
Sketch notes on concentration of measure
Quantitative Linear Algebra Tutorials, March 2018,

IPAM, UCLA

I have written these notes to accompany my first two tutorial lectures on con-
centration of measure given at IPAM during March 20–23, 2018. I intend the
lectures to be quite basic, so they will miss out many large and important topics
related to concentration. These notes are a guide to my lectures and to further
reading, so only a few proofs are given in full here. I am grateful to a number of
participants in the tutorials for pointing out corrections.

The two sections below roughly reflect the contents of my first and second
lectures, respectively. I also gave a third lecture on some applications of con-
centration in classical ergodic theory. That subject is not treated here. A nice
introduction can be found in [Shi96, Chapters III and IV].

1 Concentration for product measures

1.1 Point of departure: exponential bounds in the LLN
Let X1, X2, . . . be i.i.d. RVs, and suppose for simplicity that

‖Xi‖∞ ≤ 1. (1)

Let m = E[Xi], and let Sn = X1 + · · ·+Xn. According to the weak law of large
numbers,

P
(
|Sn/n−m| ≥ ε) −→ 0 ∀ε > 0

as n −→∞. More is true: given assumption (1), the convergence to zero of these
probabilities is exponentially fast. That is, for every ε > 0, there exists c > 0 such
that

P
(
|Sn/n−m| ≥ ε) ≤ e−cn
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for all sufficiently large n. Thus, a ‘macroscopic’ deviations of Sn/n from its
mean is exponentially unlikely as n −→ ∞. In the presence of (1), such a c can
be chosen depending only on ε: for instance, any c < ε2/2 will do. Such basic
quantitative forms of the law of large numbers go back to work of Bernstein and
Chernoff.
Remark. In this setting, one can actually show that

P
(
Sn/n−m ≥ ε) = e−cn+o(n) (2)

for some particular choice of c > 0, which depends more finely on the common
distribution of the Xis. This calculation is Cramér’s theorem, one of the starting
points of large deviations theory. But in these notes our concern is only with upper
bounds, and with settings in which no such precise asymptotic as (2) is known.

In general, if (Yn)n≥1 is any sequence of R-valued RVs, then they are said to
exhibit concentration if there are constants (cn)n≥1 such that

P(|Yn − cn| ≥ ε) −→ 1 ∀ε > 0.

Often one may take cn = E[Yn], but not always. If in fact there are positive
constants c(ε) such that

P(|Yn − cn| ≥ ε) ≤ e−c(ε)n+o(n), (3)

then one speaks of exponential concentration. The inequalities above assert that
the running averages Sn/n concentrate exponentially fast around their mean m.

There are many other settings in which it is useful to know that some sequence
of RVs exhibits concentration, and a whole branch of probability theory has grown
around the phenomenon.

1.2 Other functionals of i.i.d. RVs
Consider again the setting above. For each n, we may write Sn/n as f(X1, . . . , Xn),
where f : Rn −→ R is the averaging function

f(x1, . . . , xn) =
x1 + · · ·+ xn

n
.

It turns out that some quite general properties of this function are enough to imply
that the RV f(X1, . . . , Xn) is highly concentrated once n is large. This extends the
phenomenon of concentration far beyond the particular example of the averaging
function.

Heuristically, the key realization in this direction is the following:
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One should expect concentration of the RV f(X1, . . . , Xn) whenever
f has a sufficiently small dependence on each individual coordinate.

In the example of the averaging function, suppose for simplicity that each Xi

takes values in [0, 1], so f may be restricted to a function [0, 1]n −→ R. If we
alter a single coordinate of (x1, . . . , xn) ∈ [0, 1]n, then the value of f(x1, . . . , xn)
changes by at most 1/n.

It is valuable think about this feature of the averaging function in the following
geometric way. First, recall that a map

f : (X, dX) −→ (Y, dY )

between metric spaces is L-Lipschitz if

dY (f(x), f(x′)) ≤ L · dX(x, x′) ∀x, x′ ∈ X.

The least constant L for which is holds is the Lipschitz constant of f . In case
Y = R with its usual metric, we denote the this Lipschitz constant by ‖f‖L. In
that case one can check easily that this is a seminorm on the linear space of all
Lipschitz functions, and that it vanishes precisely on the constant functions.

Next, for any nonempty set K and n ∈ N, let us endow the product space Kn

with the normalized Hamming metric:

dn(x,y) :=
|{i = 1, 2, . . . , n : xi 6= yi}|

n

for x = (x1, . . . , xn) and y = (y1, . . . , yn) in Kn. With this metric, a function
f : Kn −→ R is L-Lipschitz provided |f(x − f(y)| ≤ L/n whenever x and
y differ in only one coordinate. Thus, our discussion above concludes that the
averaging function is 1-Lipschitz for the normalized Hamming metric on [0, 1]n.

According to the next theorem, this last fact is enough to imply concentration
in general.

Theorem 1 (McDiarmid’s inequality). Let (K,A, µ) be a probability space, let
L > 0 be a constant, and let f : Kn −→ R be a measurable function for the
product σ-algebraA⊗n which isL-Lipschitz for the normalized Hamming metric1.
Then

µ×n
{
f ≥

∫
f dµ×n + ε

}
≤ e−2ε

2n/L2

.

1If K is not finite, then the normalized Hamming metric is not separable, and it usually does
not have A⊗n for its Borel σ-algebra — this is why we must assume measurability separately.
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Remark. More probabilistically, this theorem asserts that, if X = (X1, . . . , Xn)
has i.i.d.(µ) coordinates, then

P
(
f(X)− E[f(X)] ≥ ε

)
≤ e−2ε

2n/L2

.

By applying Theorem 1 to −f , it gives also

P
(
f(X)− E[f(X)] ≤ −ε

)
≤ e−2ε

2n/L2

,

and hence
P
(∣∣f(X)− E[f(X)]

∣∣ ≥ ε
)
≤ 2e−2ε

2n/L2

.

To prove Theorem 1, we bound the probability of interest by bounding an
exponential moment and applying Markov’s inequality. Specifically, we show
that ∫

ef dµ×n ≤ e〈f〉+‖f‖
2
L/8n (4)

for any measurable and Lipschitz function f on Kn, where 〈f〉 is a short-hand for∫
f dµ×n. To turn (4) into Theorem 1, let f be as in that theorem, and first observe

that we can normalized f and so assume that 〈f〉 = 0 and ‖f‖L ≤ 1. Having done
so, we apply (4) to the function g := λnf for some λ > 0, which has ‖g‖L ≤ λn.
Combined with Markov’s inequality, this results in

µ×n
{
f ≥ ε

}
= µ×n

{
eg ≥ eελn

}
≤ e−ελn

∫
eg dµ×n ≤ e−ελneλ

2n/8 = e(−ελ+λ
2/8)n.

Optimizing, we are led to use λ = 4ε. This choice gives the desired bound e−2ε
2n.

Inequality (4) is proved by induction on n. First, define the operator Pn from
functions on Kn to functions on Kn−1:

Pnf(x1, . . . , xn−1) :=

∫
K

f(x1, . . . , xn−1, x
′)µ(dx′). (5)

This has a simple probabilistic interpretation. For 0 ≤ i ≤ n, let Fi be the sigma-
subalgebra of sets in A⊗n which depend on only the first i coordinates. Then the
function

(x1, . . . , xn) 7→ Pnf(x1, . . . , xn−1)

is a version of the conditional expectation Eµ×n(f | Fn−1). In particular, we
clearly have ∫

Pnf dµ×(n−1) =

∫
f dµ×n.
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Lemma 2 (Decay in Lipschitz constant). We have

‖Pnf‖L ≤
n− 1

n
‖f‖L.

Proof. If y1,y2 ∈ Kn−1 differ in d coordinates, then their distance in Kn−1 is
d/(n − 1). On the other hand, for any fixed x′ ∈ K, the distance in Kn between
(y1, x

′) and (y2, x
′) is d/n. Therefore

|Pnf(y1)− Pnf(y2)| ≤
∫
|f(y1, x

′)− f(y2, x
′)|µ(dx′)

≤ ‖f‖L ·
d

n
=
n− 1

n
‖f‖L · dn−1(y1,y2).

Our next ingredient is a classical inequality of Hoeffding.

Lemma 3 (Hoeffding’s basic inequality). Let (K,A, µ) be a probability space,
let a < b, and let f : K −→ [a, b] be measurable. Then∫

ef dµ ≤ exp
(∫

f dµ+ (b− a)2/8
)
. (6)

Proof (of slightly weaker result). By subtracting
∫
f dµ, we may assume that this

average is zero. Let c := b− a.
The proof of (6) is elementary, but requires some delicate calculus. Here we

give the simpler proof of the slightly weaker inequality∫
ef dµ ≤ ec

2/2

(that is, the factor of 1/8 is replaced by 1/2). For this, it suffices to make the
weaker assumptions that

∫
f dµ = 0 and

−c ≤ f ≤ c.

Given these, for any x ∈ K we may write f(x) as a weighted average of the
values ±c: say

f(x) = t(x) · c+ (1− t(x)) · (−c), where t(x) =
1

2
(f(x) + 1).
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Since exp is convex, it follows that

ef(x) = et(x)c+(1−t(x))(−c) ≤ t(x)ec + (1− t(x))e−c,

and hence ∫
ef ≤ ec

∫
t+ e−c

∫
(1− t) =

1

2
(ec + e−c) ≤ ec

2/2. (7)

The last inequality here follows by a term-by-term comparison of Taylor series.

Cheat: We have proved only a weaker bound than the statement of Lemma 3,
but I will use the full version of that lemma in the sequel. The only difference this
makes is slightly improved constants.

Corollary 4 (Decay in MGF controlled by Lipschitz constant). We have∫
ef dµ×n ≤ e‖f‖

2
L/8n

2

∫
ePnf dµ×(n−1)

Proof. Observe that∫
ef dµ×n =

∫
Kn−1

(∫
K

ef(y,x)−Pnf(y) µ(dx)
)

ePnf(y) µ×(n−1)(dy).

Consider the inner integral on the right. For each fixed y, the function

f(y, · )− Pnf(y)

has integral zero with respect to µ (by the definition of Pn) and takes values in an
interval of length at most ‖f‖L/n (because we are allowing only one coordinate
to vary). Therefore, by Lemma (6), that inner integral is at most e‖f‖

2
L/8n

2 . Now
substitute this bound into the right-hand side above.

Proof of Theorem 1. When n = 1 this is a special case of Lemma 3. So now
suppose that n ≥ 2 and that (4) is already known for functions on Kn−1. In light
of Lemma 2, we may apply this inductive hypothesis to the function Pnf to obtain∫

ePnf dµ×(n−1) ≤ exp
(∫

Pnf dµ×(n−1) +
‖Pnf‖2L
8(n− 1)

)
≤ exp

(
〈f〉+

n− 1

n

‖f‖2L
8n

)
.

Now Corollary 4 turns this into∫
ef dµ×n ≤ exp

(
〈f〉+

1

n

‖f‖2L
8n

+
n− 1

n

‖f‖2L
8n

)
= e〈f〉+‖f‖

2
L/8n.

This is (4), which we have seen implies Theorem 1.
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1.3 Generalization: the Azuma–Hoeffding theorem
Actually, the argument above applies in an even more general setting with almost
no change, and it is often presented that way. Recall that we can identify Pnf
with Eµ×n(f | Fn−1), where Fi is the sigma-subalgebra of sets in Kn that depend
only on the first i coordinates. It turns out that we can forget the product struc-
ture of Kn, and assume only a filtration (Fi)ni=1 and a certain bound on how the
conditional expectations Eµ×n(f |Fi) changes as i increases. The more general
theorem which results is one of the oldest and most popular methods for proving
concentration. It is easiest to state in more probabilistic language.

Theorem 5. Let L > 0 be a constant, and consider a probability space (Ω,F ,P)
and a filtration

{∅,Ω} = F0 ≤ F1 ≤ F2 ≤ · · · ≤ Fn = F .

Suppose the RV X has the following property: for each i = 1, 2, . . . , n, there are
Fi−1-measurable RVs Yi and Zi such that

Yi ≤ E[X | Fi] ≤ Zi and Zi ≤ Yi + L/n a.s.. (8)

Then
P
(
X − E[X] > ε

)
≤ e−2ε

2n/L2

.

This is essentially a version of the Azuma–Hoeffing theorem. That theorem is
often stated with the slightly different assumption that

‖E[X |Fi]− E[X | Fi−1]‖∞ ≤ L/n.

In this case one can apply Theorem 5 with

Yi := E[Xi | Fi−1]− L, Zi := E[X | Fi−1] + L,

and the resulting probability bound is e−2ε
2n/(2L)2 = e−ε

2n/2L2 .
Thus, to prove concentration for a RV, one can look for a filtration with respect

to which X satisfies (8). Intuitively, this condition (8) asserts that, conditionally
on Fi−1, the next conditional expectation E[X | Fi] has essential range of length
at most L/n: the auxiliary RVs Yi and Zi give an Fi−1-measurable choice of an
interval of that length which contains E[X | Fi].

The conditional expectations E[X | Fi] form a martingale, so this method for
proving concentration is often called the method of bounded marginale differ-
ences. To derive Theorem 1 from Theorem 5, we take (Ω,F ,P) to be (Kn,A⊗n, µ×n),
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and let Fi be the σ-subalgebra of A⊗n generated by the first i coordinates in
Kn. Then the Lipschitz condition on f translates into (8). In other applica-
tions of Theorem 5 the choice of filtration can be more subtle. These applica-
tions include many in the setting of random optimization problems: see, for in-
stance, [McD98, GS01].

Here is another valuable example. The symmetric group Sym(n) has a natural
normalized Hamming metric of its own:

dSym(n)(σ, τ) :=
|{i = 1, 2, . . . , n : σ(i) 6= τ(i)|

n
.

It also has a natural filtration (Fi)ni=1, where Fi is the sigma-algebra of sets that
depend on only the restriction σ|{1,2,...,i}. This metric and filtration interact simi-
larly to the case of product spaces: anL-Lipschitz function on Sym(n) satisfies (8)
except that the constant is doubled to 2L (exercise!). Therefore Theorem 5 has the
following corollary.

Theorem 6. If f : Sym(n) −→ R is L-Lipschitz for dSym(n), and µ is the uniform
distribution on Sym(n), then

µ
{
f ≥

∫
f dµ+ ε

}
≤ e−ε

2n/2L2

.

1.4 Isoperimetry in product spaces
A second simple application of Theorem 1 connects to another valuable point of
view on measure concentration.

Let A be a finite alphabet. Let us apply Theorem 1 to 1-Lipschitz functions on
An of the following kind. Consider a nonempty subset U ⊆ An, and its associated
distance function:

f(x) := min{dn(x,y) : y ∈ U}.

The function f vanishes on U , and it is 1-Lipschitz as an easy consequence of the
triangle inequality.

Therefore, letting µ be the uniform distribution on An, Theorem 1 gives

µ{f ≥ c+ ε} ≤ e−2ε
2n and µ{f ≤ c− ε} ≤ e−2ε

2n, (9)

where c =
∫
f dµ.
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Corollary 7. If µ(U) > e−2ε
2n, then

µ{x : f(x) < 2ε} = µ
(
B2ε(U)

)
≥ 1− e−2ε

2n.

Proof. By the second part of (9), we have

µ{f ≤ c− ε} ≤ e−2ε
2n.

In view of our assumption on U , this means that

∃x ∈ U \ {f ≤ c− ε}.

But U = {f = 0}, so this tells us that c < ε. Now the first part of (9) gives

µ{f < 2ε} ≥ µ{f ≤ c+ ε} ≥ 1− e−ε
2n/2.

Thus, if U is any subset of An which is bigger than e−2ε
2n (which is very

small), and we expand U by the (small) distance 2ε, then it fills up all but an
exponentially small portion of the whole space An! This curious phenomenon is
a special feature of various ‘high-dimensional’ settings for probability theory. It
turns out that, up to the values of various constants, it is equivalent to concen-
tration of Lipschitz functions as expressed in Theorem 1. (Exercise: prove this
by applying this expansion phenomenon of sets to level-sets of 1-Lipschitz func-
tions).

This expansion phenomenon of subsets is another natural way to introduce the
idea of measure concentration. It is an even more classical result in the case of
high-dimensional unit spheres. For those it follows from a famous theorem of
Lévy showing that the isoperimetrc problem on spheres is solved by intersections
with half-spaces. In the next lecture we turn to concentration of Lipschitz func-
tions on spheres, and give an approach to the basic result there which is analogous
to our proof of Theorem 1 above.

2 Concentration and positive curvature

2.1 High-dimensional spheres
Let Sn be the unit sphere in Rn+1, and let µ be its surface-area measure, normal-
ized to have total mass 1.
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Theorem 8 (Concentration on spheres). Any f ∈ Lip(Sn) satisfies∫
ef dµ ≤ e〈f〉+‖f‖

2
L/2(n−1).

This theorem can be proved using a Markov process on the sphere, following
analogous steps to the proof of Theorem 1. This is explained in [Led92], and we
give an intuitive sketch of that proof here. The main complication is that now one
must use more advanced probability theory to set up a suitable Markov process in
the first place. The right process to use is Brownian motion on the sphere. We do
not introduce this rigorously here: see, for instance, [RW00, Chapter V]. We shall
simply cite a few basic facts.

For each x ∈ Sn, one can construct a Brownian motion on the sphere started
at x. This is a continuous-time Markov process (Xt)t≥0 on Sn which has contin-
uous sample-paths, satisfies X0 = x, and is well-approximated over short time-
scales by Brownian motions on tangent spaces. Using this process, we can define
the associated expectation operators on C(Sn) by

Ptf(x) := Exf(Xt) for t ≥ 0,

where Ex denotes expectation with respect to the Brownian motion started at x.
These operators form a semigroup:

Pt+s = Pt ◦ Ps whenever t, s ≥ 0.

This follows from the Markov property of the process. This semigroup of opera-
tors satisfies

d

dt
Ptf(x) =

1

2
∆Ptf(x) for f ∈ C2(Sn), (10)

where ∆ is the Laplace–Beltrami operator of the sphere. That operator may be
written

∆f(x) =
n∑
i=1

∂ei∂eif,

where e1, . . . , en are any orthonormal basis for the tangent space to Sn at x, and
∂ei denotes differentiation in direction ei. The relation (10) is described by saying
that ∆ is the generator of the semigroup (Pt)t≥0 (where I’m suppressing some
fiddly issues about the correct choice of domain for ∆).

Two basic facts that I will assume without proof:
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Lemma 9 (Integration by parts). For any f, h ∈ C2(Sn), we have∫
∆f · h dµ = −

∫
〈grad f, gradh〉 dµ.

With these preparations in hand, the proof of Theorem 8 has two basic steps.
They mirror Lemma 2 and Corollary 4 in the proof of Theorem 1.

Lemma 10 (Decay in Lipschitz constant). If f is Lipschitz then

‖Ptf‖L ≤ e−(n−1)t/2‖f‖L ∀t ≥ 0.

Remark. In the original presentation of Theorem 8 in [Led92], Ledoux uses the
semigroup Qt := P2t: that is, he lets Brownian motion run at twice its usual
speed. This removes some tedious factors of 1/2 during the course of the proof:
for instance, the above lemma becomes

‖Qtf‖L ≤ e−(n−1)t‖f‖L.

I have stuck to the usual definition of Brownian motion and its semigroup for
consistency with the bulk of the probability theory literature.

Sketch proof. One can prove this quite quickly via a differential inequality for the
function t 7→ ‖Ptf‖L. That, in turn, can be obtained using the calculus of differ-
ential operators on the sphere: in particular, a standard identity called Bochner’s
formula. However, let us sketch a more ‘visual’ proof.

Consider two non-antipodal points on the sphere, say x and y. Let the Rie-
mannian distance between them be `, and let γ : [0, `] −→ Sn be the speed-one
geodesic from x to y.

There is a unique rotation T of Rn+1 such that (i) Tx = y and (ii) the subspace
orthogonal to x and y is pointwise fixed by T . One can think of T as an isometry
of Sn which moves x along the geodesic γ to y, and fixes the rest of the sphere as
far as possible.

Now let x′ be another point very close to x, say with d(x, x′) = δ, and let
y′ := Tx′. We can now state the key geometric feature of the sphere which
underlies Theorem 8: after constructing y′ as above, we have

d(x′, y′) = cos θ · d(x, y) = (1− θ2/2 + o(θ2)) · d(x, y), (11)
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where θ is the orthogonal distance from x to the geodesic γ. The negative sign in
front of θ2/2 here is a basic manifestation of the positive curvature of the sphere.

We apply (11) together with the following fact: if (Xx
t )t is a Brownian motion

on Sn started at x, then (T (Xx
t ))t is a Brownian motion on Sn started at y. This

is because the law of Brownian motion on Sn is respected by the isometries of the
sphere. This defines a canonical coupling of those two Brownian motions. Using
that coupling, we obtain

|Ptf(x)− Ptf(y)| =
∣∣Ex[f(Xt)]− Ey[f(Xt)]

∣∣ ≤ Ex
[
|f(Xt)− f(T (Xt))|

]
≤ ‖f‖L · Ex[d(Xt, T (Xt))].

By (11), this upper bound equals

‖f‖L · d(x, y) ·
(

1− Ex
[
d(γ,Xt)

2/2 + o(d(γ,Xt)
2)
])

as t ↓ 0.

In this expression, d(γ,Xt) is the distance from Xt to γ. The leading-order be-
haviour of this quantity as t ↓ 0 is the same as the distance between a Brownian
motion in Rn and a fixed line through the origin: in particular, its variance behaves
the same as a sum of n− 1 Gaussians of variance t:

Ex[d(γ,Xt)
2/2] = (n− 1)t/2 + o(t). (12)

Inserting this into the upper bound above, we obtain

‖f‖L · d(x, y) ·
(
1− (n− 1)t/2 + o(t)

)
as t ↓ 0.

Taking the supremum over x and y, we have shown that

‖Ptf‖L ≤ (1− (n− 1)t/2 + o(t))‖f‖L as t ↓ 0.

Finally, for any fixed t, the semigroup property of (Ps)s≥0 lets us write

Ptf = (Pt/m)mf

for any m ∈ N. Applying the above inequality m times, we obtain

‖Ptf‖L ≤
(

1− (n− 1)
t

2m
+ o
( t
m

))
‖(Pt/m)m−1f‖L

≤ · · · ≤
(

1− (n− 1)
t

2m
+ o
( t
m

))m
‖f‖L.

Sending m −→∞, this upper bound converges to e−(n−1)t/2‖f‖L.
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We also need the following corollary of Lemma 10.

Corollary 11 (Ergodicity of Brownian motion). For any f ∈ C(Sn) we have

Ptf(x) −→
∫
f dµ as t −→∞,

uniformly in the choice of start-point x.

We now turn to the second step in the proof of Theorem 8.

Lemma 12 (Decay in MGF controlled by Lipschitz constant). If f ∈ C2(Sn),
then

d

dt
log

∫
ePtf dµ ≥ −1

2
‖Ptf‖2L ∀t ≥ 0.

Proof. Differentiating under the integral sign gives

d

dt

∫
ePtf dµ =

∫
d

dt
(Ptf) · ePtf dµ =

1

2

∫
∆(Ptf) · ePtf dµ.

By Lemma 9, this equals

−1

2

∫
〈gradPtf, grad (ePtf )〉 dµ = −1

2

∫
〈gradPtf, gradPtf〉ePtf dµ,

and so it is bounded below by

−1

2
‖Ptf‖2L

∫
ePtf dµ.

Dividing by
∫

ePtf dµ, this becomes the desired lower bound.

Proof of Theorem 8. Since C2(Sn) is uniformly dense in Lip(Sn), it suffices to
prove the result when f is twice differentiable.

Consider the integral ∫
ePtf dµ

as a function of t ∈ [0,∞). At t = 0 it equals
∫

ef dµ, and as t −→∞ it tends to
exp

∫
f dµ, by Lemma 11. It is also easily checked to be differentiable in t, so

log

∫
ef dµ = 〈f〉 −

∫ ∞
0

d

dt
log
(∫

ePtf dµ
)

dt.
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By Lemma 12, this is at most

〈f〉+
1

2

∫ ∞
0

‖Ptf‖2L dt.

By Lemma 10, this is at most

〈f〉+
1

2

∫ ∞
0

e−(n−1)t‖f‖2L dt = 〈f〉+
1

2(n− 1)
‖f‖2L.

Exponentiating, we arrive at the desired inequality.

2.2 Generalization: positively curved manifolds
Now consider a compact Riemannian manifold (M, g). Let µ be its volume mea-
sure, normalized to be a probability measure. Let ∆g be the Laplace–Beltrami op-
erator. The operator 1

2
∆g generates a Feller semi-group (Pt)t≥0 acting on C(M),

which is associated to Brownian motion on M .
Using these constructs, one can try to generalize the argument about the sphere

above. Inevitably, one needs some kind of geometric assumption about the mani-
fold (M, g). The specific need for it appears when we try to generalize Lemma 10.

For a general manifold, one cannot argue about great circles and rigid isome-
tries as we did in the proof of that theorem for sphere. However, substitutes are
available. Given the geodesic γ from x to y and a point x′ very close to x, there is
a unique unit vector v(0) ∈ TxM such that x′ is reached by following a geodesic
from x of length δ and initial direction v(0). Now the general construction of
parallel transport produces allows us to move the tangent vector v(0) along the
geodesic γ, producing a continuous family of unit tangent vectors v(t) ∈ Tγ(t)M .
Parallel transport is the unique way to do this so that these vectors exhibit no ‘in-
finitessimal rotation’ as t increases. In particular, we arrive at v(`) ∈ TyM , and
then we can produce y′ by following a geodesic from y of length δ and initial
direction v(`).

Having made this construction, the key to completing the proof is understand-
ing the correct substitute for (11). This is provided by a standard formula from
differential geometry: the formula for the second variation of arc length (see, for
instance, [dC76, Section 5-4, Proposition 4] and [dC92, Chapter 9, Proposition
2.8]). It gives

d(x′, y′) = d(x, y)−
∫ `

0

θ2 ·K(v(t), γ′(t)) dt+ o(θ2),
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where once again θ is the orthogonal distance from x′ to the (extension of the)
geodesic γ. The new quantity appearing in this integrand, K(v(t), γ′(t)), is the
sectional curvature (see [dC92, Section 4.3]) of the infinitessimal surface in M
passing through the point γ(t) and defined by the unit tangent vectors v(t) and
γ′(t). The sectional curvature is a fundamental descriptor of curvature in differ-
ential geometry, and is computed from the more informative, rank-four curvature
tensor (see [dC92, Section 4.2]).

Applying the above calculation with x′ = Xx
t , similarly to the sphere, one first

checks that y′ has the same law as Xy
t . On more general manifolds this holds only

up to some higher-order error terms as t −→ ∞, but this still suffices. Then one
takes expectation to obtain

E[d(Xx
t , X

y
t )] = d(x, y)−

∫ `

0

E[θ2K(v(t), γ′(t))] dt+ E[o(θ2)].

Here, θ is now the perpendicular distance from Xx
t to the geodesic γ, and v(t) is

the unit vector at Tγ(t)M obtained by parallel transport of the direction in which
Xx
t lies from x. Thus, θ and v(t) are both random, depending on Xx

t .
By some slighly more involved calculations along the lines of (12), the expec-

tation involving these quantities has leading-order behaviour equal to

(n− 1)t

∫
S(Tγ(t)M)∩(γ′(t))⊥

K(v, γ′(t)) dv = t · Ricγ(t)(γ
′(t)),

where the integral is over the unit vectors in Tγ(t)M which are orthogonal to the
direction γ′(t), and where Ricγ(t)(γ

′(t)) is the Ricci curvature of M at γ(t) in the
direction γ′(t) (see [dC92, Section 4.4])2.

Filling in the details of this argument, one can generalize Lemma 10 and hence
Theorem 8 assuming a lower bound on the Ricci curvature.

Theorem 13 (Concentration on positively curved manifolds). Let (M, g) be a
Riemannian manifold with normalized volume measure µ, and assume that the
Ricci curvature is at least c > 0 in all unit tangent directions on M . Then any
f ∈ Lip(M) satisfies ∫

ef dµ ≤ e〈f〉+‖f‖
2
L/2c.

2Beware that my conventions differ from [dC92]: his Ricci curvature is our Ric divided by
n− 1. Our convention matches most of the literature on concentration.
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This theorem is proved in [Led92] following the lines used above for the
case of the sphere. A previous proof used more delicate results on isoperimetry
and comparison results between positively-curved manifolds and corresponding
spheres; see [GM83].

Much as we saw how the Azuma–Hoeffding theorem allows us to extend Mc-
Diarmid’s inequality to many other discrete metric probability spaces, Theorem 13
extends Theorem 8 to many other natural manifolds of interest. Of particular in-
terest in random matrix theory are the unitary and orthogonal groups in high di-
mensions and various related subugroups. For instance, a standard calculation
shows that if we give the special unitary group SU(n) the Riemannian structure
defined by the normalized Frobenius inner product

〈A,B〉 :=
1

n
Tr(AB∗),

then its dimension as a real maniforld is n2 − 1 and its Ricci curvature is n2/2 in
all unit tangent directions. (See, for instance, [AGZ10, Appendix F].) Thus:

Theorem 14 (Concentration on unitary groups). If f ∈ Lip(SU(n)) for the nor-
malized Frobenius inner product, then∫

ef dµ ≤ e〈f〉+‖f‖
2
L/n

2

.

This applies, for instance, to any function of unitary matrices of the form

U 7→ 1

n
Tr(F (U)),

where F is a Lipschitz function from the unit circle to R and F (U) is defined
via the spectral theorem. Concentration for this kind of functional of matrices is
the basis of many proofs that large random matrices have approximately a fixed
spectral distribution with high probability, not just one average.

A further generalization of Theorem 13 can be obtained for a re-weighted
measure on M of the form

e−V (x)µ(dx)

normalizing constant
.

Now one must replace the lower bound on Ricci curvature by a lower bound on

Ricci curvature + Hessian of V ,
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and then use a more general construction of diffusion processes on manifolds
to complete the proof. The resulting theorem also encompasses another impor-
tant classical example of measure concentration: Gaussian distributions in high-
dimensional Euclidean spaces. In random matrix theory, this is the source of many
concentration results for the GUE and GOE.

Many good sources explore applications of concentration inequalities such as
Theorem 1 and Theorem 13 to random matrices. Often more specialized con-
centration inequalities than those can be used to obtain sharper results. See, for
instance, [GZ00] and [Led07, Section 3].

Notes and remarks
Lemma 3 is due to Hoeffding [Hoe63]. Its use to prove Theorem 1 is due to Mc-
Diarmid: see [McD98, Lemma 2.6] and the arguments that follow it. The method
of bounded martingale differences has been studied in depth by McDiarmid, and
his surveys [McD89, McD98] are a good place to learn about a wide range of
refinements and applications.

A standard treatment of the Azuma–Hoeffding theorem, including the appli-
cation to bin-packing and several others, can be found in [GS01, Section 12.2]

An insightful geometric point of view on measure concentration is offered
in [Gro01, Chapter 31

2
], which considers a wide variety of examples. Other good

introductory references include [MS86, Led01, Ver].

References
[AGZ10] Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni. An introduction

to random matrices, volume 118 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 2010.

[dC76] Manfredo P. do Carmo. Differential geometry of curves and surfaces.
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976. Translated from the
Portuguese.

[dC92] Manfredo Perdigão do Carmo. Riemannian geometry. Mathematics:
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