seen the close relationship between the
least singular value σn(M), and the distances dist(Xi,Vi) between a row Xi of
M and the hyperplane Vi spanned by the other n− 1 rows. It is not hard to use
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the above machinery to show that as n → ∞, dist(Xi,Vi) converges in distribu-
tion to the absolute value |N(0, 1)R| of a Gaussian regardless of the underlying
distribution of the coefficients of M (i.e. it is asymptotically universal). The basic
point is that one can write dist(Xi,Vi) as |Xi · ni| where ni is a unit normal of
Vi (we will assume here that M is non-singular, which by previous arguments
is true asymptotically almost surely). The previous machinery lets us show that
ni is incompressible with high probability, and the claim then follows from the
Berry-Esséen theorem.

Unfortunately, despite the presence of suggestive relationships such as Exercise
1.3.1, the asymptotic universality of the distances dist(Xi,Vi) does not directly
imply asymptotic universality of the least singular value. However, it turns out
that one can obtain a higher-dimensional version of the universality of the scalar
quantities dist(Xi,Vi), as follows. For any small k (say, 1 6 k 6 nc for some
small c > 0) and any distinct i1, . . . , ik ∈ {1, . . . ,n}, a modification of the above
argument shows that the covariance matrix

(1.5.2) (π(Xia) · π(Xib))16a,b6k

of the orthogonal projections π(Xi1), . . . ,π(Xik) of the k rows Xi1 , . . . ,Xik to the
complement V⊥i1,...,ik

of the space Vi1,...,ik spanned by the other n − k rows of
M, is also universal, converging in distribution to the covariance6 matrix (Ga ·
Gb)16a,b6k of k iid Gaussians Ga ≡ N(0, 1)R (note that the convergence of
dist(Xi,Vi) to |N(0, 1)R| is the k = 1 case of this claim). The key point is that one
can show that the complement V⊥i1,...,ik

is usually “incompressible” in a certain
technical sense, which implies that the projections π(Xia) behave like iid Gaus-
sians on that projection thanks to a multidimensional Berry-Esséen theorem.

On the other hand, the covariance matrix (1.5.2) is closely related to the inverse
matrix M−1:

Exercise 1.5.3. Show that (1.5.2) is also equal to A∗A, where A is the n× k matrix
formed from the i1, . . . , ik columns of M−1.

In particular, this shows that the singular values of k randomly selected columns
of M−1 have a universal distribution.

Recall our goal is to show that
√
nσn(M) has an asymptotically universal dis-

tribution, which is equivalent to asking that 1√
n
‖M−1‖op has an asymptotically

universal distribution. The goal is then to extract the operator norm of M−1 from
looking at a random n× k minor B of this matrix. This comes from the following
application of the second moment method:

Exercise 1.5.4. Let A be an n× n matrix with columns R1, . . . ,Rn, and let B be
the n× k matrix formed by taking k of the columns R1, . . . ,Rn at random. Show

6These covariance matrix distributions are also known as Wishart distributions.
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that

E‖A∗A−
n

k
B∗B‖2

F 6
n

k

n∑
k=1

‖Rk‖4,

where ‖‖F is the Frobenius norm ‖A‖F := tr(A∗A)1/2.

Recall from Exercise 1.3.1 that ‖Rk‖ = 1/dist(Xk,Vk), so we expect each ‖Rk‖
to have magnitude aboutO(1). As such, we expect σ1((M

−1)∗(M−1)) = σn(M)−2

to differ byO(n2/k) from n
kσ1(B

∗B) = n
kσ1(B)

2. In principle, this gives us asymp-
totic universality on

√
nσn(M) from the already established universality of B.

There is one technical obstacle remaining, however: while we know that each
dist(Xk,Vk) is distributed like a Gaussian, so that each individual Rk is going to
be of size O(1) with reasonably good probability, in order for the above exercise
to be useful, one needs to bound all of the Rk simultaneously with high probability.
A naive application of the union bound leads to terrible results here. Fortunately,
there is a strong correlation between the Rk: they tend to be large together or
small together, or equivalently that the distances dist(Xk,Vk) tend to be small
together or large together. Here is one indication of this:

Lemma 1.5.5. For any 1 6 k < i 6 n, one has

dist(Xi,Vi) >
‖πi(Xi)‖

1 +
∑k
j=1

‖πi(Xj)‖
‖πi(Xi)‖dist(Xj,Vj)

,

where πi is the orthogonal projection onto the space spanned by X1, . . . ,Xk,Xi.

Proof. We may relabel so that i = k+ 1; then projecting everything by πi we may
assume that n = k+ 1. Our goal is now to show that

dist(Xn,Vn−1) >
‖Xn‖

1 +
∑n−1
j=1

‖Xj‖
‖Xn‖dist(Xj,Vj)

.

Recall that R1, . . . ,Rn is a dual basis to X1, . . . ,Xn. This implies in particular that

x =

n∑
j=1

(x ·Xj)Rj

for any vector x; applying this to Xn we obtain

Xn = ‖Xn‖2Rn +

n−1∑
j=1

(Xj ·Xn)Rj

and hence by the triangle inequality

‖Xn‖2‖Rn‖ 6 ‖Xn‖+
n−1∑
j=1

‖Xj‖‖Xn‖‖Rj‖.

Using the fact that ‖Rj‖ = 1/dist(Xj,Rj), the claim follows. �

In practice, once k gets moderately large (e.g. k = nc for some small c > 0),
one can control the expressions ‖πi(Xj)‖ appearing here by Talagrand’s inequality
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(Exercise 1.4.5), and so this inequality tells us that once dist(Xj,Vj) is bounded
away from zero for j = 1, . . . ,k, it is bounded away from zero for all other k also.
This turns out to be enough to get enough uniform control on the Rj to make
Exercise 1.5.4 useful, and ultimately to complete the proof of Theorem 1.5.1.

2. The circular law

In this section, we leave the realm of self-adjoint matrix ensembles, such as
Wigner random matrices, and consider instead the simplest examples of non-self-
adjoint ensembles, namely the iid matrix ensembles.

The basic result in this area is

Theorem 2.0.1 (Circular law). Let Mn be an n × n iid matrix, whose entries ξij,
1 6 i, j 6 n are iid with a fixed (complex) distribution ξij ≡ ξ of mean zero and
variance one. Then the spectral measure µ 1√

n
Mn

converges (in the vague topology) both

in probability and almost surely to the circular law µcirc := 1
π1|x|2+|y|261 dxdy, where

x,y are the real and imaginary coordinates of the complex plane.

This theorem has a long history; it is analogous to the semicircular law, but
the non-Hermitian nature of the matrices makes the spectrum so unstable that
key techniques that are used in the semicircular case, such as truncation and
the moment method, no longer work; significant new ideas are required. In
the case of random Gaussian matrices (and using the expected spectral measure
rather than the actual spectral measure), this result was established by Ginibre
[33] (in the complex case) and by Edelman [22] (in the real case), using the explicit
formulae for the joint distribution of eigenvalues available in these cases. In 1984,
Girko [34] laid out a general strategy for establishing the result for non-gaussian
matrices, which formed the base of all future work on the subject; however, a
key ingredient in the argument, namely a bound on the least singular value of
shifts 1√

n
Mn − zI, was not fully justified at the time. A rigorous proof of the

circular law was then established by Bai [9], assuming additional moment and
boundedness conditions on the individual entries. These additional conditions
were then slowly removed in a sequence of papers [35, 36, 51, 58], with the last
moment condition being removed in [63]. There have since been several further
works in which the circular law was extended to other ensembles [1–3,5,10–13,20,
21, 47, 50, 67], including several models in which the entries are no longer jointly
independent; see also the surveys [14, 58]. The method also applies to various
ensembles with a different limiting law than the circular law; see e.g. [49], [37].
More recently, local circular laws have also been established for various models
[5, 16, 17, 65, 68].

2.1. Spectral instability One of the basic difficulties present in the non-Hermitian
case is spectral instability: small perturbations in a large matrix can lead to large
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fluctuations in the spectrum. In order for any sort of analytic technique to be
effective, this type of instability must somehow be precluded.

The canonical example of spectral instability comes from perturbing the right
shift matrix

U0 :=


0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0


to the matrix

Uε :=


0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

ε 0 0 . . . 0


for some ε > 0.

The matrix U0 is nilpotent: Un0 = 0. Its characteristic polynomial is (−λ)n,
and it thus has n repeated eigenvalues at the origin. In contrast, Uε obeys the
equation Unε = εI, its characteristic polynomial is (−λ)n − ε(−1)n, and it thus
has n eigenvalues at the nth roots ε1/ne2πij/n, j = 0, . . . ,n− 1 of ε. Thus, even
for exponentially small values of ε, say ε = 2−n, the eigenvalues for Uε can be
quite far from the eigenvalues of U0, and can wander all over the unit disk. This
is in sharp contrast with the Hermitian case, where eigenvalue inequalities such
as the Weyl inequalities or Wielandt-Hoffman inequalities ensure stability of the
spectrum.

One can explain the problem in terms of pseudospectrum7. The only spectrum
of U is at the origin, so the resolvents (U0 − zI)

−1 of U0 are finite for all non-zero
z. However, while these resolvents are finite, they can be extremely large. Indeed,
from the nilpotent nature of U0 we have the Neumann series

(U0 − zI)
−1 = −

1
z
−
U0

z2 − . . . −
Un−1

0
zn

so for |z| < 1 we see that the resolvent has size roughly |z|−n, which is expo-
nentially large in the interior of the unit disk. This exponentially large size of
resolvent is consistent with the exponential instability of the spectrum:

Exercise 2.1.1. Let M be a square matrix, and let z be a complex number. Show
that ‖(M− zI)−1‖op > R if and only if there exists a perturbation M+ E of M
with ‖E‖op 6 1/R such that M+ E has z as an eigenvalue.

This already hints strongly that if one wants to rigorously prove control on the
spectrum of M near z, one needs some sort of upper bound on ‖(M− zI)−1‖op,

7The pseudospectrum of an operator T is the set of complex numbers z for which the operator norm
‖(T − zI)−1‖op is either infinite, or larger than a fixed threshold 1/ε. See [66] for further discussion.
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or equivalently one needs some sort of lower bound on the least singular value
σn(M− zI) of M− zI.

Without such a bound, though, the instability precludes the direct use of the
truncation method, which was so useful in the Hermitian case. In particular, there
is no obvious way to reduce the proof of the circular law to the case of bounded
coefficients, in contrast to the semicircular law for Wigner matrices where this
reduction follows easily from the Wielandt-Hoffman inequality. Instead, we must
continue working with unbounded random variables throughout the argument
(unless, of course, one makes an additional decay hypothesis, such as assuming
certain moments are finite; this helps explain the presence of such moment con-
ditions in many papers on the circular law).

2.2. Incompleteness of the moment method In the Hermitian case, the mo-
ments

1
n

tr(
1√
n
M)k =

∫
R

xk dµ 1√
n
Mn

(x)

of a matrix can be used (in principle) to understand the distribution µ 1√
n
Mn

completely (at least, when the measure µ 1√
n
Mn

has sufficient decay at infinity).
This is ultimately because the space of real polynomials P(x) is dense in various
function spaces (the Weierstrass approximation theorem).

In the non-Hermitian case, the spectral measure µ 1√
n
Mn

is now supported on
the complex plane rather than the real line. One still has the formula

1
n

tr(
1√
n
M)k =

∫
C

zk dµ 1√
n
Mn

(z)

but it is much less useful now, because the space of complex polynomials P(z) no
longer has any good density properties8. In particular, the moments no longer
uniquely determine the spectral measure.

This can be illustrated with the shift examples given above. It is easy to see
that U and Uε have vanishing moments up to (n− 1)th order, i.e.

1
n

tr
(

1√
n
U

)k
=

1
n

tr
(

1√
n
Uε

)k
= 0

for k = 1, . . . ,n− 1. Thus we have∫
C

zk dµ 1√
nU

(z) =

∫
C

zk dµ 1√
nUε

(z) = 0

for k = 1, . . . ,n− 1. Despite this enormous number of matching moments, the
spectral measures µ 1√

n
U

and µ 1√
n
Uε

are dramatically different; the former is a
Dirac mass at the origin, while the latter can be arbitrarily close to the unit circle.
Indeed, even if we set all moments equal to zero,∫

C

zk dµ = 0

8For instance, the uniform closure of the space of polynomials on the unit disk is not the space of
continuous functions, but rather the space of holomorphic functions that are continuous on the closed
unit disk.
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for k = 1, 2, . . ., then there are an uncountable number of possible (continuous)
probability measures that could still be the (asymptotic) spectral measure µ: for
instance, any measure which is rotationally symmetric around the origin would
obey these conditions.

If one could somehow control the mixed moments∫
C

zkzl dµ 1√
n
Mn

(z) =
1
n

n∑
j=1

(
1√
n
λj(Mn)

)k( 1√
n
λj(Mn)

)l
of the spectral measure, then this problem would be resolved, and one could
use the moment method to reconstruct the spectral measure accurately. However,
there does not appear to be any easy way to compute this quantity; the obvious
guess of 1

n tr( 1√
n
Mn)

k( 1√
n
M∗n)

l works when the matrix Mn is normal, as Mn
and M∗n then share the same basis of eigenvectors, but generically one does not
expect these matrices to be normal.

Remark 2.2.1. The failure of the moment method to control the spectral measure
is consistent with the instability of spectral measure with respect to perturbations,
because moments are stable with respect to perturbations.

Exercise 2.2.2. Let k > 1 be an integer, and let Mn be an iid matrix whose entries
have a fixed distribution ξ with mean zero, variance 1, and with kth moment
finite. Show that 1

n tr( 1√
n
Mn)

k converges to zero as n → ∞ in expectation, in
probability, and in the almost sure sense. Thus we see that

∫
C z
k dµ 1√

n
Mn

(z)

converges to zero in these three senses also. This is of course consistent with
the circular law, but does not come close to establishing that law, for the reasons
given above.

Remark 2.2.3. The failure of the moment method also shows that methods of
free probability (see e.g. [46]) do not work directly. For instance, observe that
for fixed ε, U0 and Uε (in the noncommutative probability space (Matn(C), 1

n tr))
both converge in the sense of ∗-moments as n → ∞ to that of the right shift
operator on `2(Z) (with the trace τ(T) = 〈e0, Te0〉, with e0 being the Kronecker
delta at 0); but the spectral measures of U0 and Uε are different. Thus the spectral
measure cannot be read off directly from the free probability limit.

2.3. The logarithmic potential With the moment method out of consideration,
attention naturally turns to the Stieltjes transform

sn(z) =
1
n

tr
(

1√
n
Mn − zI

)−1
=

∫
C

dµ 1√
n
Mn

(w)

w− z
.

This is a rational function on the complex plane. Its relationship with the spectral
measure is as follows:

Exercise 2.3.1. Show that
µ 1√

n
Mn

=
1
π
∂z̄sn(z)
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in the sense of distributions, where

∂z̄ :=
1
2
(
∂

∂x
+ i

∂

∂y
)

is the Cauchy-Riemann operator, and the Stieltjes transform is interpreted distri-
butionally in a principal value sense.

One can control the Stieltjes transform quite effectively away from the origin.
Indeed, for iid matrices with subgaussian entries, one can show that the spectral
radius of 1√

n
Mn is 1+o(1) almost surely; this, combined with (2.2.2) and Laurent

expansion, tells us that sn(z) almost surely converges to −1/z locally uniformly
in the region {z : |z| > 1}, and that the spectral measure µ 1√

n
Mn

converges almost
surely to zero in this region (which can of course also be deduced directly from
the spectral radius bound). This is of course consistent with the circular law, but
is not sufficient to prove it (for instance, the above information is also consistent
with the scenario in which the spectral measure collapses towards the origin).
One also needs to control the Stieltjes transform inside the disk {z : |z| 6 1} in
order to fully control the spectral measure.

For this, many existing methods for controlling the Stieltjes transform are not
particularly effective in this non-Hermitian setting (mainly because of the spectral
instability, and also because of the lack of analyticity in the interior of the spec-
trum). Instead, one proceeds by relating the Stieltjes transform to the logarithmic
potential

fn(z) :=

∫
C

log |w− z|dµ 1√
n
Mn

(w).

It is easy to see that sn(z) is essentially the (distributional) gradient of fn(z):

sn(z) =

(
−
∂

∂x
+ i

∂

∂y

)
fn(z),

and thus gn is related to the spectral measure by the distributional formula9

(2.3.2) µ 1√
n
Mn

=
1

2π
∆fn

where ∆ := ∂2

∂x2 + ∂2

∂y2 is the Laplacian.
The following basic result relates the logarithmic potential to probabilistic no-

tions of convergence.

Theorem 2.3.3 (Logarithmic potential continuity theorem). LetMn be a sequence of
random matrices, and suppose that for almost every complex number z, fn(z) converges
almost surely (resp. in probability) to

f(z) :=

∫
C

log |z−w|dµ(w)

for some probability measure µ. Then µ 1√
n
Mn

converges almost surely (resp. in probabil-
ity) to µ in the vague topology.

Proof. We prove the almost sure version of this theorem, and leave the conver-
gence in probability version as an exercise.

9This formula just reflects the fact that 1
2π log |z| is the Newtonian potential in two dimensions.
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On any bounded set K in the complex plane, the functions log | ·−w| lie in L2(K)

uniformly in w. From Minkowski’s integral inequality, we conclude that the fn
and f are uniformly bounded in L2(K). On the other hand, almost surely the fn
converge pointwise to f. From the dominated convergence theorem this implies
that min(|fn − f|,M) converges in L1(K) to zero for any M; using the uniform
bound in L2(K) to compare min(|fn − f|,M) with |fn − f| and then sending M→∞, we conclude that fn converges to f in L1(K). In particular, fn converges to f in
the sense of distributions; taking distributional Laplacians using (2.3.2) we obtain
the claim. �

Exercise 2.3.4. Establish the convergence in probability version of Theorem 2.3.3.

Thus, the task of establishing the circular law then reduces to showing, for
almost every z, that the logarithmic potential fn(z) converges (in probability or
almost surely) to the right limit f(z).

Observe that the logarithmic potential

fn(z) =
1
n

n∑
j=1

log
∣∣∣∣λj(Mn)√

n
− z

∣∣∣∣
can be rewritten as a log-determinant:

fn(z) =
1
n

log
∣∣∣∣det(

1√
n
Mn − zI)

∣∣∣∣ .
To compute this determinant, we recall that the determinant of a matrix A is not
only the product of its eigenvalues, but also has a magnitude equal to the product
of its singular values:

|detA| =
n∏
j=1

σj(A) =

n∏
j=1

λj(A
∗A)1/2

and thus
fn(z) =

1
2

∫∞
0

log x dνn,z(x)

where dνn,z is the spectral measure of the matrix
(

1√
n
Mn − zI

)∗ (
1√
n
Mn − zI

)
.

The advantage of working with this spectral measure, as opposed to the orig-
inal spectral measure µ 1√

n
Mn

, is that the matrix ( 1√
n
Mn − zI)∗( 1√

n
Mn − zI) is

self-adjoint, and so methods such as the moment method or free probability can
now be safely applied to compute the limiting spectral distribution. Indeed, Girko
[34] established that for almost every z, νn,z converged both in probability and
almost surely to an explicit (though slightly complicated) limiting measure νz in
the vague topology. Formally, this implied that fn(z) would converge pointwise
(almost surely and in probability) to

1
2

∫∞
0

log x dνz(x).
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A lengthy but straightforward computation then showed that this expression was
indeed the logarithmic potential f(z) of the circular measure µcirc, so that the
circular law would then follow from the logarithmic potential continuity theorem.

Unfortunately, the vague convergence of νn,z to νz only allows one to deduce
the convergence of

∫∞
0 F(x) dνn,z to

∫∞
0 F(x) dνz for F continuous and compactly

supported. The logarithm function log x has singularities at zero and at infinity,
and so the convergence∫∞

0
log x dνn,z(x)→

∫∞
0

log x dνz(x)

can fail if the spectral measure νn,z sends too much of its mass to zero or to
infinity.

The latter scenario can be easily excluded, either by using operator norm
bounds on Mn (when one has enough moment conditions) or even just the
Frobenius norm bounds (which require no moment conditions beyond the unit
variance). The real difficulty is with preventing mass from going to the origin.

The approach of Bai [9] proceeded in two steps. Firstly, he established a poly-
nomial lower bound

σn

(
1√
n
Mn − zI

)
> n−C

asymptotically almost surely for the least singular value of 1√
n
Mn − zI. This has

the effect of capping off the log x integrand to be of size O(logn). Next, by using
Stieltjes transform methods, the convergence of νn,z to νz in an appropriate met-
ric (e.g. the Levi distance metric) was shown to be polynomially fast, so that the
distance decayed like O(n−c) for some c > 0. The O(n−c) gain can safely absorb
the O(logn) loss, and this leads to a proof of the circular law assuming enough
boundedness and continuity hypotheses to ensure the least singular value bound
and the convergence rate. This basic paradigm was also followed by later works
[36,51,58], with the main new ingredient being the advances in the understanding
of the least singular value (Section 1).

Unfortunately, to get the polynomial convergence rate, one needs some mo-
ment conditions beyond the zero mean and unit variance rate (e.g. finite 2 + ηth

moment for some η > 0). In [63] the additional tool of the Talagrand concentra-
tion inequality (see Exercise 1.4.5) was used to eliminate the need for the polyno-
mial convergence. Intuitively, the point is that only a small fraction of the singular
values of 1√

n
Mn − zI are going to be as small as n−c; most will be much larger

than this, and so the O(logn) bound is only going to be needed for a small frac-
tion of the measure. To make this rigorous, it turns out to be convenient to work
with a slightly different formula for the determinant magnitude |det(A)| of a
square matrix than the product of the eigenvalues, namely the base-times-height
formula

|det(A)| =
n∏
j=1

dist(Xj,Vj)
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where Xj is the jth row and Vj is the span of X1, . . . ,Xj−1.

Exercise 2.3.5. Establish the inequality
n∏

j=n+1−m

σj(A) 6
m∏
j=1

dist(Xj,Vj) 6
m∏
j=1

σj(A)

for any 1 6 m 6 n. (Hint: the middle product is the product of the singular values
of the first m rows of A, and so one should try to use the Cauchy interlacing
inequality for singular values.) Thus we see that dist(Xj,Vj) is a variant of σj(A).

The least singular value bounds above (and in Remark 1.3.5), translated in
this language (with A := 1√

n
Mn − zI), tell us that dist(Xj,Vj) > n−C with high

probability; this lets us ignore the most dangerous values of j, namely those j that
are equal to n−O(n0.99) (say). For low values of j, say j 6 (1− δ)n for some small
δ, one can use the moment method to get a good lower bound for the distances
and the singular values, to the extent that the logarithmic singularity of log x no
longer causes difficulty in this regime; the limit of this contribution can then be
seen by moment method or Stieltjes transform techniques to be universal in the
sense that it does not depend on the precise distribution of the components ofMn.
In the medium regime (1− δ)n < j < n−n0.99, one can use Talagrand’s inequality
(Exercise 1.4.5) to show that dist(Xj,Vj) has magnitude about

√
n− j, giving rise

to a net contribution to fn(z) of the form 1
n

∑
(1−δ)n<j<n−n0.99 O(log

√
n− j),

which is small. Putting all this together, one can show that fn(z) converges to
a universal limit as n → ∞ (independent of the component distributions); see
[63] for details. As a consequence, once the circular law is established for one
class of iid matrices, such as the complex Gaussian random matrix ensemble, it
automatically holds for all other ensembles also.

Exercise 2.3.6. (i) If µ is the circular law measure 1
π1|z|61dz, show that the

logarithmic potential f(z) is equal to log |z| for |z| > 1 and |z|2−1
2 for |z| 6 1.

(ii) If Mn is a random Bernoulli matrix and z is a fixed complex number,
show that the quantity det( 1√

n
Mn − zI) has mean (−z)n and variance∑n−1

j=0
n!|z|2j

nn−jj! . Use this to obtain a heuristic prediction as to the size of the
quantity fn(z) discussed above, and argue why this is consistent with the
circular law and the calculation in (i).

3. The Lindeberg exchange method

The central limit theorem asserts that if X1,X2, . . . are a sequence of iid real
random variables of mean zero and variance one, then the normalised means

X1 + · · ·+Xn√
n

converge in distribution to the normal distribution N(0, 1) as n→∞, thus

lim
n→∞ P(

X1 + · · ·+Xn√
n

6 t) = P(G 6 t)
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for any t ∈ R, where G is a normally distributed random variable of mean zero
and variance one. Equivalently, if F : R→ R is any smooth, compactly supported
function, then one has

(3.0.1) EF

(
X1 + · · ·+Xn√

n

)
= EF(G) + o(1)

as n→∞, where o(1) denotes a quantity that goes to zero as n→∞.

Exercise 3.0.2. Why are these two claims equivalent?

One consequence of the central limit theorem is that the statistics EF(X1+···+Xn√
n

)

are asymptotically universal in the sense that they do not depend on the precise
distribution of the individual random variables. In particular, if Y1, . . . ,Yn are
another sequence of iid random variables, with a different distribution than the
X1, . . . ,Xn, then we have the asymptotic universality property

(3.0.3) EF

(
X1 + · · ·+Xn√

n

)
= EF

(
Y1 + · · ·+ Yn√

n

)
+ o(1)

as n→∞.
The central limit theorem is traditionally proven by Fourier analytic methods,

and then the universality (3.0.3) obtained as a corollary. However, one could also
argue in the reverse direction, establishing the central limit theorem (3.0.1) as a
consequence. Indeed, in 1922 Lindeberg [44] established the central limit theorem
by establishing the following three claims:

(1) If Y1, Y2, . . . were an iid sequence of gaussian random variables of mean
zero and variance one, then

EF

(
Y1 + · · ·+ Yn√

n

)
= EF(G) + o(1).

(2) If X1,X2, . . . were an iid sequence of random variables mean zero and
variance one, and finite third moment E|Xi|

3 <∞, then

(3.0.4) EF

(
X1 + · · ·+Xn√

n

)
− EF

(
Y1 + · · ·+ Yn√

n

)
= o(1).

(3) If the central limit theorem (3.0.1) was true for iid random variables of
mean zero, variance one, and finite third moment, it would also be true
without the finite third moment condition.

Clearly, the central limit theorem is immediate from the above three claims.
The first claim is an easy computation: since the sum of any finite number of

independent gaussian random variables is still gaussian, the variable Y1+···+Yn√
n

is also gaussian. Since this variable has mean zero and variance one, the claim
follows (indeed we don’t even have the o(1) error in this case).

The third claim is also an easy consequence of a standard truncation argument.
Suppose that X1,X2, . . . were iid copies of a random variable X of mean zero and
variance one, but possibly infinite third moment. For any cutoff parameter M,
the truncation X1|X|6M will have finite third moment; it might not have mean
zero and variance one, but from the dominated convergence theorem we see that
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the mean of this random variable goes to zero, and the variance goes to one, as
M → ∞. Similarly, the tail X1|X|>M has variance going to zero as M → ∞.
By adjusting the former random variable slightly to normalise the mean and
variance, we thus see that for any ε > 0, one can obtain a decomposition

X = X ′ε +X
′′
ε

where X ′ε is a random variable of mean zero, variance one, and finite third mo-
ment, while X ′′ε is a random variable of variance at most ε (and necessarily of
mean zero, by linearity of expectation). The random variables X ′ε and X ′′ε may be
coupled to each other, but this will not concern us. We can therefore split each
Xi as Xi = X ′i,ε +X

′′
i,ε, where X ′1,ε, . . . ,X ′n,ε are iid copies of X ′ε, and X ′′1,ε, . . . ,X ′′n,ε

are iid copies of X ′′ε . We then have

X1 + · · ·+Xn√
n

=
X ′1,ε + · · ·+X

′
n,ε√

n
+
X ′′1,ε + · · ·+X

′′
n,ε√

n
.

If the central limit theorem holds in the case of finite third moment, then the
random variable

X ′1,ε+···+X
′
n,ε√

n
converges in distribution to G. Meanwhile, the

random variable
X ′′1,ε+···+X

′′
n,ε√

n
has mean zero and variance at most ε. From this,

we see that (3.0.1) holds up to an error of O(ε); sending ε to zero, we obtain the
claim.

The heart of the Lindeberg argument is in the second claim. Without loss
of generality we may take the tuple (X1, . . . ,Xn) to be independent of the tuple
(Y1, . . . ,Yn). The idea is not to swap the X1, . . . ,Xn with the Y1, . . . ,Yn all at once,
but instead to swap them one at a time. Indeed, one can write the difference

EF

(
X1 + · · ·+Xn√

n

)
− EF

(
Y1 + · · ·+ Yn√

n

)
as a telescoping series formed by the sum of the n terms

EF

(
Y1 + · · ·+ Yi−1 +Xi +Xi+1 + · · ·+Xn√

n

)
− EF

(
Y1 + · · ·+ Yi−1 + Yi + · · ·+ Yn√

n

)(3.0.5)

for i = 1, . . . ,n, each of which represents a single swap from Xi to Yi. Thus, to
prove (3.0.4), it will suffice to show that each of the terms (3.0.5) is of size o(1/n)
(uniformly in i).

We can write (3.0.5) as

EF

(
Zi +

1√
n
Xi

)
− EF

(
Zi +

1√
n
Yi

)
where Zi is the random variable

Zi :=
Y1 + · · ·+ Yi−1 +Xi+1 + · · ·+Xn√

n
.
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The key point here is that Zi is independent of both Xi and Yi. To exploit this,
we use the smoothness of F to perform a Taylor expansion

F(Zi +
1√
n
Xi) = F(Zi) +

1√
n
XiF
′(Zi) +

1
2n
X2
iF
′′(Zi) +O

(
1
n3/2 |Xi|

3
)

and hence on taking expectations (and using the finite third moment hypothesis
and independence of Xi from Zi)

EF(Zi +
1√
n
Xi) = EF(Zi) +

1√
n

EXiEF
′(Zi) +

1
2n

EX2
iEF

′′(Zi) +O

(
1
n3/2

)
.

Similarly

EF(Zi +
1√
n
Yi) = EF(Zi) +

1√
n

EYiEF
′(Zi) +

1
2n

EY2
iEF

′′(Zi) +O

(
1
n3/2

)
.

Now observe that as Xi and Yi both have mean zero and variance one, their
first two moments match: EXi = EYi and EX2

i = EY2
i . As such, the first three

terms of the above two right-hand sides match, and thus (3.0.5) is bounded by
O(n−3/2), which is o(1/n) as required. Note how important it was that we had
two matching moments; if we only had one matching moment, then the bound
for (3.0.5) would only be O(1/n), which is not sufficient. (And of course the
central limit theorem would fail as stated if we did not correctly normalise the
variance.) One can therefore think of the central limit theorem as a two moment
theorem, asserting that the asymptotic behaviour of the statistic EF(X1+···+Xn√

n
) for

iid random variables X1, . . . ,Xn depends only on the first two moments of the Xi.

Exercise 3.0.6 (Lindeberg central limit theorem). Let m1,m2, . . . be a sequence of
natural numbers. For each n, let Xn,1, . . . ,Xn,mn be a collection of independent
real random variables of mean zero and total variance one, thus

EXn,i = 0 ∀1 6 i 6 mn

and
mn∑
i=1

EX2
n,i = 1.

Suppose also that for every fixed δ > 0 (not depending on n), one has
mn∑
i=1

EX2
n,i1|Xn,i|>δ = o(1)

as n → ∞. Show that the random variables
∑mn
i=1 Xn,i converge in distribution

as n→∞ to a normal variable of mean zero and variance one.

Exercise 3.0.7 (Martingale central limit theorem). Let F0 ⊂ F1 ⊂ F2 ⊂ . . . be an
increasing collection of σ-algebras in the ambient sample space. For each n, let Xn
be a real random variable that is measurable with respect to Fn, with conditional
mean and variance one with respect to F0, thus

E(Xn|Fn−1) = 0
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and
E(X2

n|Fn−1) = 1

almost surely. Assume also the bounded third moment hypothesis

E(|Xn|
3|Fn−1) 6 C

almost surely for all n and some finite C independent of n. Show that the random
variables X1+···+Xn√

n
converge in distribution to a normal variable of mean zero

and variance one. (One can relax the hypotheses on this martingale central limit
theorem substantially, but we will not explore this here.)

Exercise 3.0.8 (Weak Berry-Esséen theorem). Let X1, . . . ,Xn be an iid sequence of
real random variables of mean zero and variance 1, and bounded third moment:
E|Xi|

3 = O(1). Let G be a gaussian random variable of mean zero and variance
one. Using the Lindeberg exchange method, show that

P(
X1 + · · ·+Xn√

n
6 t) = P(G 6 t) +O(n−1/8)

for any t ∈ R. (The full Berry-Esséen theorem improves the error term to
O(n−1/2), but this is difficult to establish purely from the Lindeberg exchange
method; one needs alternate methods, such as Fourier-based methods or Stein’s
method, to recover this improved gain.) What happens if one assumes more
matching moments between the Xi and G, such as matching third moment EX3

i =

EG3 or matching fourth moment EX4
i = EG4?

One can think of the Lindeberg method as having the schematic form of the
telescoping identity

Xn − Yn =

n∑
i=1

Yi−1(X− Y)Xn−i

which is valid in any (possibly non-commutative) ring. It breaks the symmetry of
the indices 1, . . . ,n of the random variables X1, . . . ,Xn and Y1, . . . ,Yn, by perform-
ing the swaps in a specified order. A more symmetric variant of the Lindeberg
method was introduced recently by Knowles and Yin [41], and has the schematic
form of the fundamental theorem of calculus identity

Xn − Yn =

∫1

0

n∑
i=1

((1 − θ)X+ θY)i−1(X− Y)((1 − θ)X+ θY)n−i dθ,

which is valid in any (possibly non-commutative) real algebra, and can be es-
tablished by computing the θ derivative of ((1 − θ)X+ θY)n. We illustrate this
method by giving a slightly different proof of (3.0.4). We may again assume
that the X1, . . . ,Xn and Y1, . . . ,Yn are independent of each other. We introduce
auxiliary random variables t1, . . . , tn, drawn uniformly at random from [0, 1], in-
dependently of each other and of the X1, . . . ,Xn and Y1, . . . ,Yn. For any 0 6 θ 6 1
and 1 6 i 6 n, let X(θ)

i denote the random variable

X
(θ)
i = 1ti6θXi + 1ti>θYi,
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thus for instance X(0)
i = Yi and X

(1)
i = Xi almost surely. One then has the

following key derivative computation:

Exercise 3.0.9. With the notation and assumptions as above, show that
(3.0.10)

d

dθ
EF

(
X
(θ)
1 + · · ·+X(θ)

n√
n

)
=

n∑
i=1

EF

(
Z
(θ)
i +

1√
n
Xi

)
− EF

(
Z
(θ)
i +

1√
n
Yi

)
where

Z
(θ)
i :=

X
(θ)
1 + · · ·+X(θ)

i−1 +X
(θ)
i+1 + · · ·+X

(θ)
n√

n
.

In particular, the derivative on the left-hand side of (3.0.10) exists and depends
continuously on θ.

From the above exercise and the fundamental theorem of calculus, we can
write the left-hand side of (3.0.4) as∫1

0

n∑
i=1

EF(Z
(θ)
i +

1√
n
Xi) − EF(Z

(θ)
i +

1√
n
Yi) dθ.

Repeating the Taylor expansion argument used in the original Lindeberg method,
we see that

EF

(
Z
(θ)
i +

1√
n
Xi

)
− EF

(
Z
(θ)
i +

1√
n
Yi

)
= O(n−3/2)

thus giving an alternate proof of (3.0.4).

Remark 3.0.11. In this particular instance, the Knowles-Yin version of the Linde-
berg method did not offer any significant advantages over the original Lindeberg
method. However, the more symmetric form of the former is useful in some ran-
dom matrix theory applications due to the additional cancellations this induces.
See [41] for an example of this.

The Lindeberg exchange method was first employed to study statistics of ran-
dom matrices in [19]; the method was applied to local statistics first in [61] and
then (with a simplified approach) in [42]. (See also [6–8] for another application
of the Lindeberg method to random matrix theory.) To illustrate this method,
we will (for simplicity of notation) restrict our attention to real Wigner matri-
ces Mn = 1√

n
(ξij)16i,j6n, where ξij are real random variables of mean zero

and variance either one (if i 6= j) or two (if i = j), with the symmetry condi-
tion ξij = ξji for all 1 6 i, j 6 n, and with the upper-triangular entries ξij,
1 6 i 6 j 6 n jointly independent. For technical reasons we will also assume that
the ξij are uniformly subgaussian, thus there exist constants C, c > 0 such that

P(|ξij| > t) 6 C exp(−ct2)

for all t > 0. In particular, the kth moments of the ξij will be bounded for
any fixed natural number k. These hypotheses can be relaxed somewhat, but
we will not aim for the most general results here. One could easily consider
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Hermitian Wigner matrices instead of real Wigner matrices, after some minor
modifications to the notation and discussion below (e.g. replacing the Gaussian
Orthogonal Ensemble (GOE) with the Gaussian Unitary Ensemble (GUE)). The

1√
n

term appearing in the definition of Mn is a standard normalising factor to
ensure that the spectrum of Mn (usually) stays bounded (indeed it will almost
surely obey the famous semicircle law restricting the spectrum almost completely
to the interval [−2, 2]).

The most well known example of a real Wigner matrix ensemble is the Gauss-
ian Orthogonal Ensemble (GOE), in which the ξij are all real gaussian random
variables (with the mean and variance prescribed as above). This is a highly sym-
metric ensemble, being invariant with respect to conjugation by any element of
the orthogonal group O(n), and as such many of the sought-after spectral statis-
tics of GOE matrices can be computed explicitly (or at least asymptotically) by
direct computation of certain multidimensional integrals (which, in the case of
GOE, eventually reduces to computing the integrals of certain Pfaffian kernels).
We will not discuss these explicit computations further here, but view them as
the analogue to the simple gaussian computation used to establish Claim 1 of
Lindeberg’s proof of the central limit theorem. Instead, we will focus more on
the analogue of Claim 2 - using an exchange method to compare statistics for
GOE to statistics for other real Wigner matrices.

We can write a Wigner matrix 1√
n
(ξij)16i,j6n as a sum

Mn =
1√
n

∑
(i,j)∈∆

ξijEij

where ∆ is the upper triangle

∆ := {(i, j) : 1 6 i 6 j 6 n}

and the real symmetric matrix Eij is defined to equal Eij = eTi ej + e
T
j ei for i < j,

and Eii = eTi ei in the diagonal case i = j, where e1, . . . , en are the standard basis
of Rn (viewed as column vectors). Meanwhile, a GOE matrix Gn can be written
as

Gn =
∑

(i,j)∈∆
ηijEij

where ηij, (i, j) ∈ ∆ are jointly independent gaussian real random variables, of
mean zero and variance either one (for i 6= j) or two (for i = j). For any natural
number m, we say that Mn and Gn have m matching moments if we have

Eξkij = Eηkij

for all k = 1, . . . ,m. Thus for instance, we always have two matching moments,
by our definition of a Wigner matrix.
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If S(Mn) is any (deterministic) statistic of a Wigner matrix Mn, we say that we
have a m moment theorem for the statistic S(Mn) if one has

(3.0.12) S(Mn) − S(Gn) = o(1)

whenever Mn and Gn have m matching moments. In most applications m will
be very small, either equal to 2, 3, or 4.

One can prove moment theorems using the Lindeberg exchange method. For
instance, consider statistics of the form S(Mn) = EF(Mn), where F : V → C is a
bounded measurable function on the space V of real symmetric matrices. Then
we can write the left-hand side of (3.0.12) as the sum of |∆| = n(n+1)

2 terms of the
form

EF

(
Mn,i,j +

1√
n
ξijEij

)
− EF

(
Mn,i,j +

1√
n
ηijEij

)
where for each (i, j) ∈ ∆, Mn,i,j is the real symmetric matrix

Mn,i,j :=
∑

(i ′,j ′)<(i,j)

1√
n
ηi ′j ′Ei ′j ′ +

∑
(i ′,j ′)>(i,j)

1√
n
ξi ′j ′Ei ′j ′

where one imposes some arbitrary ordering < on ∆ (e.g. the lexicographical
ordering). Strictly speaking, the Mn,i,j are not Wigner matrices, because their
ij entry vanishes and thus has zero variance, but their behaviour turns out to
be almost identical to that of a Wigner matrix (being a rank one or rank two
perturbation of such a matrix). Thus, to prove anmmoment theorem for EF(Mn),
it thus suffices by the triangle inequality to establish a bound of the form

(3.0.13) EF

(
Mn,i,j +

1√
n
ξijEij

)
− EF

(
Mn,i,j +

1√
n
ηijEij

)
= o(n−2)

for all (i, j) ∈ ∆, whenever ξij and ηij have m matching moments. (For the
diagonal entries i = j, a bound of o(n−1) will in fact suffice, as the number of
such entries is n rather than O(n2).)

As with the Lindeberg proof of the central limit theorem, one can establish
(3.0.13) for various statistics F by performing a Taylor expansion with remainder.
To illustrate this, we consider the expectation Es(Mn, z) of the Stieltjes transform

s(Mn, z) :=
1
n

trR(Mn, z)

for some complex number z = E+ iη with η > 0, where R(Mn, z) := (Mn − z)−1

denotes the resolvent (also known as the Green’s function), and we identify z with
the matrix zIn. The application of the Lindeberg exchange method to quantities
relating to Green’s functions is also referred to as the Green’s function comparison
method. The Stieltjes transform is closely tied to the behavior of the eigenvalues
λ1, . . . , λn of Mn (counting multiplicity), thanks to the spectral identity

(3.0.14) s(Mn, z) =
1
n

n∑
j=1

1
λj − z

.
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On the other hand, the resolvents R(Mn, z) are particularly amenable to the Lin-
deberg exchange method, thanks to the resolvent identity

R(Mn +An, z) = R(Mn, z) − R(Mn, z)AnR(Mn +An, z)

whenever Mn,An, z are such that both sides are well defined (e.g. if Mn,An are
real symmetric and z has positive imaginary part); this identity is easily verified
by multiplying both sides by Mn − z on the left and Mn +An − z on the right.
One can iterate this to obtain the Neumann series

(3.0.15) R(Mn +An, z) =
∞∑
k=0

(−R(Mn, z)An)kR(Mn, z),

assuming that the matrix R(Mn, z)An has spectral radius less than one. Taking
normalised traces and using the cyclic property of trace, we conclude in particular
that
(3.0.16)

s(Mn +An, z) = s(Mn, z) +
∞∑
k=1

(−1)k

n
tr
(
R(Mn, z)2An(R(Mn, z)An)k−1

)
.

To use these identities, we invoke the following useful facts about Wigner ma-
trices:

Theorem 3.0.17. LetMn be a real Wigner matrix, let λ1, . . . , λn be the eigenvalues, and
let u1, . . . ,un be an orthonormal basis of eigenvectors. Let A > 0 be any constant. Then
with probability 1 −OA(n

−A), the following statements hold:

(i) (Weak local semi-circular law) For any interval I ⊂ R, the number of eigenvalues
in I is at most no(1)(1 +n|I|).

(ii) (Eigenvector delocalisation) All of the coefficients of all of the eigenvectors u1, . . . ,un
have magnitude O(n−1/2+o(1)).

The same claims hold if one replaces one of the entries of Mn, together with its transpose,
by zero.

Proof. See for instance [61, Theorem 60, Proposition 62, Corollary 63]; related
results are also given in the lectures of Erdős. Estimates of this form were intro-
duced in the work of Erdős, Schlein, and Yau [27–29]. One can sharpen these
estimates in various ways (e.g. one has improved estimates near the edge of
the spectrum), but the form of the bounds listed here will suffice for the current
discussion. �

This yields some control on resolvents:

Exercise 3.0.18. Let Mn be a real Wigner matrix, let A > 0 be a constant, and let
z = E+ iη with η > 0. Show that with probability 1−OA(n−A), all coefficients of
R(Mn, z) are of magnitude O(no(1)(1+ 1

nη )), and all coefficients of R(Mn, z)2 are
of magnitude O(no(1)η−1(1 + 1

nη )). (Hint: use the spectral theorem to express
R(Mn, z) in terms of the eigenvalues and eigenvectors of Mn. You may wish
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to treat the η > 1/n and η 6 1/n cases separately.) The bounds here are not
optimal regarding the off-diagonal terms of R(Mn, z) or R(Mn, z)2; see [31] for
some stronger estimates.

On the exceptional event where the above exercise fails, we can use the crude
estimate (from spectral theory) that R(Mn, z) has operator norm at most 1/η.

We are now ready to establish (3.0.13) for the Stieltjes transform statistic F(Mn) :=
s(Mn, z) for certain choices of spectral parameter z = E+ iη, and certain choices
of Wigner ensemble Mn. Let (i, j) be an element of ∆. By Exercise 3.0.18, we
have with probability 1 −O(n−100) (say) that all coefficients of R(Mn,i,j, z) are
of magnitude O(no(1)(1 + 1

nη )), and all coefficients of R(Mn,i,j, z)2 are of mag-
nitude O(η−1no(1)(1 + 1

nη )); also from the subgaussian hypothesis we may as-
sume that ξij = O(no(1)) without significantly increasing the failure probabil-
ity of the above event. Among other things, this implies that R(Mn,i,j, z)Eij
has spectral radius O(no(1)(1 + 1

nη )). Conditioning to this event, and assum-
ing that η > n−3/2+ε for some fixed ε > 0 (to keep the spectral radius of
R(Mn,i,j, z) 1√

n
ξijEij less than one), we then see from (3.0.16) that

F(Mn,i,j +
1√
n
ξijEij) = F(Mn,i,j)

+

∞∑
k=1

(−ξij)
k

n1+k/2 tr
(
R(Mn,i,j, z)2Eij(R(Mn,i,j, z)Eij)k−1

)
.

From the coefficient bounds, we see that the trace here is of size O(η−1(no(1)(1+
1
nη ))

k) (where the no(1) expression, or the implied constant in the O() notation,
does not depend on k). Thus we may truncate the sum at any stage to obtain

F

(
Mn,i,j +

1√
n
ξijEij

)
= F(Mn,i,j)

+

m∑
k=1

(−ξij)
k

n1+k/2 tr
(
R(Mn,i,j, z)2Eij(R(Mn,i,j, z)Eij)k−1

)
+Om

(
η−1n−m+3

2 +o(1)(1 +
1
nη

)m+1
)

with probability 1 −O(n−100). On the exceptional event, we can bound all terms
on the left and right-hand side crudely by O(n10) (say). Taking expectations, and
using the independence of ξij from Mn,i,j, we conclude that

EF

(
Mn,i,j +

1√
n
ξijEij

)
= EF(Mn,i,j)

+

m∑
k=1

E(−ξij)
k

n1+k/2 Etr
(
R(Mn,i,j, z)2Eij(R(Mn,i,j, z)Eij)k−1

)
+O

(
η−1n−m+3

2 +o(1)(1 +
1
nη

)m+1
)
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for any 1 6 m 6 10 (say). Similarly with ξij replaced by ηij. If we assume that
ξij and ηij have m matching moments in the sense that

Eξkij = Eηkij

for all k = 1, . . . ,m, we conclude on subtracting that

EF

(
Mn,i,j +

1√
n
ξijEij

)
− EF

(
Mn,i,j +

1√
n
ηijEij

)
= O

(
η−1n−m+3

2 +o(1)(1 +
1
nη

)m+1
)

.

Comparing this with (3.0.13), we arrive at the following conclusions for the statis-
tic F(Mn) = s(Mn, z):

• By definition of a Wigner matrix, we already have 2 matching moments.
Setting m = 2, we conclude that Es(Mn, z) enjoys a two moment theorem
whenever η > n−1/2+ε for some fixed ε > 0.
• If we additionally assume a third matching moment Eξ3

ij = Eη3
ij, then we

may set m = 3, and we conclude that Es(Mn, z) enjoys a three moment
theorem whenever η > n−1+ε for a fixed ε > 0.

• If we assume third and fourth matching moments Eξ3
ij = Eη3

ij, Eξ4
ij =

Eη4
ij, then we may set m = 4, and we conclude that Es(Mn, z) enjoys a

four moment theorem whenever η > n− 13
12+ε for some ε > 0.

Thus we see that the expected Stieltjes transform Es(Mn, z) has some univer-
sality, although the amount of universality provided by the Lindeberg exchange
method degrades as z approaches the real axis. Additional matching moments
beyond the fourth will allow one to approach the real axis even further, although
with the bounds provided here, one cannot get closer than n−3/2 due to the poten-
tial divergence of the Neumann series beyond this point. Some of the exponents
in the above results can be improved by using more refined control on the Stielt-
jes transform, and by using the Knowles-Yin variant of the Lindeberg exchange
method; see for instance [41].

One can generalise these arguments to more complicated statistics than the
Stieltjes transform s(Mn, z). For instance, one can establish a four moment theo-
rem for multilinear averages of the Stieltjes transform:

Exercise 3.0.19. Let k be a fixed natural number, and let ψ : Rk → C be a smooth
compactly supported function, both of which are independent of n. Let z = E+ iη
be a complex number with η > n−1− 1

100k . Show that the statistic

E

∫
Rk
ψ(t1, . . . , tk)

k∏
l=1

s

(
Mn, z+

tl
n

)
dt1 . . .dtk

enjoys a four moment theorem. Similarly if one replaces one or more of the
s(Mn, z+ tl

n ) with their complex conjugates.
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Using this, one can then obtain analogous four moment theorems for k-point
correlation functions. Recall that for any fixed 1 6 k 6 n, the k-point correlation
function ρ(k) : Rk → R+ of a random real symmetric (or Hermitian) matrix Mn
is defined via duality by requiring that ρ(k) be symmetric and obey the relation∫

Rk
ρ(k)(x1, . . . , xk)F(x1, . . . , xk) dx1 . . .dxk = E

∑
16i1<···<ik6n

F(λi1 , . . . , λik)

for all continuous compactly supported symmetric functions F : Rk → C, where
λ1 6 · · · 6 λn denote the eigenvalues of Mn arranged in increasing order (and
counting multiplicity). From the Riesz representation theorem we see that this
defines ρ(k) as a Radon measure at least; if Mn has an absolutely continuous
distribution (as is the case for instance with the GOE ensemble) then ρ will in
fact be a locally integrable function. Setting k = 1 and F(x) = 1

x−z , we see in
particular that

(3.0.20)
∫

R

ρ(1)(x)
dx

x− z
= nEs(Mn, z).

Similarly, setting k = 2 and F(x1, x2) = 1
x1−z1

1
x2−z2

+ 1
x1−z2

1
x2−z1

, then setting
k = 1 and F(x) = 1

(x−z1)(x−z2)
, and adding, we see that

2
∫

R2
ρ(2)(x1, x2)

dx1dx2

(x1 − z1)(x2 − z2)

+

∫
R2
ρ(1)(x)

dx

(x− z1)(x− z2)
= n2Es(Mn, z1)s(Mn, z2).

By combining these sorts of identities with Exercise 3.0.19, one can obtain four
moment theorems for correlation functions. For instance, we have

Proposition 3.0.21. Let E be a real number, and let ψ : R → R be a smooth compactly
supported function. Then the statistic

1
n

∫
R

ρ(1)(E+
s

n
)ψ(s) ds

enjoys a four moment theorem.

Proof. Set η := n−1− 1
100 . From Exercise 3.0.19, the statistic

E

∫
R

ψ(t)s(Mn,E+
t

n
+ iη) dt

enjoys a four moment theorem. Applying (3.0.20), we conclude that
1
n

∫
R

∫
R

ρ(1)(x)ψ(t)
dxdt

x− E− t
n − iη

enjoys a four moment theorem. Making the change of variables x = E+ s
n , this

becomes
1
n

∫
R

ρ(1)(E+
s

n
)

(∫
R

ψ(t) dt

s− t− inη

)
ds.

Taking imaginary parts and dividing by π, we conclude that

1
n

∫
R

ρ(1)(E+
s

n
)

(∫
R

nηψ(t) dt

π((s− t)2 + (nη)2)

)
ds
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enjoys a four moment theorem. However, from the smoothness and compact
support of ψ, and the fact that the Cauchy distribution nη

π((s−t)2+(nη)2)
integrates

to one, one can establish a bound of the form∫
R

nηψ(t) dt

π((s− t)2 + (nη)2)
= ψ(s) +O

(
n−1/100

1 + s2

)
(Exercise!). On the other hand, from (3.0.20) and Theorem 3.0.17 one can show
that

1
n

∫
R

ρ(1)
(
E+

s

n

) ds

1 + s2 � no(1)

(Exercise!). The claim now follows from the triangle inequality. �

Exercise 3.0.22. Justify the two steps marked (Exercise!) in the above proof.

Exercise 3.0.23. If k is a fixed natural number, E1, . . . ,Ek are real numbers, and
ψ : Rk → R is a smooth compactly supported function, show that the statistic

1
nk

∫
R

ρ(k)
(
E1 +

s1

n
, . . . ,Ek +

sk
n

)
ψ(s1, . . . , sk) ds1 . . . sk

enjoys a four moment theorem.

With a bit more effort (using now the real part of the Stieltjes transform, in ad-
dition to the imaginary part), one can also use Exercise 3.0.19 to establish a four
moment theorem for statistics involving the individual eigenvalues and eigenvec-
tors of Mn; see [41] for details. Such theorems were also established by direct
Taylor expansion of the eigenvalues and eigenvectors; see [61], [62].

Of course, one would like to also establish universality results for classes of
random matrices with fewer than four matching moments. At the scale of the
mean eigenvalue spacing of 1/n, it appears (in the bulk, at least) that the Linde-
berg exchange method is not powerful enough on its own to accomplish this task.
However, the Lindeberg exchange method combines well with other universality
results involving ensembles in which the third and fourth moments are allowed
to vary. For instance, a breakthrough work of Johansson [39] obtained universal-
ity results for matrices that were gauss divisible in the sense that they were of the
form

Mtn := (1 − t)1/2Mn + t1/2Gn.

where Gn was a GUE matrix, Mn was a (Hermitian) Wigner matrix (with the
same first two moments as the GUE matrix), and 0 < t < 1 was a fixed param-
eter. This combines well with the four moment theorem to obtain universality
results for a relatively wide class of Hermitian Wigner matrices; see [61]. This
approach has not yet been extended to the case of real Wigner matrices. However,
a different way to obtain universality between a real Wigner matrix Mn and a
GOE matrix Gn (which we take to be independent of Mn) is not to exchange
the elements from Mn to Gn one at a time, but instead to consider an Ornstein-
Uhlenbeck type process that flows continuously from Mn to Gn from time t = 0
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to time t = 1, by the formula

Mtn := (1 − t)1/2Mn + t1/2Gn.

Clearly Mtn equals Mn when t = 0 and Gn when t = 1. For any intermediate
time t, Mtn is a real Wigner matrix (of a special type known as a Gauss divisible
Wigner matrix), and the third and fourth moments of the components of Mtn
vary in some explicit polynomial fashion from those of ξij to those of ηij. A key
feature of this flow is that the eigenvalues of Mtn evolve by the laws of Dyson
Brownian motion. Using techniques such as the method of local relaxation flow as
discussed in the lecture notes of Erdős, one can obtain good universality results10

that compareMtn to Gn for t as low as n−1+ε for any fixed ε > 0. Meanwhile, the
Lindeberg exchange method can be used to compare11 Mtn to Mn for t = n−1+ε.
Combining these two claims, one can obtain universality results for Wigner ma-
trices that do not require additional matching moments beyond the second; see
e.g. [26] or [31]. On the other hand, there are some spectral statistics, particularly
those involving a fixed eigenvalue of a Wigner matrix, for which the matching of
the fourth moment is in fact necessary: see [64], [24]. Also, at this present time,
the Lindeberg exchange method is the only tool that has been effectively used to
obtain local universality results for non-Hermitian matrices [65].
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[5] J. Alt, L. Erdős, and T. Krueger, Local inhomogeneous circular law, preprint.←16
[6] Marwa Banna, Limiting spectral distribution of Gram matrices associated with functionals of β-

mixing processes, J. Math. Anal. Appl. 433 (2016), no. 1, 416–433, DOI 10.1016/j.jmaa.2015.07.064.
MR3388800←28

[7] Marwa Banna and Florence Merlevède, Limiting spectral distribution of large sample covariance ma-
trices associated with a class of stationary processes, J. Theoret. Probab. 28 (2015), no. 2, 745–783, DOI
10.1007/s10959-013-0508-x. MR3370674←28

10Strictly speaking, the method of local relaxation flow requires an additional averaging in the energy
parameter E in order to obtain this claim. However, more recent methods are now available to avoid
this averaging in energy: see [15].
11There is a minor additional issue because the third and fourth moments of the coefficients of Mn

and Mt
n are not quite identical, however it turns out that the additional error terms caused by this

are negligible when t = n−1+ε for ε small enough.

http://www.ams.org/mathscinet-getitem?mr=MR2820070
http://www.ams.org/mathscinet-getitem?mr=MR3359233
http://www.ams.org/mathscinet-getitem?mr=MR3481269
http://www.ams.org/mathscinet-getitem?mr=MR2441920
http://www.ams.org/mathscinet-getitem?mr=MR3388800
http://www.ams.org/mathscinet-getitem?mr=MR3370674


References 37

[8] Marwa Banna, Florence Merlevède, and Magda Peligrad, On the limiting spectral distribution for a
large class of symmetric random matrices with correlated entries, Stochastic Process. Appl. 125 (2015),
no. 7, 2700–2726, DOI 10.1016/j.spa.2015.01.010. MR3332852←28

[9] Z. D. Bai, Circular law, Ann. Probab. 25 (1997), no. 1, 494–529, DOI 10.1214/aop/1024404298.
MR1428519←16, 22

[10] A. Basak, N. Cook, and O. Zeitouni, Circular law for the sum of random permutation matrices,
preprint.←16

[11] A. Basak and M. Rudelson, Circular law for sparse matrices, preprint.←16
[12] Anirban and Dembo Basak Amir, Limiting spectral distribution of sums of unitary and orthogonal

matrices, Electron. Commun. Probab. 18 (2013), no. 69, 19.←16
[13] Charles Bordenave, Pietro Caputo, and Djalil Chafaï, Circular law theorem for random Markov ma-

trices, Probab. Theory Related Fields 152 (2012), no. 3-4, 751–779, DOI 10.1007/s00440-010-0336-1.
MR2892961←16

[14] Charles Bordenave and Djalil Chafaï, Around the circular law, Probab. Surv. 9 (2012), 1–89, DOI
10.1214/11-PS183. MR2908617←16
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