Grothendieck's works on Banach spaces and their surprising recent repercussions (parts 1 and 2)

Gilles Pisier

IPAM, April 2018

PLAN

- Classical GT
- Non-commutative and Operator space GT
- GT and Quantum mechanics : EPR and Bell's inequality
- GT in graph theory and computer science

Classical GT

In 1953, Grothendieck published an extraordinary paper entitled
"Résumé de la théorie métrique des produits tensoriels topologiques,"
now often jokingly referred to as "Grothendieck's résumé"(!). Just like his thesis, this was devoted to tensor products of topological vector spaces, but in sharp contrast with the thesis devoted to the locally convex case, the "Résumé" was exclusively concerned with Banach spaces ("théorie métrique").

Boll.. Soc. Mat. São-Paulo 8 (1953), 1-79.
Reprinted in "Resenhas"

Initially ignored....
But after 1968 : huge impact on the development of "Geometry of Banach spaces"
starting with
Pietsch 1967 and Lindenstrauss-Pełczyński 1968
Kwapień 1972
Maurey 1974 and so on...

The "Résumé" is about the natural \otimes-norms

Explications. - 1. DEEAGpations et factorisations typiques. Nous avons ináré les diverses \otimes-normes usuelles par leur signe usuel ou leurs signes usuele (permettant d'en raconnaitro la eom

The central result of this long paper
"Théorème fondamental de la théorie métrique des produits tensoriels topologiques"
is now called
Grothendieck's Theorem (or Grothendieck's inequality)
We will refer to it as
GT
Informally, one could describe GT as a surprising and non-trivial relation between Hilbert space, or say

$$
L_{2}
$$

and the two fundamental Banach spaces

$$
L_{\infty}, L_{1}
$$

(here L_{∞} can be replaced by the space $C(\Omega)$ of continuous functions on a compact set S).

Why are L_{∞}, L_{1} fundamental?
 because they are UNIVERSAL!

Any Banach space is isometric to a SUBSPACE of L_{∞}
(ℓ_{∞} in separable case)
Any Banach space is isometric to a QUOTIENT of L_{1}
(ℓ_{1} in separable case)
(over suitable measure spaces)

Moreover :
L_{∞} is injective
L_{1} is projective
L_{∞} is injective

Extension Pty :

$$
\forall u \exists \tilde{u} \text { with }\|\tilde{u}\|=\|u\|
$$

L_{1} is projective

Lifting Pty :
$\forall u$ compact $\forall \varepsilon>0 \exists u \tilde{u}$ with $\|\tilde{u}\| \leq(1+\varepsilon)\|u\|$

The relationship between

$$
L_{1}, L_{2}, L_{\infty}
$$

is expressed by an inequality involving

3 fundamental tensor norms:

Let X, Y be Banach spaces, let $X \otimes Y$ denote their algebraic tensor product. Then for any

$$
\begin{equation*}
T=\sum_{1}^{n} x_{j} \otimes y_{j} \in X \otimes Y \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
T=\sum_{1}^{n} x_{j} \otimes y_{j} \tag{1}
\end{equation*}
$$

(1."projective norm")

$$
\|T\|_{\wedge}=\inf \left\{\sum\left\|x_{j}\right\|\left\|y_{j}\right\|\right\}
$$

(2."injective norm")

$$
\|T\|_{\vee}=\sup \left\{\left|\sum x^{*}\left(x_{j}\right) y^{*}\left(y_{j}\right)\right| \mid x^{*} \in B_{X^{*}}, y^{*} \in B_{Y^{*}}\right\}
$$

(3."Hilbert norm")
$\|T\|_{H}=\inf \left\{\sup _{x^{*} \in B_{X^{*}}}\left(\sum\left|x^{*}\left(x_{j}\right)\right|^{2}\right)^{1 / 2} \sup _{y^{*} \in B_{Y^{*}}}\left(\sum\left|y^{*}\left(y_{j}\right)\right|^{2}\right)^{1 / 2}\right\}$
where again the inf runs over all possible representations (1).

Open Unit Ball of $X \otimes_{\wedge} Y=$ convex hull of rank one tensors $x \otimes y$ with $\|x\|<1\|y\|<1$

Note the obvious inequalities

$$
\|T\|_{V} \leq\|T\|_{H} \leq\|T\|_{\wedge}
$$

In fact || \|| $($ resp. || ||v) is the largest (resp. smallest) reasonable \otimes-norm

The γ_{2}-norm

Let $\tilde{T}: X^{*} \rightarrow Y$ be the linear mapping associated to T,

$$
\tilde{T}\left(x^{*}\right)=\sum x^{*}\left(x_{j}\right) y_{j}
$$

Then $\|T\|_{V}=\|\widetilde{T}\|_{B(X, Y)}$ and

$$
\begin{equation*}
\|T\|_{H}=\inf \left\{\left\|T_{1}\right\|\left\|T_{2}\right\|\right\} \tag{2}
\end{equation*}
$$

where the infimum runs over all Hilbert spaces \mathcal{H} and all possible factorizations of \widetilde{T} through \mathcal{H} :

$$
\tilde{T}: X^{*} \xrightarrow{T_{2}} \mathcal{H} \xrightarrow{T_{1}} Y
$$

with $T=T_{1} T_{2}$.
More generally (with Z in place of X^{*})

$$
\gamma_{2}(V: Z \rightarrow Y)=\inf \left\{\left\|T_{1}\right\|\left\|T_{2}\right\| \mid V=T_{1} T_{2}\right\}
$$

called the norm of factorization through Hilbert space of $\tilde{T}_{\bar{z}}$

Important observations :

$\left\|\|_{\vee}\right.$ is injective, meaning
$X \subset X_{1}$ and $Y \subset Y_{1}$ (isometrically) implies

$$
X \otimes_{\vee} Y \subset X_{1} \otimes_{\vee} Y_{1}
$$

$\left\|\|_{\wedge}\right.$ is projective, meaning $X_{1} \rightarrow X$ and $Y_{1} \rightarrow Y$ implies

$$
X_{1} \otimes_{\wedge} Y_{1} \rightarrow X \otimes_{\wedge} Y
$$

(where $X_{1} \rightarrow X$ means metric surjection onto X) but $\left\|\|_{\vee}\right.$ is NOT projective and $\| \|_{\wedge}$ is NOT injective Note: $\left\|\|_{H}\right.$ is injective but not projective

Natural question :
Consider $T \in X \otimes Y$ with $\|T\|_{\vee}=1$
then let us enlarge $X \subset X_{1}$ and $Y \subset Y_{1}$ (isometrically)
obviously $\|T\|_{X_{1} \otimes_{\wedge} Y_{1}} \leq \mid T \|_{X \otimes_{\wedge} Y}$
Question : What is the infimum over all possible enlargements X_{1}, Y_{1}

$$
\|T\|_{/ \mathbb{}}=\inf \left\{\|T\|_{X_{1} \otimes_{\wedge} Y_{1}}\right\} ?
$$

Answer using $X_{1}=Y_{1}=\ell_{\infty}$:

$$
\|T\|_{\mathbb{\wedge}}=\|T\|_{\ell_{\infty} \otimes_{\wedge} \ell_{\infty}}
$$

and (First form of GT) :

$$
\left(\|T\|_{H} \leq\right) \quad\|T\|_{/ \Lambda \backslash} \leq K_{G}\|T\|_{H}
$$

....was probably Grothendieck's favorite formulation

One of the great methodological innovations of "the Résumé" was the systematic use of duality of tensor norms : Given a norm α on $X \otimes Y$ one defines α^{*} on $X^{*} \otimes Y^{*}$ by setting

$$
\alpha^{*}\left(T^{\prime}\right)=\sup \left\{\left|\left\langle T, T^{\prime}\right\rangle\right| \mid T \in X \otimes Y, \alpha(T) \leq 1\right\} . \forall T^{\prime} \in X^{*} \otimes Y^{*}
$$

In the case

$$
\alpha(T)=\|T\|_{H},
$$

Grothendieck studied the dual norm α^{*} and used the notation

$$
\alpha^{*}(T)=\|T\|_{H^{\prime}} .
$$

GT can be stated as follows : there is a constant K such that for any T in $L_{\infty} \otimes L_{\infty}$ (or any T in $C(\Omega) \otimes C(\Omega)$) we have

$$
\begin{equation*}
G T_{1}: \quad\|T\|_{\wedge} \leq K\|T\|_{H} \tag{3}
\end{equation*}
$$

Equivalently by duality the theorem says that for any φ in $L_{1} \otimes L_{1}$ we have

$$
\begin{equation*}
\left(G T_{1}\right)^{*}: \quad\|\varphi\|_{H^{\prime}} \leq K\|\varphi\|_{\vee} \tag{3}
\end{equation*}
$$

The best constant in either (3) or (3) ${ }^{\prime}$ is denoted by
K_{G} "the Grothendieck constant"(actually $K_{G}^{\mathbb{R}}$ and $K_{G}^{\mathbb{C}}$)

Exact values still unknown

although it is known that $1<K_{G}^{\mathbb{C}}<K_{G}^{\mathbb{R}}$

$$
1.676<K_{G}^{\mathbb{R}} \leq 1.782
$$

Krivine 1979, Reeds (unpublished) more on this to come...

$G T_{2}$

Let $B_{H}=\{x \in H \mid\|x\| \leq 1\}$

$$
\begin{gathered}
\forall n \quad \forall x_{i}, y_{j} \in B_{H} \quad(i, j=1, \cdots, n) \\
\exists \phi_{i}, \psi_{j} \in L_{\infty}([0,1])
\end{gathered}
$$

such that

$$
\begin{gathered}
\forall i, j \quad\left\langle x_{i}, y_{j}\right\rangle=\left\langle\phi_{i}, \psi_{j}\right\rangle_{L_{2}} \\
\sup _{i}\left\|\phi_{i}\right\|_{\infty} \sup _{j}\left\|\psi_{j}\right\|_{\infty} \leq K
\end{gathered}
$$

We may assume w.l.o.g. that

$$
x_{i}=y_{i}
$$

but nevertheless we cannot (in general) take

$$
\phi_{i}=\psi_{i}!!
$$

... more on this later
GT_{2} implies GT_{1} in the form $\forall T \in \ell_{\infty}^{n} \otimes \ell_{\infty}^{n}\|T\|_{\wedge} \leq K\|T\|_{H}$

$$
T \in \ell_{\infty}^{n} \otimes \ell_{\infty}^{n} \text { is a matrix } T=\left[T_{i, j}^{\prime}\right]
$$

Then $\|T\|_{H} \leq 1$ iff $\exists x_{i}, y_{j} \in B_{H} \quad T_{i, j}=\left\langle x_{i}, y_{j}\right\rangle$
Let

$$
C=\left\{\left[\varepsilon_{i}^{\prime} \varepsilon_{j}^{\prime \prime}\right]| | \varepsilon_{i}^{\prime}|\leq 1| \varepsilon_{j}^{\prime \prime} \mid \leq 1\right]
$$

then $\left\{T \in \ell_{\infty}^{n} \otimes \ell_{\infty}^{n} \mid\|T\|_{\wedge} \leq 1\right\}=$ convex-hull $(C)=C^{\circ \circ}$ But now if $\|T\|_{H} \leq 1$ for any $b \in C^{\circ}$

$$
\begin{gathered}
|\langle T, b\rangle|=\left|\sum T_{i, j} b_{i, j}\right|=\left|\sum\left\langle x_{i}, y_{j}\right\rangle b_{i, j}\right|=\left|\int \sum \varphi_{i} \psi_{j} b_{i, j}\right| \\
\leq \sup _{i}\left\|\phi_{i}\right\|_{\infty} \sup _{j}\left\|\psi_{j}\right\|_{\infty} \leq K
\end{gathered}
$$

Conclusion :

$$
\|T\|_{\wedge}=\sup _{b \in C^{\circ}}|\langle T, b\rangle| \leq K
$$

and the top line is proved!

But now how do we show :

> Given $\quad x_{i}, y_{j} \in B_{H}$
> there are $\phi_{i}, \psi_{j} \in L_{\infty}([0,1])$

such that

$$
\begin{gathered}
\forall i, j \quad\left\langle x_{i}, y_{j}\right\rangle=\left\langle\phi_{i}, \psi_{j}\right\rangle_{L_{2}} \\
\sup _{i}\left\|\phi_{i}\right\|_{\infty} \sup _{j}\left\|\psi_{j}\right\|_{\infty} \leq K \\
? ? ?
\end{gathered}
$$

Let $H=\ell_{2}$. Let $\left\{g_{j} \mid j \in \mathbb{N}\right\}$ be an i.i.d. sequence of standard Gaussian random variables on $(\Omega, \mathcal{A}, \mathbb{P})$.
For any $x=\sum x_{j} e_{j}$ in ℓ_{2} we denote $G(x)=\sum x_{j} g_{j}$.

$$
\langle G(x), G(y)\rangle_{L_{2}(\Omega, \mathbb{P})}=\langle x, y\rangle_{H} .
$$

Assume $\mathbb{K}=\mathbb{R}$. The following formula is crucial both to Grothendieck's original proof and to Krivine's :

$$
\begin{equation*}
\langle x, y\rangle=\sin \left(\frac{\pi}{2}\langle\operatorname{sign}(G(x)), \operatorname{sign}(G(y))\rangle\right) \tag{4}
\end{equation*}
$$

Krivine's proof of GT with $K=\pi(2 \log (1+\sqrt{2}))^{-1}$ Here $K=\pi / 2 a$ where $a>0$ is chosen so that

$$
\sinh (a)=1 \quad \text { i.e. } \quad a=\log (1+\sqrt{2})
$$

Krivine's proof of GT with $K=\pi(2 \log (1+\sqrt{2}))^{-1}$

We view $T=\left[T_{i, j}\right]$. Assume $\|T\|_{H}<1$ i.e.
$T_{i j}=\left\langle x_{i}, y_{j}\right\rangle, x_{i} y_{j} \in B_{H}$
We will prove that $\|T\|_{\wedge} \leq K$.
Since $\left\|\|_{H}\right.$ is a Banach algebra norm we have

$$
\begin{gathered}
\|\sin (a T)\|_{H} \leq \sinh \left(a\|T\|_{H}\right)<\sinh (a)=1 .\left(\text { here } \sin (a T)=\left[\sin \left(a T_{i, j}\right)\right]\right) \\
\Rightarrow \quad \sin \left(a T_{i, j}\right)=\left\langle x_{i}^{\prime}, y_{j}^{\prime}\right\rangle \quad\left\|x_{i}^{\prime}\right\| \leq 1\left\|y_{j}^{\prime}\right\| \leq 1
\end{gathered}
$$

By (4) we have

$$
\sin \left(a T_{i, j}\right)=\sin \left(\frac{\pi}{2} \int \xi_{i} \eta_{j} d \mathbb{P}\right)
$$

where $\xi_{i}=\operatorname{sign}\left(G\left(x_{i}^{\prime}\right)\right)$ and $\eta_{j}=\operatorname{sign}\left(G\left(y_{j}^{\prime}\right)\right)$. We obtain

$$
a T_{i, j}=\frac{\pi}{2} \int \xi_{i} \eta_{j} d \mathbb{P}
$$

and hence $\|a T\|_{\wedge} \leq \pi / 2$, so that we conclude $\|T\|_{\wedge} \leq \pi / 2 a$.

Best Constants

The constant K_{G} is "the Grothendieck constant." Grothendieck proved that

$$
\pi / 2 \leq K_{G}^{\mathbb{R}} \leq \sinh (\pi / 2)
$$

Actually (here g is a standard $N(0,1)$ Gaussian variable)

$$
\begin{gathered}
\|g\|_{1}^{-2} \leq K_{G} \\
\mathbb{R}:\|g\|_{1}=\mathbb{E}|g|=(2 / \pi)^{1 / 2} \quad \mathbb{C}:\|g\|_{1}=(\pi / 4)^{1 / 2}
\end{gathered}
$$

and hence $K_{G}^{\mathbb{C}} \geq 4 / \pi$. Note $K_{G}^{\mathbb{C}}<K_{G}^{\mathbb{R}}$.
Krivine (1979) proved that

$$
1.66 \leq K_{G}^{\mathbb{R}} \leq \pi /(2 \log (1+\sqrt{2}))=1.78 \ldots
$$

and conjectured $K_{G}^{\mathbb{R}}=\pi /(2 \log (1+\sqrt{2}))$.
\mathbb{C} : Haagerup and Davie $1.338<K_{G}^{\mathbb{C}}<1.405$
The best value $\ell_{\text {best }}$ of the constant in Corollary 0.4 seems also unknown in both the real and complex case. Note that in the real case we have obviously $\ell_{\text {best }} \geq \sqrt{2}$ because the 2-dimensional L_{1} and L_{∞} are isometric.

Disproving Krivine's 1979 conjecture
Braverman, Naor, Makarychev and Makarychev proved in 2011 that :
The Grothendieck constant is strictly smaller than krivine's bound
i.e.

$$
K_{G}^{\mathbb{R}}<\pi /(2 \log (1+\sqrt{2}))
$$

Grothendieck's Questions :

The Approximation Property (AP)
Def: X has AP if for any Y

$$
X \widehat{\otimes} Y \rightarrow X \check{\otimes} Y \text { is injective }
$$

Answering Grothendieck's main question ENFLO (1972) gave the first example of Banach FAILING AP SZANKOWSKI (1980) proved that $B(H)$ fails AP also proved that for any $p \neq 2 \ell_{p}$ has a subspace failing AP....

Nuclearity

A Locally convex space X is NUCLEAR if

$$
\forall Y \quad X \widehat{\otimes} Y=X \check{\otimes} Y
$$

Grothendieck asked whether it suffices to take $Y=X$, i.e.

$$
X \widehat{\otimes} X=X \check{\otimes} X
$$

but I gave a counterexample (1981) even among Banach spaces also $\quad X \widehat{\otimes} X^{*} \rightarrow X \check{\otimes} X^{*}$ is onto, this X also fails AP .

Other questions

[2] Solved by Gordon-Lewis Acta Math. 1974. (related to the notion of Banach lattice and the so-called "local unconditional structure")
[3] Best constant? Still open!
[5] Solved negatively in 1978 (P. Annales de Fourier) and Kisliakov independently : The Quotients L_{1} / R for $R \subset L_{1}$ reflexive satisfy GT.

[4] non-commutative GT

Is there a version of the fundamental Th. (GT) for bounded bilinear forms on non-commutative C^{*}-algebras?
On this I have a small story to tell and a letter from Grothendieck...
4. Proprí́tés algébrico-topologiques des C^{*}-algèbres.Soit A une C^{*}-algèbre. Le théorème 3 du $N \ell 2$ suggère la conjecture su ivante: Soit u une forme sesquilinéaire continue sur $A \times A$,peut on trouver une forme positive φ sur A telle que $u \ll u_{\varphi}$ (ou on pose, comme au $\left.n 85, u_{\varphi}(x, y)=\varphi\left(y^{*} x\right)\right)$? S'il on était toujours ainsi, on pourrait trouver une constante universelle λ (peut on prendre meme $\lambda=h$?) telle que 1 'on puisse choisir cette φ de norme $\leqslant \lambda\|u\|$. Il suffirait de prouver alors l'énoncé sous cette forme pour le cas ou A est du type $L(H)$, H étant un espace de Hilbert de dimension inie. Cette conjecture peut s'énoncer de diverses autres façons équivalentes dignes d'intéret. Signalons qu'elle impliquerait que toute forme bilinéaire continue sur le
 deux $C^{*}-a l_{g}$ ebres est prise égale a ε_{0}, on obtient facilement la conséquence suivente: toute suite sommable dans le dual $A^{\prime} d^{\prime} u n e$
 permettrait par exemple de prouver la proposition 6 du N\&4 sans funnoser le groude G abélien.

Cher Pisier,
Mera pour votor lelhe et maunscijpt, fui seunbl du bean trawail! Ir swis dísolé de un Vousir Higmatoe' ustre quetion, syount pre tiquent arblie'le pus on r sanea; sue e c^{*} apgibves! Je m remile su je vois conusin n oduin on coríal a con d un $L(H), H$ vven a Hilb=a úform! le; mais abi us sov aname sams doute vor beancorp! Je a'a ben gade. d notes de un wogitatione Vosier, et den conr un un sunt Irlun sin gím una noble

ET TECHNIQUES DU LANGUEDOC

INSTITUT DE MATHEMATIQUES
Place Eugène Bataillon
34060 MONTPELLIER CEDEX
assation de ce fr. 73 soit prouvie - m unaie!
a xuait biun nopol

 on frebion bim cone'ge mint uotm.

Dual Form and factorization :

Since $\|\varphi\|_{\ell_{1}^{n} \otimes v \ell_{1}^{n}}=\|\varphi\|_{\left[\ell_{\infty}^{n} \otimes \wedge \ell_{\infty}^{n}\right]^{*}}$

$$
\left(G T_{1}\right)^{*} \quad \forall \varphi \in \ell_{1}^{n} \otimes \ell_{1}^{n} \quad\|\varphi\|_{H^{\prime}} \leq K\|\varphi\|_{V}
$$

is the formulation put forward by Lindenstrauss and Pełczyński ("Grothendieck’s inequality") :

Theorem

Let $\left[a_{i j}\right]$ be an $N \times N$ scalar matrix $(N \geq 1)$ such that

$$
\left|\sum a_{i j} \alpha_{i} \beta_{i}\right| \leq \sup _{i}\left|\alpha_{i}\right| \sup _{j}\left|\beta_{j}\right| . \quad \forall \alpha, \beta \in \mathbb{K}^{n}
$$

Then for Hilbert space H and any N-tuples $\left(x_{j}\right),\left(y_{j}\right)$ in H we have

$$
\begin{equation*}
\left|\sum a_{i j}\left\langle x_{i}, y_{j}\right\rangle\right| \leq K \sup \left\|x_{i}\right\| \sup \left\|y_{j}\right\| . \tag{5}
\end{equation*}
$$

Moreover the best K (valid for all H and all N) is equal to K_{G}.

We can replace $\ell_{\infty}^{n} \times \ell_{\infty}^{n}$ by $C(\Omega) \times C(\Pi)(\Omega, \Pi$ compact sets)

Theorem (Classical GT/inequality)

For any $\varphi: C(\Omega) \times C(\Pi) \rightarrow \mathbb{K}$ and for any finite sequences $\left(x_{j}, y_{j}\right)$ in $C(\Omega) \times C(\Pi)$ we have

$$
\begin{equation*}
\left|\sum \varphi\left(x_{j}, y_{j}\right)\right| \leq K\|\varphi\|\left\|\left(\sum\left|x_{j}\right|^{2}\right)^{1 / 2}\right\|_{\infty}\left\|\left(\sum\left|y_{j}\right|^{2}\right)^{1 / 2}\right\|_{\infty} \tag{6}
\end{equation*}
$$

(We denote $\|f\|_{\infty}=\sup _{\Omega}|f()$.$| for f \in C(\Omega)$) Here again

$$
K_{\text {best }}=K_{G} .
$$

For later reference observe that here φ is a bounded bilinear form on $A \times B$ with A, B commutative C^{*}-algebras

By a Hahn-Banach type argument, the preceding theorem is equivalent to the following one :

Theorem (Classical GT/factorization)

Let Ω, Π be compact sets. (here $\mathbb{K}=\mathbb{R}$ or \mathbb{C})
$\forall \varphi: C(\Omega) \times C(\Pi) \rightarrow \mathbb{K}$ bounded bilinear form $\exists \lambda, \mu$
probabilities resp. on Ω and Π, such that $\forall(x, y) \in C(\Omega) \times C(\Pi)$

$$
\begin{equation*}
|\varphi(x, y)| \leq K\|\varphi\|\left(\int|x|^{2} d \lambda\right)^{1 / 2}\left(\int|y|^{2} d \mu\right)^{1 / 2} \tag{7}
\end{equation*}
$$

where constant $K_{\text {best }}=K_{G}^{\mathbb{R}}$ or $K_{G}^{\mathbb{C}}$

$$
\begin{array}{lll}
C(\Omega) \xrightarrow{\widetilde{\varphi}} & C(\Pi)^{*} \\
J_{\lambda} \downarrow & & \\
L_{2}(\lambda) \xrightarrow{u} & L_{2}(\mu)
\end{array}
$$

Note that any L_{∞}-space is isometric to $C(\Omega)$ for some Ω, and any L_{1}-space embeds isometrically into its bidual, and hence embeds into a space of the form $C(\Omega)^{*}$.

Corollary

Any bounded linear map $v: C(\Omega) \rightarrow C(\Pi)^{*}$ or any bounded linear map $v: L_{\infty} \rightarrow L_{1}$ (over arbitrary measure spaces) factors through a Hilbert space. More precisely, we have

$$
\gamma_{2}(v) \leq \ell\|v\|
$$

where ℓ is a numerical constant with $\ell \leq K_{G}$.

GT and tensor products of C^{*}-algebras
Nuclearity for C^{*}-algebras
Analogous C^{*}-algebra tensor products

$$
A \otimes_{\min } B \quad \text { and } \quad A \otimes_{\max } B
$$

Guichardet, Turumaru 1958, (later on Lance)
Def : A C^{*}-algebra A is called NUCLEAR (abusively...) if

$$
\forall B \quad A \otimes_{\min } B=A \otimes_{\max } B
$$

Example : all commutative C^{*}-algebras,
$K(H)=\{$ compact operators on $H\}$,
$C^{*}(G)$ for G amenable discrete group
For C^{*}-algebras :

$$
\text { nuclear } \simeq \text { amenable }
$$

Connes 1978, Haagerup 1983

KIRCHBERG (1993) gave the first example of a C^{*}-algebra A such that

$$
A \otimes_{\min } A^{O D}=A \otimes_{\max } A^{O D}
$$

but

$$
A \text { is NOT nuclear }
$$

He then conjectured that this equality holds for the two fundamental examples

$$
A=B(H)
$$

and

$$
A=C^{*}\left(\mathbb{F}_{\infty}\right)
$$

Why are $B(H)$ and $C^{*}\left(\mathbb{F}_{\infty}\right)$ fundamental C^{*}-algebras? because they are UNIVERSAL
Any separable C^{*}-algebra EMBEDS in $B\left(\ell_{2}\right)$ Any separable C^{*}-algebra is a QUOTIENT of $C^{*}\left(\mathbb{F}_{\infty}\right)$

Moreover, $B(H)$ is injective (i.e. extension property) and $C^{*}\left(\mathbb{F}_{\infty}\right)$ has a certain form of lifting property called (by Kirchberg) Local Lifting Property (LLP)

With JUNGE (1994) we proved that if $A=B(H)$
(well known to be non nuclear, by S. Wassermann 1974)

$$
A \otimes_{\min } A^{o p} \neq A \otimes_{\max } A^{o p}
$$

which gave a counterexample to the first Kirchberg conjecture

The other Kirchberg conjecture has now become the most important OPEN problem on operator algebras:
(here \mathbb{F}_{∞} is the free group)

$$
\text { If } \begin{aligned}
A & =C^{*}\left(\mathbb{F}_{\infty}\right), \quad A \otimes_{\min } A^{O p} \stackrel{?}{=} A \otimes_{\max } A^{O D} ? \\
& \Leftrightarrow \text { CONNES embedding problem }
\end{aligned}
$$

Let $\left(U_{j}\right)$ be the free unitary generators of $C^{*}\left(\mathbb{F}_{\infty}\right)$
Ozawa (2013) proved

Theorem

The Connes-Kirchberg conjecture is equivalent to

$$
\forall n \geq 1 \forall a_{i j} \in \mathbb{C} \quad\left\|\sum_{i, j=1}^{n} a_{i j} U_{i} \otimes U_{j}\right\|_{\max }=\left\|\sum_{i, j=1}^{n} a_{i j} U_{i} \otimes U_{j}\right\|_{\min }
$$

Grothendieck's inequality implies

$$
\left\|\sum_{i, j=1}^{n} a_{i j} U_{i} \otimes U_{j}\right\|_{\max } \leq K_{G}^{\mathbb{C}}\left\|\sum_{i, j=1}^{n} a_{i j} U_{i} \otimes U_{j}\right\|_{\min }
$$

Indeed,

$$
\begin{gathered}
\left\|\sum_{i, j=1}^{n} a_{i j} U_{i} \otimes U_{j}\right\|_{\max }=\sup \left\{\left|\left\langle\eta, \sum_{i, j=1}^{n} a_{i j} u_{i} v_{j} \xi\right\rangle\right|, \xi, \eta \in B_{H}\right\} \\
\leq \sup \left\{\left|\sum_{i, j=1}^{n} a_{i j}\left\langle u_{i}^{*} \eta, v_{j} \xi\right\rangle\right|, \xi, \eta \in B_{H}\right\} \\
\leq \sup \left\{\left|\sum_{i, j=1}^{n} a_{i j}\left\langle x_{i}, y_{j}\right\rangle\right|, x_{i}, y_{j} \in B_{H}\right\} \\
\leq K_{G}^{\mathbb{C}} \sup \left\{\left|\sum_{i, j=1}^{n} a_{i j}\left\langle x_{i}, y_{j}\right\rangle\right|, x_{i}, y_{j} \in B_{\mathbb{C}}\right\} \\
\leq K_{G}^{\mathbb{C}}\left\|\sum_{i, j=1}^{n} a_{i j} U_{i} \otimes U_{j}\right\|_{\min }
\end{gathered}
$$

Theorem (Tsirelson 1980)

If $a_{i j} \in \mathbb{R}$ for all $1 \leq i, j \leq n$. Then

$$
\left\|\sum_{i, j} a_{i j} U_{i} \otimes U_{j}\right\|_{\max }=\left\|\sum_{i, j} a_{i j} U_{i} \otimes U_{j}\right\|_{\min }=\|a\|_{\ell_{1}^{n} \otimes_{H^{\prime}} \ell_{1}^{n}} .
$$

Moreover, these norms are all equal to

$$
\begin{equation*}
\sup \left\|\sum a_{i j} u_{i} v_{j}\right\| \tag{8}
\end{equation*}
$$

where the sup runs over all $n \geq 1$ and all self-adjoint unitary $n \times n$ matrices u_{i}, v_{j} such that $u_{i} v_{j}=v_{j} u_{i}$ for all i, j.

Non-commutative and Operator space GT

Theorem (C^{*}-algebra version of GT, P-1978,Haagerup-1985)

Let A, B be C^{*}-algebras. Then for any bounded bilinear form $\varphi: A \times B \rightarrow \mathbb{C}$ there are states f_{1}, f_{2} on A, g_{1}, g_{2} on B such that $\forall(x, y) \in A \times B$

$$
|\varphi(x, y)| \leq\|\varphi\|\left(f_{1}\left(x^{*} x\right)+f_{2}\left(x x^{*}\right)\right)^{1 / 2}\left(g_{1}\left(y y^{*}\right)+g_{2}\left(y^{*} y\right)\right)^{1 / 2} .
$$

Many applications to amenability, similarity problems, multilinear cohomology of operator algebras (cf. Sinclair-Smith books)

Operator spaces

Non-commutative Banach spaces (sometimes called "quantum Banach spaces"...)

Definition

An operator space E is a closed subspace of a C^{*}-algebra, i.e.

$$
E \subset A \subset B(H)
$$

Any Banach space can appear, but In category of operator spaces, the morphisms are different

$$
u: E \rightarrow F \quad\|u\|_{c b}=\sup _{n}\left\|\left[a_{i j}\right] \rightarrow\left[u\left(a_{i j}\right)\right]\right\|_{B\left(M_{n}(E) \rightarrow M_{n}(F)\right)}
$$

$B(E, F)$ is replaced by $C B(E, F) \quad\left(\right.$ Note : $\left.\|u\| \leq\|u\|_{c b}\right)$
bounded maps are replaced by completely bounded maps isomorphisms are replaced by complete isomorphisms If A is commutative : recover usual Banach space theory
L_{∞} is replaced by
Non-commutative L_{∞} : any von Neumann algebra
Operator space theory :
developed roughly in the 1990's by
EFFROS-RUAN BLECHER-PAULSEN and others
admits Constructions Parallel to Banach space case SUBSPACE, QUOTIENT, DUAL, INTERPOLATION, \exists ANALOGUE OF HILBERT SPACE ("OH")...
Analogues of projective and injective Tensor products

$$
E_{1} \subset B\left(H_{1}\right) \quad E_{2} \subset B\left(H_{2}\right)
$$

$$
\text { Injective } \quad E_{1} \otimes_{\min } E_{2} \subset B\left(H_{1} \otimes_{2} H_{2}\right)
$$

Again Non-commutative L_{∞} and Non-commutative L_{1} are UNIVERSAL objects

Theorem (Operator space version of GT)

Let A, B be C^{*}-algebras. Then for any $C B$ bilinear form
$\varphi: A \times B \rightarrow \mathbb{C}$ with $\|\varphi\|_{c b} \leq 1$ there are states f_{1}, f_{2} on A, g_{1}, g_{2} on B such that $\forall(x, y) \in A \times B$

$$
\left.|\langle\varphi(x, y)\rangle| \leq 2\left(f_{1}\left(x x^{*}\right) g_{1}\left(y^{*} y\right)\right)^{1 / 2}+\left(f_{2}\left(x^{*} x\right) g_{2}\left(y y^{*}\right)\right)^{1 / 2}\right) .
$$

Conversely if this holds then $\|\varphi\|_{c b} \leq 4$.
With some restriction : SHLYAKHTENKO-P (Invent. Math. 2002) Full generality : HAAGERUP-MUSAT (Invent. Math. 2008) and 2 is optimal!
Also valid for "exact" operator spaces A, B (no Banach space analogue!)

GT, Quantum mechanics, EPR and Bell's inequality

In 1935, Einstein, Podolsky and Rosen [EPR] published a famous article vigorously criticizing the foundations of quantum mechanics
They pushed forward the alternative idea that there are, in reality, "hidden variables" and that the statistical aspects of quantum mechanics can be replaced by this concept. In 1964, J.S. BELL observed that the hidden variables theory could be put to the test. He proposed an inequality (now called "Bell's inequality") that is a CONSEQUENCE of the hidden variables assumption.
After Many Experiments initially proposed by Clauser, Holt, Shimony and Holt (CHSH, 1969), the consensus is : The Bell-CHSH inequality is VIOLATED, and in fact the measures tend to agree with the predictions of QM .
Ref : Alain ASPECT, Bell's theorem : the naive view of an experimentalist (2002)

In 1980 TSIRELSON observed that GT could be interpreted as giving AN UPPER BOUND for the violation of a (general) Bell inequality, and that the VIOLATION of Bell's inequailty is related to the assertion that

$$
K_{G}>1!!
$$

He also found a variant of the CHSH inequality (now called "Tsirelson's bound")

The experiment

10 There is no (Local-Realistic) Alternative to Quantum Theo

A

Figure 10.1: A polarisation measurement on pairs of photons. The dashed lines indicate the x - and y-axes. The solid lines are the rotated axes.

Figure 10.2: The orientations of the analysers.

Fig. 6.8. Aspect's experiment: Pairs of photons are emitted in SPS cascades. Optical switches O_{1} and O_{2} randomly redirect these photons toward four polarization analyzers, symbolized by thick arrows. Each analyzer tests the linear polarization along one of the directions indicated in Fig. 6.7(b). The detector outputs are checked for coincidences in order to find correlations between them.

Outline of Bell's argument :

Hidden Variable Theory :
If A has spin detector in position i
and B has spin detector in position i
Covariance of their observation is

$$
\xi_{i j}=\int A_{i}(\lambda) B_{j}(\lambda) \rho(\lambda) d \lambda
$$

where ρ is a probability density over the "hidden variables" Now if $a \in \ell_{1}^{n} \otimes \ell_{1}^{n}$, viewed as a matrix [$a_{i j}$], for ANY ρ we have

$$
\left|\sum a_{i j} \xi_{i j}\right| \leq H V(a)_{\max }=\sup _{\phi_{i}= \pm 1 \psi_{j}= \pm 1}\left|\sum a_{i j} \phi_{i} \psi_{j}\right|=\|a\|_{\vee}
$$

But Quantum Mechanics predicts

$$
\xi_{i j}=\operatorname{tr}\left(\rho \boldsymbol{A}_{i} \boldsymbol{B}_{j}\right)
$$

where A_{i}, B_{j} are self-adjoint unitary operators on H ($\operatorname{dim}(H)<\infty$) with spectrum in $\{ \pm 1\}$ such that $A_{i} B_{j}=B_{j} A_{i}$ and ρ is a non-commutative probability density,
i.e. $\rho \geq 0$ trace class operator with $\operatorname{tr}(\rho)=1$. This yields

$$
\left|\sum a_{i j} \xi_{i j}\right| \leq Q M(a)_{\max }=\sup _{x \in B_{H}}\left|\sum a_{i j}\left\langle A_{i} B_{j} x, x\right\rangle\right|=\|a\|_{\min }
$$

with $\|a\|_{\text {min }}$ relative to embedding (here $g_{j}=$ free generators)

$$
\begin{gathered}
\ell_{1}^{n} \otimes \ell_{1}^{n} \subset C^{*}\left(\mathbb{F}_{n}\right) \otimes_{\min } C^{*}\left(\mathbb{F}_{n}\right) \\
e_{i} \otimes e_{j} \mapsto g_{i} \otimes g_{j}
\end{gathered}
$$

Easy to show $\|a\|_{\text {min }} \leq\|a\|_{H^{\prime}}$, so GT implies:

$$
\begin{gathered}
\|a\|_{\vee} \leq\|a\|_{\min } \leq K_{G}\|a\|_{\vee} \\
\Rightarrow H V(a)_{\max } \leq Q M(a)_{\max } \leq K_{G} H V(a)_{\max }
\end{gathered}
$$

But the covariance $\xi_{i j}$ can be physically measured, and hence also $\left|\sum a_{i j} \xi_{i j}\right|$ for a fixed suitable choice of a, so we obtain an experimental answer

$$
E X P(a)_{\max }
$$

and (for well chosen a) it DEVIATES from the HV value In fact the experimental data strongly confirms the QM predictions:

$$
H V(a)_{\max }<E X P(a)_{\max } \simeq Q M(a)_{\max }
$$

GT then appears as giving a bound for the deviation :

$$
H V(a)_{\max }<Q M(a)_{\max } \quad \text { but } \quad Q M(a)_{\max } \leq K_{G} H V(a)_{\max }
$$

JUNGE (with Perez-Garcia, Wolf, Palazuelos, Villanueva, Comm.Math.Phys.2008) considered the same problem for three separated observers A, B, C
The analogous question becomes: If
$a=\sum a_{i j k} e_{i} \otimes e_{j} \otimes e_{k} \in \ell_{1}^{n} \otimes \ell_{1}^{n} \otimes \ell_{1}^{n} \subset C^{*}\left(\mathbb{F}_{n}\right) \otimes_{\min } C^{*}\left(\mathbb{F}_{n}\right) \otimes_{\min } C^{*}\left(\mathbb{F}_{n}\right)$
Is there a constant K such that

$$
\|a\|_{\min } \leq K\|a\|_{\vee} ?
$$

Answer is

One can get on ℓ_{1}^{n}

JUNGE (with Perez-Garcia, Wolf, Palazuelos, Villanueva, Comm.Math.Phys.2008) considered the same problem for three separated observers A, B, C
The analogous question becomes: If

$$
a=\sum a_{i j k} e_{i} \otimes \boldsymbol{e}_{j} \otimes e_{k} \in \ell_{1}^{n} \otimes \ell_{1}^{n} \otimes \ell_{1}^{n} \subset C^{*}\left(\mathbb{F}_{n}\right) \otimes_{\min } C^{*}\left(\mathbb{F}_{n}\right) \otimes_{\min } C^{*}\left(\mathbb{F}_{n}\right)
$$

Is there a constant K such that

$$
\|a\|_{\min } \leq K\|a\|_{\vee} ?
$$

Answer is

NO

One can get on $\ell_{1}^{n} \otimes \ell_{1} \otimes \ell_{1}$

$$
K \geq c n^{1 / 8}
$$

and in some variant a sharp result

GT in graph theory and computer science

Alon-Naor-Makarychev ${ }^{2}$ [ANMM] introduced the Grothendieck constant of a graph $\mathcal{G}=(V, E)$: the smallest constant K such that, for every $a: E \rightarrow \mathbb{R}$, we have
$\sup _{f: V \rightarrow S} \sum_{(s, t) \in E} a(s, t)\langle f(s), f(t)\rangle \leq K \sup _{f: V \rightarrow\{-1,1\}} \sum_{(s, t) \in E} a(s, t) f(s) f(t)$
where S is the unit sphere of $H=\ell_{2}$ (may always assume $\operatorname{dim}(H) \leq|V| \mid$. We will denote by

$$
K(\mathcal{G})
$$

the smallest such K.

Consider for instance the complete bipartite graph $\mathcal{C B}_{n}$ on vertices $V=I_{n} \cup J_{n}$ with $I_{n}=\{1, \ldots, n\}, J_{n}=\{n+1, \ldots, 2 n\}$ with

$$
(i, j) \in E \Leftrightarrow i \in I_{n}, j \in J_{n}
$$

In that case (9) reduces to GT and we have

$$
\begin{aligned}
K\left(\mathcal{C B}_{n}\right) & =K_{G}^{\mathbb{R}}(n) \\
\sup _{n \geq 1} K\left(\mathcal{C B}_{n}\right) & =K_{G}^{\mathbb{R}} .
\end{aligned}
$$

If $\mathcal{G}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of \mathcal{G} (i.e. $V^{\prime} \subset V$ and $E^{\prime} \subset E$) then obviously

$$
K\left(\mathcal{G}^{\prime}\right) \leq K(\mathcal{G}) .
$$

Therefore, for any bipartite graph \mathcal{G} we have

$$
K(\mathcal{G}) \leq K_{G}^{\mathbb{R}} .
$$

However, this constant does not remain bounded for general (non-bipartite) graphs. In fact, it is known (cf. Megretski 2000 and independently Nemirovski-Roos-Terlaky 1999) that there is an absolute constant C such that for any \mathcal{G} with no selfloops (i.e. $(s, t) \notin E$ when $s=t$)

$$
\begin{equation*}
K(\mathcal{G}) \leq C(\log (|V|)+1) \tag{10}
\end{equation*}
$$

Moreover by Kashin-Szarek and [AMMN] this logarithmic growth is asymptotically optimal.

$$
\begin{gathered}
\forall n \quad \forall x_{i}, x_{j} \in B_{H} \quad(i, j=1, \cdots, n) \\
\exists \phi_{i}, \psi_{j} \in L_{\infty}([0,1])
\end{gathered}
$$

such that

$$
\begin{gathered}
\forall i, j \quad\left\langle x_{i}, x_{j}\right\rangle=\left\langle\phi_{i}, \psi_{j}\right\rangle_{L_{2}} \\
\sup _{i}\left\|\phi_{i}\right\|_{\infty} \sup _{j}\left\|\psi_{j}\right\|_{\infty} \leq K
\end{gathered}
$$

but nevertheless we cannot (in general) take

$$
\phi_{i}=\psi_{i}!!
$$

If $\phi_{i}=\psi_{i}$, then $K \geq c \log (n)$!

WHAT IS THE POINT?

In computer science the CUT NORM problem is of interest : We are given a real matrix $\left(a_{i j}\right)_{i \in R}$ we want to compute efficiently $j \in S$

$$
Q=\max _{\substack{l \subset R \\ J \subset S}}\left|\sum_{\substack{i \in J \\ j \in J}} a_{i j}\right| .
$$

Of course the connection to GT is that this quantity Q is such that

$$
4 Q \geq Q^{\prime} \geq Q
$$

where

$$
Q^{\prime}=\sup _{x_{i}, y_{j} \in\{-1,1\}} \sum a_{i j} x_{i} y_{j} .
$$

So roughly computing Q is reduced to computing Q^{\prime}. In fact if we assume $\sum_{j} a_{i j}=\sum_{i} a_{i j}=0$ for any i and any j then

$$
4 Q=Q^{\prime}
$$

Then precisely Grothendieck's Inequality tells us that

$$
Q^{\prime \prime} \geq Q^{\prime} \geq \frac{1}{K_{G}} Q^{\prime \prime}
$$

where

$$
Q^{\prime \prime}=\sup _{x_{i}, y_{j} \in S} \sum a_{i j}\left\langle x_{i}, y_{j}\right\rangle .
$$

The point is that computing Q^{\prime} in polynomial time is not known (in fact it would imply $P=N P$) while the problem of computing $Q^{\prime \prime}$ falls into the category of "semi-definite programming" problems and these are known to be solvable in polynomial time.
cf. Grötschel-Lovasz-Schriver 1981 : "The ellipsoid method" Goemans-Williamson 1995 : These authors introduced the idea of "relaxing" a problem such as Q^{\prime} into the corresponding problem $Q^{\prime \prime}$.
Known : $\exists \rho<1$ such that even computing Q^{\prime} up to a factor ρ in polynomial time would imply $P=N P$. So the Grothendieck constant seems to play a role here!

Alon and Naor (Approximating the cut norm via Grothendieck's inequality, 2004) rewrite several known proofs of GT (including Krivine's) as (polynomial time) algorithms for solving $Q^{\prime \prime}$ and producing a cut I, J such that

$$
\left|\sum_{\substack{i \in I \\ j \in J}} a_{i j}\right| \geq \rho Q=\rho \max _{\substack{l \subset R \\ J \subset S}}\left|\sum_{\substack{i \in I \\ j \in J}} a_{i j}\right| .
$$

According to work by P. Raghavendra and D. Steurer, for any $0<K<K_{G}$, assuming a strengthening of $P \neq N P$ called the "unique games conjecture", it is NP-hard to compute any quantity q such that $K^{-1} q \leq Q^{\prime}$. While, for $K>K_{G}$, we can take $q=Q^{\prime \prime}$ and then compute a solution in polynomial time by semi-definite programming. So in this framework K_{G} seems connected to the $P=$ NP problem!
Reference: S. Khot and A. Naor, Grothendieck-type inequalities in combinatorial optimization, 2012.

THANK YOU!

